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An effective surface equation, that encapsulates the
detail of a microstructure, is developed to model
microstructured surfaces. The equations deduced
accurately reproduce a key feature of surface wave
phenomena, created by periodic geometry, that are
commonly called Rayleigh–Bloch waves, but which
also go under other names, for example, spoof surface
plasmon polaritons in photonics. Several illustrative
examples are considered and it is shown that the
theory extends to similar waves that propagate along
gratings. Line source excitation is considered, and
an implicit long-scale wavelength is identified and
compared with full numerical simulations. We also
investigate non-periodic situations where a long-scale
geometrical variation in the structure is introduced
and show that localized defect states emerge which
the asymptotic theory explains.

1. Introduction
It has been known for many years that surface
waves, that is, waves propagating along a surface,
and exponentially decaying in amplitude perpendicular
to the surface, are created by geometrical periodic
corrugations, or perturbations, to the surface [1–3] in
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situations where a surface wave would otherwise not exist. Such surface waves also occur for
diffraction gratings and for trapped modes in waveguides; these are all very similar problems
mathematically [4,5] and differ just in their setting. These surface waves have been discovered
in many different areas of wave mechanics and go under names such as edge waves [6] for
water waves localized to periodic coastlines, spoof surface plasmon polaritons (SPPs) [7,8] in
modern applications of plasmonics, array-guided surface waves [9] in Yagi–Uda antenna theory,
Rayleigh–Bloch surface waves [5,10] for diffraction gratings among other areas: we will call
them Rayleigh–Bloch waves as surface waves are typically called Rayleigh waves, and Bloch
waves arise owing to periodicity. They can also be identified in lattice defect arrays, in discrete
settings [11], and are ubiquitous across wave mechanics, it is important to clearly delineate
them from surface waves, such as Rayleigh waves, that are present in the absence of periodic
geometrical features and which arise owing to material mismatch or from wave mode coupling
at the surface.

Naturally, as these are eigenfunctions of a diffraction grating, they have implications for the
uniqueness of solutions and they have been the subject of numerous existence studies [10,12,13]
with the conclusion that they are a generic property of periodic surfaces and gratings that have
Neumann boundary conditions; the non-existence for Dirichlet cases for the wave equation is
shown in Wilcox [10].

As well as being ubiquitous in wave mechanics, Rayleigh–Bloch waves are important in
applications; their dispersion characteristics can be carefully tuned by altering only the geometry
as in SPPs [8], or are important through the coupling of incident waves into Rayleigh–Bloch waves
causing near resonant effects for finite arrays as in water waves [14,15]. These effects, and in
particular the possibility to tune or detune them, rely upon being able to simulate and determine
dispersion characteristics; there is advantage in being able to represent and model them using an
effective medium approach that replaces the microstructure.

The classical route to replace a microstructured medium with an effective continuum
representation is homogenization theory, and for bulk media this is detailed in many
monographs, for instance Sanchez-Palencia [16], Bakhvalov & Panasenko [17], Bensoussan
et al. [18], Panasenko [19], and essentially relies upon the wavelength being much larger than
the microstructure which is usually assumed to be perfectly periodic: the theory has been
very versatile and has been widely applied. Naturally, there were extensions of this theory to
surfaces, notably by Nevard & Keller [20], again with the wavelength limitation, unfortunately
this long-wave low-frequency limit is not particularly useful at the high frequencies used in
applications such as photonics [21] and plasmonics [22,23]; this motivated the development
of high-frequency homogenization (HFH) in Craster et al. [24]. HFH breaks free of the low-
frequency long-wave limitation and, for bulk media, creates effective long-scale equations that
encapsulate the microstructural behaviour, which can be upon the same scale as the wavelength,
through integrated quantities that are no longer simple averages. The methodology relies upon
there being some basic underlying periodic structure, so that Bloch waves and standing wave
frequencies encapsulate the multiple scattering between elements of the microstructure on the
short scale, and this is then modulated by a long-scale function that satisfies an anisotropic
frequency-dependent partial differential equation; the technique has been successfully applied
to acoustics/electromagnetics [25,26], elastic plates that support bending waves [27], frames [28]
and to discrete media [29]. The advantage of having an effective equation for a microstructured
bulk medium or surface is that one need no longer model the detail of each individual scatterer,
as they are subsumed into a parameter on the long scale, and attention can then be given to the
overall physics of the structure and one can identify, or design for, novel physics.

The HFH theory of Craster et al. [24] is not alone: there is considerable interest in creating
effective continuum models of microstructured media, in various related fields, that break free
from the conventional low-frequency homogenization limitations. This desire has created a suite
of extended homogenization theories originating in applied analysis, for periodic media, called
Bloch homogenization [30–33]. There is also a flourishing literature on developing homogenized
elastic media, with frequency-dependent effective parameters, also based upon periodic media as
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(b)(a)

Figure 1. A diffraction grating of cylinders shown in (a) and (b) shows a periodic ‘comb’ surface that supports SSPs. Both (a,b)
have the elementary strip shown as the dashed lines.

in Nemat-Nasser et al. [34]. Those approaches notwithstanding, our aim here is to extend the HFH
theory to microstructured surfaces and obtain frequency-dependent effective surface conditions
that capture the main features of the surface waves that exist.

Our aim herein is to generate a surface HFH theory for structured surfaces in the context of
periodic surfaces. Importantly, one can modify the theory, as performed for bulk waves in Craster
et al. [25], Antonakakis & Craster [27] and Makwana & Craster [35], to pull out defect states
associated with non-periodic variation. It is also important to note that the HFH theory has a deep
connection with the high-frequency long wavelength near-cut-off theory of waveguides [36], and
the defect states are related to localization by deformed waveguides [37–39]. We also naturally
extend the HFH theory to diffraction gratings. In §2, the theory is created culminating in the
effective equation that encapsulates the surface behaviour. Illustrative examples, in §3, then
show the efficacy of the methodology versus the dispersion relations found numerically. An
interesting practical situation is where some geometrical variation occurs, then one expects the
possibility of trapped modes along the structure occurring at a set of discrete frequencies, and we
consider a comb-like structure where the teeth have varying length in §4; the asymptotic theory is
compared with full numerical simulations. Finally, concluding comments and remarks are drawn
together in §5.

2. General theory
For perfect infinite linear arrays, diffraction gratings or surface structures arranged periodically,
one focuses attention on a single elementary strip of material that then repeats (see figure 1
for illustrative cases); quasi-periodic Floquet–Bloch boundary conditions describe the phase-shift
across the strip as a wave moves from strip to strip through the material. Rayleigh–Bloch waves
are special as they consist of waves that also decay exponentially in the perpendicular direction
away from the array. Dispersion relations then relate the Floquet–Bloch wavenumber, the phase-
shift, to frequency. Although the problem is truly two-dimensional, the assumption of exponential
decay in the perpendicular direction renders it quasi-one dimensional with the wavenumber
remaining scalar; this contrasts with the theory of Bloch waves in photonic crystals [21] where
a vector wavenumber and the Brillouin zone are more natural descriptions.

