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In a recent issue of the Journal, Kirkeleit et al. (AmJEpidemiol. 2013;177(11):1218–1224) provided empirical evi-

dence for the potential of the healthy worker effect in a large cohort of Norwegian workers across a range of occu-

pations. In this commentary, we provide some historical context, define the healthy worker effect by using causal

diagrams, and use simulated data to illustrate how structural nested models can be used to estimate exposure

effects while accounting for the healthy worker survivor effect in 4 simple steps. We provide technical details and

annotated SAS software (SAS Institute, Inc., Cary, North Carolina) code corresponding to the example analysis in

the Web Appendices, available at http://aje.oxfordjournals.org/.

causal inference; healthy worker effect; marginal structural models; occupational epidemiology; structural nested

models

Abbreviations: AFT, accelerated failure time; MSM, marginal structural model.

Mortality rates in occupational cohorts have long been
observed to differ from those in the general population (1, 2).
Comparisons of mortality rates in occupational cohorts with
those observed in the general population to estimate the effects
of occupational exposures are subject to what has been termed
the “healthy worker effect.” Kirkeleit et al. (3) assessed the
potential for the healthyworker effect in a large cohort of Nor-
wegian workers. In this commentary, we provide some back-
ground on the concept, define it by using causal diagrams, and
provide a simplified example of how to use methods aimed
at resolving the problems it poses for occupational epidemi-
ologists, as we (4) and others (5) have recently demonstrated.

Since the mid-1970s, a number of studies have suggested
that the healthy worker effect was composed of at least the
following 2 distinct processes: the selection of healthy indi-
viduals into the workplace and the early termination of work-
ers with poor prognosis (6–9). The former process, known as
the healthy worker selection effect (or healthy hire effect), is
the focus of the work by Kirkeleit et al. As noted by the
authors, this component of the healthy worker effect can be
classified as confounding of the exposure-outcome relation-
ship due towork status at study entry (3, p. 1223). It is for this
reason that many occupational cohort studies rely on internal

referent groups to estimate exposure effects among workers
with different exposure levels (9, p. 86). The latter process,
known as the healthy worker survivor effect, poses more dif-
ficult problems for estimating the effect of an occupational
exposure on a given outcome.

Although recognized for more than 40 years, only a few
strategies exist that are meant to address the healthy worker
survivor effect. Two of these arose in the late 1970s and are
commonly encountered as ostensible solutions to the prob-
lem (1, 10, 11). In 1976, Fox and Collier (6) argued that doing
their analysis in the subcohort of individuals who were alive
15 years after study entry stratified by work status would min-
imize the selection effect and significantly reduce the survi-
vor effect (6, p. 228). Gilbert and Marks (12) proposed a
related approach in 1979 by using regression adjustment for
work status.

A few years later, exposure lagging was informally pro-
posed as a solution to the healthy worker survivor effect (13).
With this method, recent exposures are ignored because expo-
sures nearest to the event could only have been acquired by
the “survivors” who are at the root of the healthy worker sur-
vivor effect (11). Thus, it was thought that discarding expo-
sure information from the survivors can put those who survive
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longer on amore equal exposure footingwith thosewho do not
survive as long.
In a seminal paper, Robins (8) was the first to show a fun-

damental problem with each of these approaches. Over time,
for a deleterious exposure, individuals more susceptible to
the outcome leave the workplace and are thus removed pre-
maturely from exposure in part because of their exposure his-
tory. Yet work status is also related to subsequent exposure
status; once an individual has left work, there is often no chance
of incurring subsequent work-based exposures. Because of this
feedback between exposure and work status, the healthy worker
survivor effect is not amenable to solutions involving regres-
sion adjustment, stratification, or restriction (8). In this com-
mentary, we use causal diagrams (14, 15) to show how the
healthy worker survivor effect is an example of a more gen-
eral type of bias, known as time-varying confounding affected
by prior exposure (henceforth, time-varying confounding).
We briefly discuss a commonly used method to deal with this
type of bias (inverse probability-weighted marginal struc-
tural models) and show why it is not generally applicable to
the problem encountered in the healthyworker survivor effect.
Finally,we illustrate theuseofG-estimationof a structural nested
failure time model in a simple simulated example and include
detailed SAS software (SAS Institute, Inc., Cary, North Caro-
lina) code for implementing the procedure (Web Appendix 2,
available at http://aje.oxfordjournals.org/).

CAUSAL DIAGRAMS

Figure 1 is a causal diagram representing the healthy worker
effect. The graph should be read from left to right, indicating
thepassageof time.For simplicity,we let the subscripts denote
time (e.g., year) on study for a hypothetical 2-year occupa-
tional cohort study. For an observation at time m ∈ {0,1},
we letW0 denote an indicator of baseline work status and Xm

denote an occupational exposure under study. W1 represents
work status at time 1. For example,W1 can be a binary indica-
tor of employment status or the time since hire (e.g., in years)
for an observation at time 1. We let T represent the survival
time for the event under study.Finally,U represents someunmea-
sured common cause (or causes) of work status and survival
time that can be a time-varying or time-fixed scalar (or a vector
of time-varying and/or time-fixed components). For example,
U can represent unmeasured smoking status and/or some latent
measurement of individual prognosis. Figure 1 is a simpli-
fied representation of the healthy worker effect. Other dia-
grams with identical ramifications have been outlined in the
literature (15, 16).

The use of an internal referent population is equivalent
to restricting the analysis to W0 = 1, which blocks the bias-
ing path X0 ← W0 ← U → T and thus resolves the problem
posed by the healthyworker selection effect. However, because
work statusW1 is both amediator and a collider on the path from
X0 to T, any method that involves conditioning (e.g., regres-
sion adjustment, stratification) on work status W1 to estimate
the magnitude of the arrows in Figure 1 emanating from (X0, X1)
creates 2 problems. First, it may induce collider-stratification
bias by creating a noncausal association between prior expo-
sure X0 and the survival time T through the path X0 →W1 ←
U → T (15, 17, 18). Second, it will block any indirect effect
of X0 on T via W1. However, not adjusting for work status
results in a biased path between subsequent exposure X1 and
the survival time T through the path X1 ←W1 ← U→ T and,
thus, a confounded exposure-effect estimate. Were this the
only issue encountered in the healthy worker survivor effect, it
could easily be resolved with inverse probability-weighted
marginal structural models (MSMs) (19, 20). However, as
we explain in the next section, because individuals who leave
work have no chance of incurring subsequent work-based expo-
sure, inverse probability-weightedMSMs are not a tenable solu-
tion for the healhty worker survivor effect (20). Instead,
structural nested models can be used. In the remainder of this
commentary, we use simulated data generated from Figure 1
for 2 time points to illustrate the problem of using MSMs to
address the healthy worker survivor effect, and we show
how structural nested models can be used to account for this
bias.
We generated 3,000 observations following Figure 1 by

using the algorithm outlined by Young et al. (21) for 2 time
points. For each observation i, generate the potential survival
time under no exposure T�0 from an exponential distribution
with a rate parameter λ = 5. For time point 0, W0 = 1 for all
individuals, and X0 was generated from a Bernoulli distribu-
tion with

PðX0 ¼ 1jW0Þ ¼ f1þ exp½�0:1� logð2ÞW0�g�1:

For time point 1,W1 was generated from a Bernoulli distribu-
tion with

PðW1jX0; T
�0Þ ¼ f1þ exp½�0:1� logð2:5ÞT�0

� logð2ÞX0�g�1:

X1 was generated from a Bernoulli distribution with

PðX1jX0;W1;W0Þ ¼ f1þ exp½�0:1� logð2ÞW0

� logð2ÞW1 � logð2ÞX0�g�1

ifW1 = 1 and was set to 0 ifW1 = 0. Finally, we let the observed
survival time T be minimum of T�0 × expð�ψX0Þ (correspond-
ing to an event that would have occurred at t < 1 under the
observed exposure), f1þ ½T�0 � expðψX0Þ� × expð� ψX1Þg
(corresponding to an event that would have occurred at 1≤ t <
2 under the observed exposure), or 2 (corresponding to admin-
istrative censoring at t = 2).

X0 W1 X1 T

U

W0

Figure 1. Simplified causal diagram representing the healthy worker
effect.W0, work status at baseline;X0, exposure status at baseline;W1,
work status at time 1; X1, exposure status at time 1; T, time to event;
U, unmeasured variable.
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Table 1 shows the data for 3 observations generated by using
this approach. In these data, X0, X1, and T are as explained pre-
viously;Wm is a binary indicator of whether observation i was
classified as employed during time m; Y is an event indica-
tor equal to 0 if the observation was administratively censored
at the second time point. We use these data to give context
to our discussion of causal inference and the use of marginal
structural and structural nested models in occupational cohort
studies.

Causal effects are usually defined in terms of potential out-
comes, often denoted T�x, where �x denotes exposure history.
In our simulated setting, �x can take on 1 of the following 4 dis-
tinct values: (0, 0), (0, 1), (1, 0), or (1, 1). T�x thus represents
the survival time that would have been observed under expo-
sure �x (22). Several identifiability assumptions are required
to use empirical data to estimate quantities reflecting potential
outcomes. These include treatment variation irrelevance (23),
positivity (24), noninterference (25), and conditional exchange-
ability (26). Treatment variation irrelevance (also knownas coun-
terfactual consistency) requires that an individual’s observed
outcome be the potential outcome the individual would have
had under the observed exposure. For a binary exposure, posi-
tivity requires exposed and unexposed individuals in all con-
founder strata at all time points. Noninterference requires that
an individual’s potential outcome does not depend on another
individual’s exposure status. The conditional exchangeability
assumption is also known as the sequential ignorability assump-
tion (27) and the condition of no unmeasured confounding (28).

In the presence of confounding, an individual’s exposure
status is predictive of his or her outcome irrespective of the expo-
sure’s actual effect on the outcome. When there is no measured
or unmeasured confounding, an individual’s exposure status
is independent of his or her baseline prognosis (or potential
outcome). Thus, under no measured or unmeasured con-
founding, the coefficient for the potential outcome in a regres-
sion model for the exposure will be equal to 0. For example,
when fitting the model

log
PðXm ¼ 1jWm ¼ 1;Xm�1; T�xÞ

1� PðXm ¼ 1jWm ¼ 1;Xm�1; T�xÞ
� �

¼ β0m þ β1Xm�1 þ β2T
�x;

m ∈ ½0; 1� ðmodel 1Þ
to our simulated data, a statistical test of the hypothesis that
β2 = 0 will fail to reject if Wm is the only confounder. Of

course, we never have data on T�x. However, we outline below
how relevant information inT�x can be obtained by using struc-
tural nested models when the aforementioned identifiability
assumptions hold.

Importantly, identifiability assumptions, including condi-
tional exchangeability, are not a unique requirement of a par-
ticular set of methods. Rather, the assumptions must hold for
any statisticalmodel parameter to correspond to a causal expo-
sure contrast. Indeed, the array of methods available to epide-
miologists (e.g., randomization, regression, standardization,
matching, propensity score methods, instrumental variables) are
meant, in large part, to satisfy the conditional exchangeability
assumption. To interpret model parameters as policy-relevant
(i.e., causal) effects, epidemiologists must (when applicable)
collect information on a sufficient set of confounders and use
methods that can properly adjust for these confounders to
render conditional exchangeability as close to true as possible.
Foroccupationalepidemiologists,thismeanscollectingsufficient
information on relevant confounders (including time-varying
work status) and using methods that can account for the time-
varying confounding that characterizes the healthy worker sur-
vivor effect.

MARGINAL STRUCTURAL MODELS

Marginal structural models (fit by inverse probability weights)
are often used for dealing with time-varying confounding. As
in other forms of standardization to control confounding, these
models estimate exposure effects in a “pseudo-population”
obtained by weighting the observed data by the inverse of the
probability of the observed exposure conditional onmeasured
confounders (19, 20). If the set of measured confounders is suf-
ficient to adjust for confounding, the conditional exchange-
ability assumption is met in the pseudo-population created by
weighting.

