Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Aug 20;93(17):8989–8994. doi: 10.1073/pnas.93.17.8989

The methylotrophic yeast Pichia pastoris synthesizes a functionally active chromophore precursor of the plant photoreceptor phytochrome.

S H Wu 1, J C Lagarias 1
PMCID: PMC38582  PMID: 8799141

Abstract

Induction of the expression of an algal phytochrome cDNA in the methylotrophic yeast Pichia pastoris led to time-dependent formation of photoactive holophytochrome without the addition of exogenous bilins. Both in vivo and in vitro difference spectra of this phytochromic species are very similar to those of higher plant phytochrome A, supporting the conclusion that this species possesses a phytochromobilin prosthetic group. Zinc blot analyses confirm that a bilin chromophore is covalently bound to the algal phytochrome apoprotein. The hypothesis that P. pastoris contains phytochromobilin synthase, the enzyme that converts biliverdin IX alpha to phytochromobilin, was also addressed in this study. Soluble extracts from P. pastoris were able to convert biliverdin to a bilin pigment, which produced a native difference spectrum upon assembly with oat apophytochrome A. HPLC analyses confirm that biliverdin is converted to both 3E- and 3Z-isomers of phytochromobilin. These investigations demonstrate that the ability to synthesize phytochromobilin is not restricted to photosynthetic organisms and support the hypothesis of a more widespread distribution of the phytochrome photoreceptor.