We generate an asymptotic theory and importantly we take Neumann boundary conditions
on the lattice, or surface, where physically this can be considered as transverse electric (TE)
polarization for a perfectly conducting surface which is a good model for microwaves [40].
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A time harmonic dependence of propagation exp(−iωt), with frequency ω, is assumed
throughout, and henceforth suppressed, and after non-dimensionalization of the frequency one
arrives at

l2u(x),xixi + Ω2u(x) = 0, with Ω = ωl
c

, (2.1)

where l is the length scale of the microscale and c is the wavespeed, as the governing equation
of interest. We consider the half-space −∞ < x1 < ∞, 0 < x2 < ∞, and for the grating extend to
−∞ in x2, where x1 and x2 are in the horizontal and vertical directions, respectively. In (2.1), Ω

is the non-dimensional frequency, and u is the out-of-plane displacement in elasticity or the H3
component of the magnetic field in TE polarization.

The two-scale nature of the problem is incorporated using small and large length scales to
define two new independent coordinates, namely X = x1/L, and (ξ1, ξ2) = (x1, x2)/l. The implicit
assumption is that there is a small scale, characterized by l defined earlier, and a long scale
characterized by L that represents a characteristic length scale of the whole grating where
ε = l/L � 1. As the structure is quasi-one-dimensional, with the mismatch in the scales being just
along the structure, we introduce only a single long-scaled variable in X; we do not introduce a
long-scale Y in the x2-direction as it is redundant.

Under this rescaling, equation (2.1) then becomes,[
∂2

∂ξ2
1

+ 2ε
∂2

∂ξ1∂X
+ ε2 ∂2

∂X2 + ∂2

∂ξ2
2

+ Ω2

]
u(X, ξ1, ξ2) = 0. (2.2)

Standing waves, that exponentially decay perpendicular to the surface/grating, can occur when
there are periodic (or anti-periodic) boundary conditions across the elementary strip (in the ξ

coordinates) and these standing waves encode the local information about the multiple scattering
that occurs by the neighbouring strips. The asymptotic technique we create is a perturbation
about these standing wave solutions, as these are associated with periodic and anti-periodic
boundary conditions, which are, respectively, in-phase and out-of-phase waves across the strip,
the conditions on the short-scale ξ on the edges of the strip, ∂S1, are known:

u|ξ1=1 = ±u|ξ1=−1 and u,ξ1 |ξ1=1 = ±u,ξ1 |ξ1=−1, (2.3)

where u,ξi denotes differentiation of u with respect to variable ξi and with the +, − for
periodic or anti-periodic cases, respectively. There is therefore a local solution on the small
scale that incorporates the multiple scattering of a periodic medium and that will then be
modulated by a long-scale function that satisfies a differential equation. Typically, the periodic
case corresponds to long-waves relative to the structure—this case is not particularly interesting
and is captured by conventional low-frequency homogenization. We therefore concentrate upon
the anti-periodic case.

We pose an ansatz for the field and the frequency,

u(X, ξ ) = u0(X, ξ ) + εu1(X, ξ ) + ε2u2(X, ξ ) + . . . ,

Ω2 = Ω2
0 + εΩ2

1 + ε2Ω2
2 + . . . (2.4)

The ui(X, ξ )’s adopt the boundary conditions (2.3) on the short-scale, with the minus sign for anti-
periodicity, on the edge of the strip. An ordered hierarchy of equations emerges in powers of ε,
and is treated in turn

u0,ξiξi + Ω2
0 u0 = 0, (2.5)

u1,ξiξi + Ω2
0 u1 = −2u0,ξ1X − Ω2

1 u0 (2.6)

and u2,ξiξi + Ω2
0 u2 = −u0,XX − 2u1,ξ1X − Ω2

1 u1 − Ω2
2 u0. (2.7)

The leading-order equation (2.5) is independent of the long-scale X and is a standing wave on the
elementary strip existing at a specific eigenfrequency Ω0 and has associated eigenmode U0(ξ ; Ω0),
modulated by a long-scale function f0(X), and so we expect to get an ordinary differential equation
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(ODE) for f0 as an effective boundary, or interface, condition characterizing the grating when
viewed from afar. To leading order

u0(X, ξ ) = f0(X)U0(ξ ; Ω0). (2.8)

The entire aim is to arrive at an ODE for f0 posed entirely upon the long-scale, but with
the microscale incorporated through coefficients that are integrated, not necessarily averaged,
quantities. f0 represents the amplitude modulation of short-scale oscillations over the grating over
wavelengths commensurate with the size of L.

Before we continue to next order, equation (2.6), we define the Neumann boundary conditions
on the inclusions ∂S2, or the microstructured surface, as

∂u
∂n

= u,xi ni|∂S2 = 0, (2.9)

using Einstein’s notation for summation over repeated indices, and where n is the outward
pointing normal, which in terms of the two scales and ui(X, ξ ) become

U0,ξi ni = 0, U0 f0,Xn1 + u1,ξi ni = 0, u1,Xn1 + u2,ξi ni = 0. (2.10)

The leading-order eigenfunction U0(ξ ; Ω0) must satisfy the first of these conditions and it is
relatively straightforward to extract this either numerically, as we do later, or using semi-analytic
methods such as the residue calculus technique [2].

Moving to the first-order equation (2.6), we invoke a solvability condition by integrating over
the elementary strip S, which is on the short-scale ξ , the product of equation (2.6) and U0 minus
the product of equation (2.5) and u1/f0(X). The result is that the eigenvalue Ω1 is identically zero.

We then solve for u1 = f0,XU1(ξ ), so U1 satisfies

U1,ξiξi + Ω2
0 U1 = −2U0,ξ1 (2.11)

subjected to the boundary condition

U1,ξi ni = −U0n1, (2.12)

on ∂S2. Again, solutions can be found numerically or using semi-analytic methods such as multi-
poles and lattice sums [41], or other numerical methods that have proved their usefulness in
diffraction theory [42].

Going to the second-order, a similar solvability condition to that used at the first-order is
applied using equation (2.7); after some algebra, we obtain the desired ODE for f0

Tf0,XX + Ω2
2 f0 = 0 (2.13)

posed entirely on the long-scale X. The coefficient T is constructed from integrals over the
elementary strip in ξ and is ultimately independent of ξ . The formula for T is

T
∫∫

S
U2

0 dS =
∫∫

S
(U2

0 + 2U1,ξ1 U0) dS −
∫
∂S2

U1U0n1 ds, (2.14)

which using Green’s theorem, with vector field F = (U1U0, 0), simplifies to,

T
∫∫

S
U2

0 dS =
∫∫

S
(U2

0 + U1,ξ1 U0 − U0,ξ1 U1) dS. (2.15)

For an infinite grating of cell width 2 (l = 1), the Bloch grating f0 needs to have symmetric
boundary conditions for κ = π/2 and therefore, f0(X) = exp(i[π/2 − κ]X/ε) and equation (2.13)
simplifies to Ω2

2 = [π/2 − κ]2T/ε2 and from (2.4) the asymptotic dispersion relation relating
frequency, Ω , to Bloch wavenumber, κ , is

Ω ∼ Ω0 + T
2Ω0

[π

2
− κ

]2
. (2.16)

In (2.16), T is invariably negative, cf. table 1 for some illustrative values, as is Ω2
2 , the latter

should not be confused with having negative frequencies as it is merely a frequency perturbation.
Therefore, if the surface or grating supports Rayleigh–Bloch waves, then they are represented as
an effective string or membrane equation (2.13) where the effective stiffness (or effective inverse of
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Table 1. The four standing wave frequencies for the comb-like structure with a= 7 (cf. figure 2d), together with associated
values for T .

T Ω0

−0.006485497624108 0.210161050669707
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.067470169867289 0.629209426388598
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.280897588912595 1.043323585456635
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−2.350025233704123 1.440535862845912
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

permittivity in the context of photonics) of the string is T; all the microstructural and geometrical
information is encapsulated in this asymptotic result and one can then extend it to be used for
finite arrays or for slightly non-periodic arrays, or forced problems, etc., but our aim here is to
now demonstrate that this theory is well founded.

(a) The classical long-wave zero-frequency limit
The current theory simplifies dramatically in the classical long-wave, low-frequency, limit where
Ω2 ∼ O(ε2), this is a periodic case on the short-scale: U0 becomes uniform, and without loss of
generality, is set to be unity over the elementary strip. The final equation is again (2.13) but in
limiting form and using a rectangular strip of height y∗ for S∗, T simplifies to

T lim
y∗→+∞

∫∫
S∗

dS = lim
y∗→+∞

∫∫
S∗

dS + lim
y∗→+∞

∫∫
S∗

U1,ξ1 dS, (2.17)

where S∗ = S ∩ C|{C = [−l, l] × [−y∗, y∗]}. U1i satisfies the Laplacian U1,ξiξi = 0 and U1 has
boundary conditions U1,ξi ni = −n1 on ∂S2. Rearranging equation (2.17) yields

T = 1 + lim
y∗→+∞

∫∫
S∗ U1,ξi dS∫y∗
0 2 dξ2

→ 1, (2.18)

from which Ω = κ , and thus the light-line of unit slope emerging from the origin arises
asymptotically.

(b) A dynamic characteristic length scale
As we see later, in §3, equation (2.16) is an excellent asymptotic approximation for the dispersion
diagrams of such gratings that verifies the validity of HFH. Ultimately, one wishes to homogenize
a periodic, or nearly periodic, surface and this is achieved with equation (2.13) transformed back
in the original coordinates together with the replacement of Ω2 using the asymptotic expansion
in equation (2.4). The effective medium equation resulting from such operations is

Tf0,xx + (Ω2 − Ω2
0 )f0 = 0. (2.19)

The solutions of equation (2.19) are harmonic with argument
√

(Ω2 − Ω2
0 )/T provided Ω < Ω0

and T < 0. It is now clear that if the excitation frequency is slightly away from the standing

wave frequency, then an oscillation will emerge with wavelength λ = 2π

√
T/(Ω2 − Ω2

0 ) which
will represent a characteristic length scale for such an infinite periodic medium. That length scale
not only depends on the excitation and standing wave frequencies but also on the homogenized
parameter T that represents dynamically averaged material parameters (e.g. the inverse of
effective permittivity in photonics). Therefore, one observes highly oscillatory behaviour with
each neighbouring strip out-of-phase but modulated by a long-scale oscillation of wavelength λ/2
reminiscent of a beat frequency but induced by the microstructure; the λ/2 arises as one observes
both f0 and −f0.
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Figure 2. The dispersion branches for the comb-like structure. Solid lines are from (3.2), and the light-lineΩ = κ is the dotted
line. (a–d) Are for a= 1, 3, 5 and 7, respectively. Asymptotics fromHFH (2.16), with T given in table 1 for a= 7 (d), are depicted
as dashed curves.

3. Illustrative examples
We now illustrate the theory using linear arrays of cylinders, split ring resonators (SRRs) and
a comb-like surface structure as these are exemplars of the situations seen in practice. In order
to model infinite media in finite-element software, we use perfectly matched layers adapted for
acoustics [43].

(a) The classical comb
An early example for which Rayleigh–Bloch waves were found explicitly is that of a Neumann
comb-like surface consisting of periodic thin plates of finite length, a, perpendicular to a flat wall
and distant by 2l from each other. This was initially studied by Hurd [2] with later modifications
by DeSanto [44], Evans & Linton [6] and Evans & Porter [45]. It is a canonical example and can be
considered as a diffraction grating if extended to the negative half-plane by reflection symmetry.

We will concentrate upon non-embedded Rayleigh–Bloch waves in Ω < κ and Hurd’s
dispersion relation

Ωa
l

=
(

n + 1
2

)
π + 2Ω

π ln 2
+ χ (κ , 2Ω), (3.1)

where

χ (κ , Ω) = − sin−1
(

Ω

κ

)
+

∞∑
n=1

(
sin−1

(
Ω

nπ

)
− sin−1

(
Ω

(κ + 2nπ )

)
− sin−1

(
Ω

|κ − 2nπ |
))

(3.2)

provides a highly accurate approximation; dispersion branches are shown in figure 2 using
Hurd’s formulae. There exists an even more accurate result from Evans & Linton [6] which
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Table 2. The four standing wave frequencies for the comb-like structure with a= 7 calculated from Fourier series expansion
with the convergence established by increasing the number of modes used.

N 2 5 10 20 40

Ω0 0.2085 0.2101 0.2106 0.2108 0.2109
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω0 0.6244 0.6290 0.6305 0.6312 0.6315
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω0 1.0355 1.0431 1.0454 1.0466 1.0471
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω0 1.4307 1.4404 1.4433 1.4447 1.4454
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3. The values of T associated with the four standing wave frequencies for the comb-like structure with a= 7 calculated
from Fourier series expansion with the convergence established by increasing the number of modes used.

N 2 5 10 20 40

T −0.0068 −0.0066 −0.0066 −0.0066 −0.0066
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T −0.0704 −0.0687 −0.0686 −0.0686 −0.0686
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T −0.2877 −0.2843 −0.2849 −0.2856 −0.2860
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T −2.2022 −2.3602 −2.4267 −2.4628 −2.4816
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is virtually indistinguishable from that of Hurd, and it is possible, as we also do here, to use
finite elements to model the comb numerically, the only detail of note is that the comb teeth
have finite width of 0.05 in the finite-element simulations to avoid any numerical issues at the
tip of the teeth, and all these methods give coincident results. The width of the cell is taken
to be 2, so that the small scale l is set to l = 1. This convention will be used in all subsequent
illustrations. The dispersion equations (3.2) come from a Fourier series approach and we also
investigate this approach numerically and provide results in tables 2 and 3. The parameter a is
the length of the tooth and the curves are locally quadratic near π/2 as we expect from (2.16);
clearly, the HFH asymptotics provide an excellent representation of the dispersion curves close to
the standing wave frequency as illustrated by the dashed curves in figure 2. The standing wave
frequencies Ω0 and the effective parameter T are given in table 1 for the case a = 7. Increasing a
corresponds to more dispersion curves appearing and the eigensolutions for a = 7 are shown in
figure 3 together with their U1 counterparts, and the reason for the increasing number of surface
modes is immediately apparent being intimately connected with the number of modes the open
waveguide supports. The U0 modes decay rapidly as they exit the open waveguide particularly
for the lowest standing wave frequencies.

This physical interpretation then motivates a Fourier series approach and using a rescaling
of lengths and frequencies, ξ̂ = ξ/2, ŷ = y/2, â = a/2, Ω̂ = 2Ω and κ̂ = 2κ gives the geometry
investigated by Evans & Linton [6]. The full Rayleigh–Bloch solution for u is obtained as

u(ξ̂ , ŷ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
n=0

An cos pnξ̂ cosh αnŷ, 0 ≤ ŷ ≤ â

∞∑
n=−∞

Bn eiκn ξ̂ e−γn(ŷ−â), ŷ ≥ â,

(3.3)

where pn = nπ , αn =
√

p2
n − Ω̂2, κn = (2nπ + κ̂) and γn =

√
κ2

n − Ω̂2. The coefficients are

determined by imposing continuity of u and ∂u/∂ ŷ at ŷ = â, multiplying by cos pmξ̂ and
integrating across the cell width, which allows the An to be eliminated and leaves a set of linear
equations for the κnBn coefficients which are written in matrix notation as

M(κB) = 0, (3.4)
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(b)(a) (c) (d )

Figure 3. The eigenfunctions U0 and U1 shown for the comb-like structure with a= 7 (cf. figure 2d). These are for the standing
wave frequenciesΩ0 in table 1 with (a–d) for ascendingΩ0. In each panel, U0 is shown on the left and U1 on the right. (Online
version in colour.)

where M is a matrix that can be deduced from Evans & Linton [6]. The dispersion relation is
obtained by fixing values of κ̂ and finding the corresponding values of Ω̂ for which det(M) = 0,
and then obtaining the eigensolutions for the coefficients κnBn. The standing wave eigensolution
u0 is the case where κ = π/2, κ̂ = π , Ω = Ω0, and some of the rows of M exhibit singularities. This
then requires modifications and the limiting value of the corresponding equations must then be
used in place of those of Evans & Linton [6]. Numerically, the infinite summations are truncated
for some value of N of modes and the infinite summations are replaced by

∑N−1
−N and

∑2N
0 . For the

standing waves, the An are non-zero only for even values of n, and the Bn satisfy Bn + B−(n+1) = 0.
As a consequence, u0 is non-zero on the teeth of the comb for ŷ ≤ â, and when repeated in the next
strip with a sign change exhibits a discontinuity at ŷ = â. The Fourier series converges to the
mid-value, 0, there, but the discontinuity results in Gibb’s phenomenon and requires a (fairly)
large number of terms, N, to be included in the summation to establish continuity of u0 and
∂u0/∂ ŷ for 0 ≤ ξ̂ ≤ 1 at ŷ = â. The discontinuity in u0 at y = a if insufficient terms are included in
the summation is illustrated in figure 4a, which shows the profile of u0 along the ξ axis at altitude
y = a for N = 2, computed with y ≤ a (solid line) and y ≥ a (dashed line) Fourier series expansions.
When N = 40, shown in figure 4b, there is good agreement.

The expansion

u1(ξ̂ , ŷ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
∞∑

n=0

Anξ̂ cos pnξ̂ cosh αnŷ +
∞∑

n=0

Xn cos pnξ̂ cosh αnŷ, 0 ≤ ŷ ≤ â

i
∞∑

n=−∞

Bnκn

γn
ŷ eiκn ξ̂ e−γn(ŷ−â) +

∞∑
n=−∞

Yn eiκn ξ̂ e−γn(ŷ−â), ŷ ≥ â

(3.5)

satisfies the differential equation for u1 (2.6) and the Bloch boundary conditions, for U1 we again
need to choose κ = π/2. The coefficients Xn and Yn are to be determined by requiring continuity
of u1 and ∂u1/∂ ŷ at ŷ = â. This leads to a matrix equation for the Yn coefficients

M(κY) = F, (3.6)
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Figure 4. Dependence on number of terms in Fourier series for u0 at y = a. Solid line from y ≤ a Fourier series expansion.
Dashed line from y ≥ a Fourier series expansion. (a) N= 2, (b) N = 40.

where M is the same (singular) matrix as in (3.4) and F depends on the known coefficients An and
Bn. Hence, the solution for u1 is arbitrary with respect to additional multiples of u0, but these extra
terms do not contribute to the coefficient T and may be safely ignored. The integrals required to
calculate T are expressed in terms of the coefficients as:

∫∫
S

u2
0 dS = A2

0â

2

(
1 + sinh 2α0â

2α0â

)
+ â

4

2N−1∑
2

A2
n

(
1 + sinh 2αnâ

2αnâ

)
− 1

2

N−1∑
−N

B2
n

γn
, (3.7)

and

∫∫
S

u1,ξ1 u0 − u0,ξ1 u1 dS = −A2
0â

2

(
1 + sinh 2α0â

2α0â

)
− â

4

2N−1∑
2

A2
n

(
1 + sinh 2αnâ

2αnâ

)

+
2N−1∑
n=0
even

An

2N−1∑
m=1
odd

Xm

(
n2 + m2

n2 − m2

)(
sinh(αn + αm)â

αn + αm
+ sinh(αn − αm)â

αn − αm

)

+
N−1∑
−N

Bnκn

γn

(
−iYn + Bnκn

2γ 2
n

(2γnâ + 1)
)

. (3.8)

The calculations of the standing wave frequencies and the coefficient T are shown in tables 2
and 3 for different values of N between 2 and 40 and demonstrate that these values are relatively
insensitive to the value of N used. There is good agreement with the values obtained from the full
numerical simulation and the asymptotic approximation.

In table 1, we give the values of T used in equation (2.19), which combined with the standing
wave (Ω0) and excitation (Ω) frequencies yield an effective medium equation. Figure 5 shows
the appearance of a new length scale when a periodic comb-like structure with a = 7, is excited
with a line source at the frequencies of Ω = 0.4509 and Ω = 1.3138, respectively, in figure 5a,b.
The standing wave eigensolutions closest to these frequencies are shown in figure 3a,b and show
that on the microscale one expects no oscillation or one oscillation along the open waveguide
formed by the comb teeth in one strip and this local behaviour is indeed seen in figure 5. There
is also clearly a long-scale oscillation along the comb and the calculation of the apparent pseudo-
wavelength is possible by HFH as explained in §2b and yields the respective wavelengths λ/2 ∼
43.4 and λ/2 ∼ 73. These are in accordance with panels (a) and (b) of figures 5 and 6 where the
latter shows a complete reproduction by HFH of the numerical results, obtained by plotting 
(u).
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Figure 5. Plots of
(u) from finite-element simulations for a comb grating with a= 3 (cf. figure 2b): (a) fields generated by
a line source withΩ = 0.4509 (Ω0 = 0.45127); (b) fields generated by a line source withΩ = 1.3138 (Ω0 = 1.31510) and
(c) detail of
(u) atΩ = 1.3138. (Online version in colour.)
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214
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214
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Figure 6. Plots of 
(u) from HFH for a comb with a= 3 (cf. figure 5), generated by a line source at (a) Ω = 0.4509 and
(b)Ω = 1.3138, respectively. (Online version in colour.)

(b) Array of cylinders
Similar to the comb structure, one can also have a diffraction grating constructed from a linear
array of obstacles where surface wave modes can again occur. We consider a linear periodic array
of cylinders, as in say Evans & Porter [46], where Rayleigh–Bloch modes are observed.

The first mode, which is symmetric about y = 0, is shown in figure 7b and exists for all
radii r0 of the cylinders such that r0 ∈]0, 1[. Figure 7a shows the dispersion branches for radii
r0 = 0.4, 0.5 and 0.7 and the associated HFH asymptotics. If the radius is greater than r0 ∼ 0.81,
then a second Rayleigh–Bloch mode appears, illustrated in figure 8b, which is antisymmetric
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Figure 7. The dispersion branches, for the symmetric mode, (Ω = κ as dotted line) are shown in (a) for cylinders with radii
of 0.7 (dashed bold), 0.5 (bold) and 0.4 (solid). The corresponding asymptotic curves, from (2.16), are shown as dashed lines.
(b) Shows the standing wave eigensolution U0 for r = 0.5. (Online version in colour.)

about y = 0. To motivate how this occurs, we turn to a two-dimensional rectangular lattice of
cylinders, as a generalization of Antonakakis et al. [26], so instead of a grating we consider the
dispersion diagram of a doubly periodic structure where the width of the rectangles is fixed to 2,
and the height is gradually increased until a grating-like strip is obtained. Figure 9a–c shows
the first three modes, and the light-line Ω = κ , for the respective cell heights of h = 2, 6 and
30 and each with a centred hole of radius r0 = 0.95. Both dispersion modes initially above the
light-line converge to the latter as the height of the cell increases and eventually one emerges
beneath it. Upon inspection the Bloch mode, for the rectangular array, that passes beneath the
light-line has the appropriate symmetry and limits to the antisymmetric mode for the grating.
As discussed in Evans & Porter [46], the critical radius value is ∼ 0.81 and beyond this there is
the emergence of the antisymmetric trapped mode; this is illustrated in figure 9d which shows
the antisymmetric mode, for a rectangular array height of h = 30, for radii r0 = 0.4, 0.81 and
0.95, respectively. For radii r0 = 0.4 and 0.81, the mode merges with the light-line, but the mode
related to 0.95 emerges below the light-line and one then observes this antisymmetric Rayleigh–
Bloch mode. For all radii less than ∼ 0.81 all modes, bar the first, will collapse on the light-line.
Figure 9e provides a summary of the variation of the standing wave frequencies with radius, and
the appearance of this antisymmetric mode for radii in the interval [0.81, 1] is evident. At r0 = 1
is a degenerate case, and we stop our calculation at r0 = 0.9998. Notably, the asymptotic HFH
theory captures the behaviour of the dispersion curves for the antisymmetric case too as shown
in figure 8a.

To illustrate further HFH and the emergence of the long-scale oscillation, we performed large-
scale finite-element simulations summarized in figure 10. The antisymmetric mode was generated
using a dipole source, to trigger the asymmetry, and the symmetric mode using a line source. The
selected frequencies are slightly away from the standing wave frequencies and are, respectively,
Ω = 1.508 and Ω = 1.38 for panels (a) and (b). Once again, the apparent length scales are evaluated
by HFH to be λ/2 = 109.4 and λ/2 = 72.7 which are confirmed by the numerics as well as in
figure 11.
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Figure 8. The dispersion branches, for the antisymmetric mode, (Ω = κ as dotted line) are shown in (a) for cylinders with
radii of 0.95 (solid line) and 0.99 (bold solid line). The asymptotics are shown as dashed lines. In (b), the antisymmetric
eigensolution U0 is shown for r = 0.95. (Online version in colour.)
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Figure 9. The dispersion curves for cylinders placed in a rectangular array are shown for Bloch waves in the x1-direction. The
lowest three dispersion branches, as solid lines, andΩ = κ as dotted, are shown in (a), (b) and (c) for rectangle heights of 2, 6
and 30, respectively, where the cylinder radius is 0.95. (d) Shows the dispersion curves for a cell of height 30, in solid the second
modes for the respective radii of 0.4 and 0.95 and the light-line in dashed. (e) Shows the variation of standingwave frequencies
for the symmetric (solid) and antisymmetric (dashed) modes versus cylinder radius for the infinite strip.
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Figure 10. Plots of
(u) for a diffraction grating consisting of cylinders of radius r = 0.95: (a) antisymmetric fields generated
by a dipole source forΩ = 1.508 (Ω0 = 1.51445); (b) detail close to the dipole source showing the microscale asymmetry;
(c) detail of the real part (upper panel) and absolute value (lower panel) of the antisymmetric u atΩ = 1.508; (d) symmetric
fields generated by a line source at frequencyΩ = 1.38 (Ω0 = 1.38407). (Online version in colour.)
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Figure 11. Plots of
(u) from HFH for a cylinder of radius r = 0.95 (cf. figure 10), generated by a line source at (a)Ω = 1.508
and (b)Ω = 1.38, respectively. (Online version in colour.)

(c) Array of split ring resonators
A left-handed material is an artificial structure that has a negative refractive index over a certain
range of frequencies. SRRs, which were introduced by Pendry et al. [47] are extensively used to
achieve artificial magnetism in metamaterials [48]. Slow backward and fast forward waves have
been experimentally observed in chains of SRRs [49], which further motivates the analysis of
SRR gratings. For SRRs here, we choose to use a simple cylindrical annulus with two ligaments
connecting the inner cylinder to the outer material. The weak coupling between the inner cylinder
through these two thin ligaments is important as this arrangement can act as local resonators
and this microresonance is important in photonic applications and in metamaterials [47]. In SRR
gratings, Rayleigh–Bloch modes occur at frequencies above the cut-off owing to this resonance
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Figure 12. The dispersion branches for the SRR structure. Results from numerical simulations shown as solid lines, the
asymptotics as dashed line and the light-line is dotted. (a) Is for a large SRR of outer radius Rout = 0.95 and inner radius
Rin = 0.85 and (b) is for a smaller SRR with Rout = 0.4 and Rin = 0.3.

behaviour within the inner part of the SRR as shown in the fourth mode of figure 12a and
the resonance is clear in the eigensolution shown in figure 13d. The ultra-flat dispersion curve,
figure 12a, is associated with dipole localized modes in every SRR of the grating and it can
be predicted using a geometrical asymptotic technique discussed in Antonakakis et al. [26] and
Movchan & Guenneau [50].

The modes that arise for the grating of SRR split into two families, one which is very similar
to those of the cylinders of the last section, that is, figure 13b,c are, respectively, similar to those
of figures 7b and 8b. The lowest mode, whose eigensolution is shown in figure 13a, is again one
primarily associated with the inner cylinder and vibrations of the ligaments.

HFH is used to generate the asymptotics and table 4 shows the standing wave frequencies and
respective values of T for the first four modes of an SRR grating with outer radius of Rout = 0.95.
The asymptotics of the dispersion curves again show pleasing accuracy.

Numerical finite-element solutions for line source excitation show plainly this separation into
exterior modes akin to those of the cylinder (figure 14a–c) and those localized almost entirely
within the SRR as in figure 14d–f : in these latter cases, the array acts very clearly as an oscillating
string. The smaller SRR illustrated in figure 15 gives an even more pronounced locally anti-
periodic oscillation with long-scale oscillation. The excitation frequencies are chosen to be close
to those of standing waves and the long-scale behaviour extracted using HFH as seen in the
figure 16. The wavelengths associated with figure 16 are in the panel’s order of appearance,
λ/2 = 51.2, 11, 69.6, 119.1.

4. Defect states in quasi-periodic gratings
The previous examples illustrate HFH for perfectly periodic media but its applications go further
than this. In §3, HFH asymptotics and the resulting effective media successfully homogenize
perfect periodic arrays, but one could also obtain analytical or numerical solutions fairly quickly
at least for simple geometries. The real power of HFH lies in its capability to move away from
perfect periodicity, we now take the comb of §3a, but now vary the height of the comb’s teeth with
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Figure 13. The eigenfunctions U0, and U1 shown for the SRR structure, with outer, inner radius Rout = 0.95, Rin = 0.85
(cf. figure 12a). These are for the Ω0 in table 4 with (a–d) for ascending Ω0. In each panel U0 is shown on the left and U1
on the right. (Online version in colour.)

Table 4. The four standing wave frequencies, below the cut-off, for an SRR grating with Rout = 0.95 and Rin = 0.85
(cf. figure 12a), together with associated values for T .

T Ω0

−0.145181377783699 0.550884858382472
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−12.037628085319582 1.465518146041600
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−25.144195967619925 1.517732423423271
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−0.003773469173013 2.167224509645187
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

respect to the x1 coordinate by a function g(X), so that their height is a(1 − ε2g(X)) and address
the question of whether localized states exist at specific frequencies in such quasi-periodic media,
that is, are there finite energy states that have exponential decay along the array? We make the
following change of coordinates in order to transform the varying tooth height in x2 to constant
height pins in the new coordinate ξ2 such that

ξ1 = x1

l
, X = x1

L
, ξ2 = x2

l

[
1 − ε2g(X)

]
. (4.1)

This sleight of hand transforms the medium and moves the tooth heights to a constant within
this transformed medium. Following through the asymptotic procedure, as in §2, we obtain three
equations ordered in ε, the only change is at second order, where (2.7) becomes

u2,ξiξi + Ω2
0 u2 = −u0,XX − 2u1,ξ1X + 2g(X)u0,ξ2ξ2 − Ω2

1 u1 − Ω2
2 u0 (4.2)
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Figure 14. Plots of 
(u) for an SRR grating with SRR of inner and outer radii 0.85 and 0.95, respectively, and ligaments of
thickness 0.06 (standing wave frequencies in table 4): (a) field generated by a line source atΩ = 1.45; (b, c) detail of
(u) at
Ω = 1.45 centred around x = −43 showing the developed field (b) and around the source (c); (d) field generated by a line
source atΩ = 0.54; (e, f ) close-up on the absolute value of field u at frequencyΩ = 0.55,Ω = 0.54, respectively. (Online
version in colour.)
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Figure 15. Plots of 
(u) for an SRR grating with SRR of inner and outer radii 0.3 and 0.4 and ligaments of thickness 0.06:
(a) fields generated by a line source at Ω = 1.50 (Ω0 = 1.50295); (b, c) detail of u at Ω = 1.50 centred around x = 49
showing thedevelopedfield; (d) fieldgeneratedby a line source atΩ = 1.42 (Ω0 = 1.42199); (e, f ) detail of
(u) at frequency
Ω = 1.42. (Online version in colour.)

which contains an additional term. Neumann boundary conditions remain unchanged for leading
and first order but in second order yield,

u1,Xn1 + u2,ξi ni − g(X)u0,ξ2 n2 = 0. (4.3)
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Figure 16. (a,b) Show 
(u) from HFH for an SRR, with inner and outer radii of Rin = 0.85 and Rout = 0.95 (cf. figure 14),
generated by a line source atΩ = 1.45 andΩ = 0.54, respectively. (c,d) Show
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outer radii of Rin = 0.3 and Rout = 0.4 (cf. figure 15), generated by a line source at Ω = 1.50 and Ω = 1.42, respectively.
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Table 5. The predicted frequencies of the localized defect mode near the first standing wave frequency (Ω0 =
0.210161050669707; cf. table 1) for the comb-like structure with a= 7 (cf. figure 2d). The frequencies ΩHFH come from the
asymptotics (4.5),whereasΩnum gives predictions fromFEMsimulations. Theparameterε controls the variation of toothheight
in (4.1).

ε ΩHFH Ωnum

0.125 0.21247 0.21252
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.0625 0.21074 0.21079
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Using a solvability condition, we obtain an equation for f0 as,

Tf0,XX + f0[αg(X) + Ω2
2 ] = 0, with α =

∫∫
S(U2

0,ξ2
− U0U0,ξ2ξ2 ) dS∫∫
S U2

0 dS
, (4.4)

where T is given in (2.15). This is a Schrödinger equation and for specific choices of g(X) exact
solutions exist notably for g(X) = −sech2X as in Infeld & Hull [51] and Craster et al. [29], hence
adopting this variation an asymptotic value of the lowest defect mode frequency is explicitly

Ω2 = Ω2
0 − Tε2

4

(
1 −

√
1 − 4α

T

)2

(4.5)

provided that α/T is always negative, which occurs as T is always negative and α positive. The
associated solutions for f0(X) are [51],

f0(X) = π−1/4
(

Γ (γ )
Γ (γ − 1/2)

)1/2
cosh−γ+1/2X, (4.6)

where for the lowest defect mode γ = √
1/4 − α/T and Γ (γ ) is the Gamma function [52].

For a = 7, table 5 shows the predictions of the frequencies at which these defect states arise
versus values extracted from finite-element simulations which are reassuringly accurate, and
these defect mode frequencies are above the standing wave frequencies as one would expect.
The eigenvalues obtained by finite-element simulations are real and show virtually no traces of
small imaginary parts and this is in line with the expectation that these are isolated embedded
eigenvalues created by perturbing the periodic structure. Perhaps more compelling are the
illustrative solutions shown in figure 17, which show f0 versus the numerical eigensolutions; as
both solutions are arbitrary to within a multiplicative constant we normalize to have max(f0)
equal to the maximum value from the numerics.
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Figure 17. The localized defect mode shown for the comb-like structure with variation of tooth height for a= 7. The variation
follows equation (4.1) with ε = 0.125 in (a) and ε = 0.0625 in (b). In solid are solutions from FEM simulations of u along x and
for y = 7, and in dashed are solutions from equation (4.6).

5. Concluding remarks
It is shown here that one can take a microstructured surface, or diffraction grating [40,53], and
close to the standing wave frequencies that occur, one can represent the surface as an effective
string or membrane. The standing waves can occur at high frequencies and as a result the
effective stiffness (or permittivity in optics) is not simply an average but involves the integrals
over a microscale, importantly the effective equation is posed entirely on the long-scale with
the short-scale built in through integrated quantities. Thus, we extend homogenization in two
distinct directions enabling microstructured surfaces, instead of the more usual bulk media, to be
modelled and away from the usual low-frequency limit. Given the effective equation description,
one can then concentrate numerical efforts on modelling instead of capturing the fine scale detail.
Indeed, as shown in §4, one can use the effective description to capture analytically features such
as defect states caused by non-periodic behaviour.

There are several practical directions that could be pursued using this analysis, notably the
surface wave for line source excitation demonstrates the two-scale behaviour beautifully with a
short-scale oscillation from one neighbouring strip to the next and, in some sense, chooses its
own longer wavelength. The current theory neatly encapsulates this, and this information could
be used as part of an inverse problem to determine the quality of microscale or nanoscale surfaces,
and the defect states could identify local damage. Importantly, questions related to tuning a
surface to have designer properties can be encapsulated into how the coefficient T behaves and
that too avoids lengthy computations using numerical methods for gratings such as Fourier [54]
or differential [55] methods.
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In summary, one can now take a microstructured surface, or diffraction grating, that is
periodic, or nearly so, and replace it by a continuum description that captures the surface
Rayleigh–Bloch waves in the present case, anti-plane shear in acoustics or transverse electrics in
optics. Similar phenomena can be investigated with HFH in hydrodynamics and elastodynamics.

Acknowledgements. R.V.C. and E.A.S. thank the EPSRC (UK) for their support through research grants no.
EP/I018948/1 and EP/J009636/1. S.G. is thankful for an ERC starting grant (ANAMORPHISM) which
facilitates the collaboration with Imperial College London.

References
1. Barlow HEM, Karbowiak AE. 1954 An experimental investigation of the properties of

corrugated cylindrical surface waveguides. Proc. IEE 101, 182–188.
2. Hurd RA. 1954 The propagation of an electromagnetic wave along an infinite corrugated

surface. Can. J. Phys. 32, 727–734. (doi:10.1139/p54-079)
3. Brekhovskikh LM. 1959 Surface waves in acoustics. Sov. Phys. Acoust. 5, 3–12.
4. McIver P, Linton CM, McIver M. 1998 Construction of trapped modes for wave guides and

diffraction gratings. Proc. R. Soc. Lond. A 454, 2593–2616. (doi:10.1098/rspa.1998.0272)
5. Porter R, Evans DV. 1999 Rayleigh–Bloch surface waves along periodic gratings and their

connection with trapped modes in waveguides. J. Fluid Mech. 386, 233–258. (doi:10.1017/
S0022112099004425)

6. Evans DV, Linton CM. 1993 Edge waves along periodic coastlines. Q. J. Mech. Appl. Math. 46,
643–656. (doi:10.1093/qjmam/46.4.643)

7. Pendry JB, Martin-Moreno L, Garcia-Vidal FJ. 2004 Mimicking surface plasmons with
structured surfaces. Science 305, 847–848. (doi:10.1126/science.1098999)

8. Fernandez-Dominguez AI, Garcia-Vidal F, Martin-Moreno L. 2011 Surface electromagnetic
waves on structured perfectly conducting surfaces. In Structured surfaces as optical
metamaterials (ed. AA Maradudin), pp. 232–266. Cambridge, UK: Cambridge University Press.

9. Sengupta, D. 1959 On the phase velocity of wave propagation along an infinite Yagi structure.
IRE Trans. Antennas Propag. 7, 234–239. (doi:10.1109/TAP.1959.1144682)

10. Wilcox CH. 1984 Scattering theory for diffraction gratings. Berlin, Germany: Springer.
11. Joseph LM, Craster RV. 2013 Asymptotics for Rayleigh–Bloch waves along lattice line defects.

Multiscale Model. Simul. 11, 871–889. (doi:10.1137/120872401)
12. Bonnet-Bendhia AS, Starling F. 1994 Guided waves by electromagnetic gratings and

nonuniqueness examples for the diffraction problem. Math. Methods Appl. Sci. 17, 305–338.
(doi:10.1002/mma.1670170502)

13. Linton CM, McIver M. 2002 The existence of Rayleigh–Bloch surface waves. J. Fluid Mech. 470,
85–90. (doi:10.1017/S0022112002002227)

14. Maniar HD, Newman JN. 1997 Wave diffraction by a long array of cylinders. J. Fluid Mech.
339, 309–330. (doi:10.1017/S0022112097005296)

15. Thompson I, Porter, R. 2008 A new approximation method for scattering by long finite arrays.
Q. J. Mech. Appl. Math. 61, 234–239. (doi:10.1093/qjmam/hbn006)

16. Sanchez-Palencia E. 1980 Non-homogeneous media and vibration theory. Berlin, Germany:
Springer.

17. Bakhvalov N, Panasenko G. 1989 Homogenization: averaging processes in periodic media.
Amsterdam, The Netherlands: Kluwer.

18. Bensoussan A, Lions J, Papanicolaou G. 1978 Asymptotic analysis for periodic structures.
Amsterdam, The Netherlands: North-Holland.

19. Panasenko G. 2005 Multi-scale modelling for structures and composites. Dordrecht, The
Netherlands: Springer.

20. Nevard J, Keller JB. 1997 Homogenization of rough boundaries and interfaces. SIAM J. Appl.
Math. 57, 1660–1686. (doi:10.1137/S0036139995291088)

21. Joannopoulos JD, Johnson SG, Winn JN, Meade RD. 2008 Photonic crystals, molding the flow of
light, 2nd edn. Princeton, NJ: Princeton University Press.

22. Maier SA. 2007 Plasmonics: fundamentals and applications. Berlin, Germany: Springer.
23. Enoch S, Bonod N. 2012 Plasmonics: from basics to advanced topics, vol. 167. Springer Series in

Optical Sciences. Berlin, Germany: Springer.

http://dx.doi.org/doi:10.1139/p54-079
http://dx.doi.org/doi:10.1098/rspa.1998.0272
http://dx.doi.org/doi:10.1017/S0022112099004425
http://dx.doi.org/doi:10.1017/S0022112099004425
http://dx.doi.org/doi:10.1093/qjmam/46.4.643
http://dx.doi.org/doi:10.1126/science.1098999
http://dx.doi.org/doi:10.1109/TAP.1959.1144682
http://dx.doi.org/doi:10.1137/120872401
http://dx.doi.org/doi:10.1002/mma.1670170502
http://dx.doi.org/doi:10.1017/S0022112002002227
http://dx.doi.org/doi:10.1017/S0022112097005296
http://dx.doi.org/doi:10.1093/qjmam/hbn006
http://dx.doi.org/doi:10.1137/S0036139995291088


21

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130467

...................................................

24. Craster RV, Kaplunov J, Pichugin AV. 2010 High frequency homogenization for periodic
media. Proc. R. Soc. A 466, 2341–2362. (doi:10.1098/rspa.2009.0612)

25. Craster RV, Kaplunov J, Nolde E, Guenneau S. 2011 High frequency homogenization for
checkerboard structures: defect modes, ultra-refraction and all-angle-negative refraction.
J. Opt. Soc. Am. A 28, 1032–1041. (doi:10.1364/JOSAA.28.001032)

26. Antonakakis T, Craster RV, Guenneau S. 2013 Asymptotics for metamaterials and photonic
crystals. Proc. R. Soc. A 469, 20120533. (doi:10.1098/rspa.2012.0533)

27. Antonakakis T, Craster RV. 2012 High frequency asymptotics for microstructured thin elastic
plates and platonics. Proc. R. Soc. A 468, 1408–1427. (doi:10.1098/rspa.2011.0652)

28. Nolde E, Craster RV, Kaplunov J. 2011 High frequency homogenization for structural
mechanics. J. Mech. Phys. Solids 59, 651–671. (doi:10.1016/j.jmps.2010.12.004)

29. Craster RV, Kaplunov J, Postnova J. 2010 High frequency asymptotics, homogenization and
localization for lattices. Q. J. Mech. Appl. Math. 63, 497–519. (doi:10.1093/qjmam/hbq015)

30. Conca C, Planchard J, Vanninathan M. 1995 Fluids and periodic structures. Res. Appl. Math.,
Paris, France: Masson.

31. Allaire G, Piatnitski A. 2005 Homogenisation of the Schrödinger equation and effective mass
theorems. Commun. Math. Phys. 258, 1–22. (doi:10.1007/s00220-005-1329-2)

32. Birman MS, Suslina TA. 2006 Homogenization of a multidimensional periodic elliptic
operator in a neighborhood of the edge of an internal gap. J. Math. Sci. 136, 3682–3690.
(doi:10.1007/s10958-006-0192-9)

33. Hoefer MA, Weinstein MI. 2011 Defect modes and homogenization of periodic Schrödinger
operators. SIAM J. Math. Anal. 43, 971–996. (doi:10.1137/100807302)

34. Nemat-Nasser S, Willis JR, Srivastava A, Amirkhizi AV. 2011 Homogenization of
periodic elastic composites and locally resonant sonic materials. Phys. Rev. B 83, 104103.
(doi:10.1103/PhysRevB.83.104103)

35. Makwana M, Craster RV. 2012 Localized defect states for high frequency homogenized lattice
models. Q. J. Mech. Appl. Math. 66, 289–316. (doi:10.1093/qjmam/hbt005)

36. Craster RV, Joseph LM, Kaplunov J. In press. Long-wave asymptotic theories: the connection
between functionally graded waveguides and periodic media. Wave Motion.

37. Gridin D, Adamou ATI, Craster RV. 2004 Electronic eigenstates in quantum rings: asymptotics
and numerics. Phys. Rev. B 69, 155317. (doi:10.1103/PhysRevB.69.155317)

38. Kaplunov JD, Rogerson GA, Tovstik PE. 2005 Localized vibration in elastic structures
with slowly varying thickness. Q. J. Mech. Appl. Math. 58, 645–664. (doi:10.1093/qjmam/
hbi028)

39. Gridin D, Craster RV, Adamou ATI. 2005 Trapped modes in curved elastic plates. Proc. R. Soc.
A 461, 1181–1197. (doi:10.1098/rspa.2004.1431)

40. Petit R. 1980 Electromagnetic theory of gratings, topics in current physics. Berlin, Germany:
Springer.

41. Borwein JM, Glasser ML, McPhedran RC, Wan JG, Zucker IJ. 2013 Lattice sums then and now.
Cambridge, UK: Cambridge University Press.

42. Botten LC, Craig MS, McPhedran RC, Adams JL, Andrewartha JR. 1981 The finitely
conducting lamellar diffraction grating. Opt. Acta Int. J. Opt. 28, 1087–1102.

43. Berenger J-P. 1994 A perfectly matched layer for the absorption of electromagnetic waves.
J. Comp. Phys. 114, 185–200. (doi:10.1006/jcph.1994.1159)

44. DeSanto JA. 1972 Scattering from a periodic corrugated structure II. Thin comb with hard
boundaries. J. Math. Phys. 13, 336–341. (doi:10.1063/1.1665981)

45. Evans DV, Porter R. 2002 On the existence of embedded surface waves along arrays of parallel
plates. Q. J. Mech. Appl. Math. 55, 481–494. (doi:10.1093/qjmam/55.3.481)

46. Evans DV, Porter R. 1998 Trapping and near-trapping by arrays of cylinders in waves. J. Eng.
Math. 35, 149–179. (doi:10.1023/A:1004358725444)

47. Pendry JB, Holden AJ, Stewart WJ, Youngs I. 1999 Magnetism from conductors and
enhanced nonlinear phenomena. IEEE Trans. Microwave Theor. Tech. 47, 2075–2084.
(doi:10.1109/22.798002)

48. Ramakrishna SA. 2005 Physics of negative refractive index materials. Rep. Prog. Phys. 68,
449–521. (doi:10.1088/0034-4885/68/2/R06)

49. Lomanets V, Zhuromskyy O, Onishchukov G, Sydoruk O, Tatartschuk E, Shamonina E,
Leuchs G, Peschel U. 2010 Interacting waves on chains of split-ring resonators in the presence
of retardation. Appl. Phys. Lett. 97, 011 108–011 110. (doi:10.1063/1.3462314)

http://dx.doi.org/doi:10.1098/rspa.2009.0612
http://dx.doi.org/doi:10.1364/JOSAA.28.001032
http://dx.doi.org/doi:10.1098/rspa.2012.0533
http://dx.doi.org/doi:10.1098/rspa.2011.0652
http://dx.doi.org/doi:10.1016/j.jmps.2010.12.004
http://dx.doi.org/doi:10.1093/qjmam/hbq015
http://dx.doi.org/doi:10.1007/s00220-005-1329-2
http://dx.doi.org/doi:10.1007/s10958-006-0192-9
http://dx.doi.org/doi:10.1137/100807302
http://dx.doi.org/doi:10.1103/PhysRevB.83.104103
http://dx.doi.org/doi:10.1093/qjmam/hbt005
http://dx.doi.org/doi:10.1103/PhysRevB.69.155317
http://dx.doi.org/doi:10.1093/qjmam/hbi028
http://dx.doi.org/doi:10.1093/qjmam/hbi028
http://dx.doi.org/doi:10.1098/rspa.2004.1431
http://dx.doi.org/doi:10.1006/jcph.1994.1159
http://dx.doi.org/doi:10.1063/1.1665981
http://dx.doi.org/doi:10.1093/qjmam/55.3.481
http://dx.doi.org/doi:10.1023/A:1004358725444
http://dx.doi.org/doi:10.1109/22.798002
http://dx.doi.org/doi:10.1088/0034-4885/68/2/R06
http://dx.doi.org/doi:10.1063/1.3462314


22

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130467

...................................................

50. Movchan AB, Guenneau S. 2004 Split-ring resonators and localized modes. Phys. Rev. B 70,
125116. (doi:10.1103/PhysRevB.70.125116)

51. Infeld L, Hull TE. 1951 The factorization method. Rev. Mod. Phys. 23, 21–68. (doi:10.1103/
RevModPhys.23.21)

52. Abramowitz M, Stegun IA. 1964 Handbook of mathematical functions. Washington, DC: National
Bureau of Standards.

53. Popov E. 2012 Gratings: theory and numerical applications. France: Aix-Marseille University.
www.fresnel.fr/numerical-grating-book

54. Li L. 1996 Use of Fourier series in the analysis of discontinuous periodic structures. J. Opt. Soc.
Am. A 13, 1870–1876. (doi:10.1364/JOSAA.13.001870)

55. Lalanne P. 1997 Convergence performance of the coupled-wave and the differential method
for thin gratings. J. Opt. Soc. Am. A 14, 1583–1591. (doi:10.1364/JOSAA.14.001583)

http://dx.doi.org/doi:10.1103/PhysRevB.70.125116
http://dx.doi.org/doi:10.1103/RevModPhys.23.21
http://dx.doi.org/doi:10.1103/RevModPhys.23.21
http://www.fresnel.fr/numerical-grating-book
http://dx.doi.org/doi:10.1364/JOSAA.13.001870
http://dx.doi.org/doi:10.1364/JOSAA.14.001583

	Introduction
	General theory
	The classical long-wave zero-frequency limit
	A dynamic characteristic length scale

	Illustrative examples
	The classical comb
	Array of cylinders
	Array of split ring resonators

	Defect states in quasi-periodic gratings
	Concluding remarks
	References