To fit these models to our simulated data would require
an estimate of the probability of exposure conditional on
work status at time 1. However, as can be seen in Table 2, in
the stratum of observations of those who left work at time 1,
there are no exposed individuals. Thus, the probability of
being exposed is 0, and the inverse probability weight (being
1
0) is undefined. This problem, known as a violation of the pos-
itivity assumption, is the reason that “MSMs should not be
used in occupational cohort studies” (20, p. 557). Despite
their inability to account for time-varying confounding under
positivity violations (20, 29, 30), studies have been conducted
in which inverse probability-weighted MSMs were used to try
to account for the healthy worker survivor effect (31, 32). Other
estimation methods for marginal structural models exist that, in
principle, may be used to account for the healthy worker sur-
vivor effect. These include general MSMs (33) or MSMs
estimated by using the G formula (34). This latter class of
MSMs has been used to estimate the effect of hypothetical
interventions on permissible asbestos exposure levels in a
cohort of textile factory workers in the United States (35).

STRUCTURAL NESTED MODELS

In the absence of positivity, structural nested accelerated
failure time (AFT) models are a useful alternative to estimate

Table 1. Three Observations From the Simulated Example Data

(n = 3,000)

ID W1
a X0

b X1
c T d Y e

10 0 1 0.645 1

32 1 1 1 1.758 1

359 1 0 1 1.908 1

Abbreviation: ID, observation-level identifier.
a W1 represents work status at time 1.
b X0 represents exposure status at time 0.
c X1 represents exposure status at time 1.
d T represents observed survival time.
e Y represents event indicator.
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effects of occupational exposures (4, 5). Parameters for these
models are estimated by usingG-estimation. Joffe (29) reviewed
a number of strengths and limitations of this approach com-
pared with more common MSMs. These include the fact that
structural nested models can estimate interactions between 2
or more time-varying covariates (whereas MSMs are limited
to estimating interactions between a time-varying and time-
fixed covariates). Additionally, G-estimation can be used
when the set of measured confounders is sufficient to render
exchangeability true, even if only in a subset of the person-
time under study. Thus, with G-estimation, one can restrict
estimation to the subset of at-work person-time, whereas the
structural nested model itself specifies the relationship between
the exposure and survival time over all available person-
time. For this reason, structural nested AFT models can be
used to account for the healthy worker survivor effect.
Generally, structural nested AFT models are a mapping

between the failure time that would have been observed
under no exposure T�0, the failure time that would have been
observed under some arbitrary exposure T�x, and some unknown
parameter ψ: T�0 = h(T�x, ψ) (36). This mapping is most often
of the form

T
�0 ¼

Z T

0
exp fψXðtÞgdt;

where X(t) = X0 for t < 1 and X(t) = X1 for 1 ≤ t < 2, and
where {X0, X1} denote the observed exposures and, thus,
(by treatment variation irrelevance)T is theobservedoutcome.
This single equation cannot be solved because there are 2
unknowns, T�0 and ψ. However, if we assume that the measured
confounders are sufficient to adjust for all confounding, then,
by the definition of conditional exchangeability provided in
model 1, we know that the exposure Xm is independent of the
potential outcomes T�0. With this second equation (model 1),
and 1 last issue to address, we can solve forψ. The last issue is
known as artificial censoring.
To estimate parameters for structural nested models (as

explained below), we use the observed survival time T and
the observed exposure X to impute the unknown potential
outcome T�0. Yet, because of administrative censoring (due to
the end of follow-up), not all survival times will be observed.
This results in a bias that must be accounted for by artificially
censoring some individuals whose event times were observed.
To make our explanation concrete, we illustrate the imple-
mentation of structural nested AFTmodels in 4 steps by using

the 3 observations from our simulated data listed in Table 1.
These 4 steps can be summarized as follows:

1) Define ~ψ ¼ f � 1;�0:95; : : :; 1g, a set of candidateψval-
ues likely to include the true value of ψ and its 95% con-
fidence intervals.

2) For each value in the set defined by ~ψ, impute T�0 by using
the structural nested model. To make the dependence of the
imputed potential outcome on ~ψ clear, we denote it as Tð~ψÞ.

3) Artificially censor the imputed potential outcomes to obtain
a Δ indicator, defined as Δð~ψÞ ¼ IfTð~ψÞ � Cð~ψÞg,
where I{•} is the indicator function, which takes a value
of 1 if {•} is true (0 otherwise), and Cð~ψÞ is the artificial
censoring time defined in Web Appendix 1.

4) Use model 1 to test whether Δð~ψÞ (instead of Tx) is inde-
pendent of the exposure. The value of ~ψ that renders the
Zstatisticforβ2inmodel1equalto0isselectedastheparam-
eter estimate ψ̂.

This method of estimating the parameter of a structural
nested AFT model is known as the grid-search method. This
approach is subject to limitations, and alternative options are
available, which we discuss in Web Appendix 1. By using
the grid-search method, we obtain confidence intervals for ψ̂
by 1) computing the standard error as σ ¼

ffiffiffiffiffiffiffiffi
d�2

p
, where d is

the slope of a local linear regression of ~ψ on the Z statistic
for the parameter in model 1 (37); 2) assuming the Z statistic
for the parameter in model 1 follows a standard normal dis-
tribution and choosing the values of ~ψ that correspond to Z-
statistic values of ±1.96 for upper and lower 95% confidence
intervals (38); or 3) implementing the bootstrap (39). In
Web Appendix 1, we provide a detailed procedure on how
to implement these steps in our example data. InWeb Appen-
dix 2, we provide the annotated SAS software (SAS Institute,
Inc.) code used to generate the example data and to imple-
ment each of these steps.

INTERPRETATION

After carrying out steps 1–4 (detailed in Web Appendix
1), we obtain a Z statistic for the test that β2 = 0 (as outlined
in step 4 above) for each of the candidate values in the set ~ψ,
which are plotted in Figure 2. These Z statistics cross 0 on the
y-axis at the point estimate value of ψ̂ ¼ 0:25. We obtain 95%
slope-based confidence intervals with lower and upper bounds
of 0.08 and 0.42, respectively. Taking exp f�ψ̂g ¼ 0:78
(95% slope-based confidence interval: 0.65, 0.92) gives a rel-
ative time (or survival time ratio) for the effect of exposure
on survival time. This number can be interpreted as the ratio
of the survival time that would have been observed under
exposure at all time points (always exposed) relative to the
survival time that would have been observed under no expo-
sure at any time point (never exposed). Thus, in our simulated
setting, we would say that being exposed at both time points
decreases survival by (1 − 0.78) × 100 = 22.0% relative to
being unexposed at both time points.
In occupational epidemiology, the contrast of always exposed

versus never exposed may not always be realistic. Often, only
a very small proportion of person-time in an occupational
cohort study is classified as “atwork.”Analternative approach

Table 2. Contingency Table of Work Status by Exposure Status

Work Statusa

Exposure Status

Time 0 Time 1

Unexposed Exposed Unexposed Exposed

Total

Left work 693 0 693

At work 927 2,073 285 2,022 5,307

Total 927 2,073 978 2,022 6,000

a All individuals at work at time 0.
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would be to estimate a contrast corresponding to “exposed in
the first m years” relative to “never exposed.” Details on how
to do this are available in the literature (5, Web Appendix).

CONCLUSION

The healthy worker survivor effect is a well-known bias in
occupational epidemiology, and one that can be accounted for
with structural nested models. G-estimation of a structural
nested AFT model was proposed more than 20 years ago
yet, to our knowledge, it has only been used twice to estimate
exposure effects in occupational cohort studies (4, 5). The scar-
city of its use may partly be the result of key challenges and
limitations encounteredwhen implementing themethod. These
limitations can become problematic when the exposure is
continuous, and more so when the number of parameters in
the structural nested AFT model is large (≥3), and they are
currently the subject of ongoing biostatistical research (29,
40). However, G-estimation of a structural nested AFTmodel
has already proven useful in the context of occupational epi-
demiology, where researchers are often interested in estimat-
ing the effect of a single exposure. Although quantifying the
potential for the healthy worker effect is an important contri-
bution (3), more important still is the unbiased estimation of
exposure effects in occupational epidemiology. Hopefully, this
illustrationwill enable occupational epidemiologists to imple-
ment structural nested models on a more routine basis.
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