Full text

PDF
8989

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chory J. Light signals in leaf and chloroplast development: photoreceptors and downstream responses in search of a transduction pathway. New Biol. 1991 Jun;3(6):538–548. [PubMed] [Google Scholar]
  2. Crane D. I., Gould S. J. The Pichia pastoris HIS4 gene: nucleotide sequence, creation of a non-reverting his4 deletion mutant, and development of HIS4-based replicating and integrating plasmids. Curr Genet. 1994 Nov-Dec;26(5-6):443–450. doi: 10.1007/BF00309932. [DOI] [PubMed] [Google Scholar]
  3. Deforce L., Furuya M., Song P. S. Mutational analysis of the pea phytochrome A chromophore pocket: chromophore assembly with apophytochrome A and photoreversibility. Biochemistry. 1993 Dec 28;32(51):14165–14172. doi: 10.1021/bi00214a014. [DOI] [PubMed] [Google Scholar]
  4. Deforce L., Tomizawa K., Ito N., Farrens D., Song P. S., Furuya M. In vitro assembly of apophytochrome and apophytochrome deletion mutants expressed in yeast with phycocyanobilin. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10392–10396. doi: 10.1073/pnas.88.23.10392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fakhrai H., Maines M. D. Expression and characterization of a cDNA for rat kidney biliverdin reductase. Evidence suggesting the liver and kidney enzymes are the same transcript product. J Biol Chem. 1992 Feb 25;267(6):4023–4029. [PubMed] [Google Scholar]
  6. Fraikin G. Y., Pospelov M. E., Rubin L. B. Phytochrome system of the yeast Candida guilliermondii and recovery from ultraviolet injury. J Gen Microbiol. 1976 Jul;95(1):27–30. doi: 10.1099/00221287-95-1-27. [DOI] [PubMed] [Google Scholar]
  7. Gould S. J., McCollum D., Spong A. P., Heyman J. A., Subramani S. Development of the yeast Pichia pastoris as a model organism for a genetic and molecular analysis of peroxisome assembly. Yeast. 1992 Aug;8(8):613–628. doi: 10.1002/yea.320080805. [DOI] [PubMed] [Google Scholar]
  8. Kunkel T., Speth V., Büche C., Schäfer E. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast. J Biol Chem. 1995 Aug 25;270(34):20193–20200. doi: 10.1074/jbc.270.34.20193. [DOI] [PubMed] [Google Scholar]
  9. Kunkel T., Tomizawa K., Kern R., Furuya M., Chua N. H., Schäfer E. In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. Eur J Biochem. 1993 Aug 1;215(3):587–594. doi: 10.1111/j.1432-1033.1993.tb18069.x. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Lagarias D. M., Wu S. H., Lagarias J. C. Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum. Plant Mol Biol. 1995 Dec;29(6):1127–1142. doi: 10.1007/BF00020457. [DOI] [PubMed] [Google Scholar]
  12. Lagarias J. C., Lagarias D. M. Self-assembly of synthetic phytochrome holoprotein in vitro. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5778–5780. doi: 10.1073/pnas.86.15.5778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Li L., Lagarias J. C. Phytochrome assembly in living cells of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12535–12539. doi: 10.1073/pnas.91.26.12535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Li L., Lagarias J. C. Phytochrome assembly. Defining chromophore structural requirements for covalent attachment and photoreversibility. J Biol Chem. 1992 Sep 25;267(27):19204–19210. [PubMed] [Google Scholar]
  15. Li L., Murphy J. T., Lagarias J. C. Continuous fluorescence assay of phytochrome assembly in vitro. Biochemistry. 1995 Jun 20;34(24):7923–7930. doi: 10.1021/bi00024a017. [DOI] [PubMed] [Google Scholar]
  16. Maines M. D. Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB J. 1988 Jul;2(10):2557–2568. [PubMed] [Google Scholar]
  17. Mooney J. L., Yager L. N. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 1990 Sep;4(9):1473–1482. doi: 10.1101/gad.4.9.1473. [DOI] [PubMed] [Google Scholar]
  18. Parks B. M., Quail P. H. Phytochrome-Deficient hy1 and hy2 Long Hypocotyl Mutants of Arabidopsis Are Defective in Phytochrome Chromophore Biosynthesis. Plant Cell. 1991 Nov;3(11):1177–1186. doi: 10.1105/tpc.3.11.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
  20. Schmidt P., Westphal U. H., Worm K., Braslavsky S. E., Gärtner W., Schaffner K. Chromophore-protein interaction controls the complexity of the phytochrome photocycle. J Photochem Photobiol B. 1996 Jun;34(1):73–77. doi: 10.1016/1011-1344(95)07269-1. [DOI] [PubMed] [Google Scholar]
  21. Schmidt T. G., Skerra A. One-step affinity purification of bacterially produced proteins by means of the "Strep tag" and immobilized recombinant core streptavidin. J Chromatogr A. 1994 Aug 5;676(2):337–345. doi: 10.1016/0021-9673(94)80434-6. [DOI] [PubMed] [Google Scholar]
  22. Starostzik C., Marwan W. A photoreceptor with characteristics of phytochrome triggers sporulation in the true slime mould Physarum polycephalum. FEBS Lett. 1995 Aug 14;370(1-2):146–148. doi: 10.1016/0014-5793(95)00820-y. [DOI] [PubMed] [Google Scholar]
  23. Terry M. J., Lagarias J. C. Holophytochrome assembly. Coupled assay for phytochromobilin synthase in organello. J Biol Chem. 1991 Nov 25;266(33):22215–22221. [PubMed] [Google Scholar]
  24. Terry M. J., McDowell M. T., Lagarias J. C. (3Z)- and (3E)-phytochromobilin are intermediates in the biosynthesis of the phytochrome chromophore. J Biol Chem. 1995 May 12;270(19):11111–11118. doi: 10.1074/jbc.270.19.11111. [DOI] [PubMed] [Google Scholar]
  25. Terry M. J., Wahleithner J. A., Lagarias J. C. Biosynthesis of the plant photoreceptor phytochrome. Arch Biochem Biophys. 1993 Oct;306(1):1–15. doi: 10.1006/abbi.1993.1473. [DOI] [PubMed] [Google Scholar]
  26. Tomizawa K., Stockhaus J., Chua N. H., Furuya M. Spectrophotometric and molecular properties of mutated rice phytochrome A. Plant Cell Physiol. 1995 Apr;36(3):511–516. doi: 10.1093/oxfordjournals.pcp.a078787. [DOI] [PubMed] [Google Scholar]
  27. Wahleithner J. A., Li L. M., Lagarias J. C. Expression and assembly of spectrally active recombinant holophytochrome. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10387–10391. doi: 10.1073/pnas.88.23.10387. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES