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Abstract

RNA structureis critical for gene regulation and function. In the past, transcriptomes have been
largely parsed by primary sequences and expression levels, but it is now becoming feasible to
annotate and compare transcriptomes based on RNA structure. In addition to computational
prediction methods, the recent advent of experimental techniques to probe RNA structure by deep
seguencing has enabled genome-wide measurements of RNA structure, and provided the first
picture of the structural organization of an eukaryotic transcriptome—the “RNA structurome”.
With additional advancesin method refinement and interpretation, structural views of the
transcriptome should help to identify and validate regulatory RNA motifsthat are involved in
diverse cellular processes, and thereby increase understanding of RNA function.

Introduction

RNA isaunique informational molecule. In addition to carrying information in their linear
seguences of nucleotides (primary structure), RNA molecule fold into intricate shapes.
Pairing of local nucleotides can create secondary structures such as hairpins and stem loops,
and interaction among distantly located sequences can further create tertiary structures. In
every step of itslife cycle, RNA structures influence the transcription, splicing, cellular
localization, trandlation, and turnover of the RNA (Fig. 1). Thetopic of RNA structuresin
different cellular processes have been covered in several excellent reviews!—. Although the
structures of multiple RNAs have been studied in detail, structural information for most
RNAsin cell, such as mRNAs, is missing due to the low throughput nature of RNA
structure probing and the difficulty in probing long RNAs. Classic techniques require
individually cloned RNA sequences, and only afew hundred bases can be interrogated per
experiment. As most of the RNA structures are studied on a case-by-case basis, it is difficult
to determine what the full impact an RNA’ s structure has on cellular biology. To close this
gap, genome-wide RNA structure determination has relied heavily on computational
predictions to create structural models for hypothesis testing. Computational RNA
prediction algorithms have advanced greatly in their ability to predict more accurate
secondary structures from both primary sequences and sequence covariation. However,
these predicted structures are typically confirmed by secondary structure probing, which still
serves as the gold standard of RNA structure determination.
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The advent of ultra high throughput sequencing technologies has enabled the sequencing of
hundreds of millions of bases at atime, and greatly increased the speed and precision of
genomic data. High throughput sequencing has been applied successfully in many
applications, including genome discovery, transcriptome annotation, and global mapping of
DNA-protein interactions®-8. Coupling RNA structure probing to high throughput
sequencing yields genome-scale RNA structural information, providing insights to the
secondary structures of thousands of transcriptsin the cell. Here, we briefly summarize the
importance of RNA structure in various cellular processes by highlighting a few recently
discovered examples, review advancesin computational structure predictions, focus on
experimental approachesto large-scale RNA structure maps, and discuss the potential
impact of this new kind of transcriptomic information.

Biological relevance of RNA structures

RNA secondary and tertiary structures influence the function of aimost all classes of RNAs,
including MRNASs, non-coding RNAs such as riboswitches, ribozymes, long non-coding
RNAs (IncRNA) and microRNAs (miRNA). RNA structures play rolesin nearly every step
of gene expression from transcription, mMRNA processing, RNA localization, trandation, to
RNA decay (Table 1). RNA structures enable RNA to interact with itself, with other RNAS,
with ligands and with RNA binding proteins. Many of these structures can exert their
influence by helping to provide specific binding sites for RNA binding proteins (RBP) as
well as restricting protein binding by altering accessibility. Identifying RBP binding sites
and RBP consensus motifsis an area of intense study (Box 1).

BOX 1
RNA binding proteins: motif identification and prediction

RNA binding proteins (RBP) interact with RNAs to regulate diverse cellular processes.
While many of these interactions are mediated by linear sequence motifs, RNA structural
motifs as well as the structure context in which linear motifs are embedded also influence
RBP binding. Different strategies have been devel oped to identify RNA consensus
motifs. Transcripts associated with RBPs can be computationally searched for consensus
nuclectide sequences that are selectively enriched in bound versus un-bound transcripts
using programs such as MEME, FIRE and REFINE41-143_ Experimentally, Selex and
RNA compete enable the determination of RNA consensus motifs experimentally by
incubating an RBP with a complex pool of randomized short RNA sequences to
selectively identify the sequences that have stronger binding affinities to the RBP42 144,
The development of new methods such as High-throughput sequencing of RNA isolated
by crosslinking immunoprecipitation (HITS-CL1P) and Photoactivatable ribonucleoside
enhanced crosslinking and immunoprecipitation (PAR-CLIP) allow the identification of
both RBP bound transcripts as well as the protein binding site, greatly reducing the
search space for consensus motif finding in RBP bound targets?* 25, Importantly,
incorporation of predicted RNA secondary structure can substantially increase the
explanatory power of some linear RBP binding moatifs; for instance, several motifs are
shown to bind RBP only when the motif occurs in the context of a single-stranded,
accessible region of MRNA45, Combined with an increased amount of available RNA
structure data, it would be possible to predict consensus RNA structural motifs and assess
the impact of RNA structuresin RNA protein interactions.

Multiple RNA structures can potentially be formed from along linear sequence. RNA
structures are frequently dynamic and RNAs can undergo different conformational changes
based on their solvent conditions. RNAS can react to various inputs including differencesin
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protein binding, changesin ligand and salt concentrations, and varying temperatures to
result in gene expression changes, providing an additional layer of complexity to gene
regulation. Thisrole of RNA as amolecular sensor requires that RNA structures are highly
specific, so that distinct RNA structures can respond to specific cellular stimuli, and that
RNA structures are dynamic, so that the cellular responseisfairly rapid. Below we elaborate
on some examples that illustrate the specificity and dynamic character of RNA structures
and how identifying such structures in a transcriptome-wide manner can enhance our
understanding on RNA function.

The specificity and dynamics of riboswitches

One of the best examples that illustrates the specificity and the dynamics of RNA structures
isariboswitch. Riboswitches are RNAS sensors that can detect changesin cellular stimuli in
the absence of other cofactors such as proteins 2. As such, some of the first riboswitches
were discovered based on changes in RNA structure induced by specific ligands® 19,
seguence alignment with established riboswitches allowed subsequent identification of
riboswitch families!l 12,

A riboswitch typically consists of two domains, an aptamer domain that recognizesits
specific ligand and an expression domain. Upon interacting with aligand in itsligand
binding domain, the riboswitch undergoes a conformational change that resultsin gene
expression changes. Multiple classes of riboswitches exist that respond to a wide range of
cellular stimuli including amino acids, nucleotides, metal ions, coenzymes and temperature
to regulate processes such as transcription termination, changes in trandation rate, splicing
and mRNA decay3-16, Although first discovered in bacteria, riboswitches have been found
in other organisms such as yeast, algae and plants, indicating the prevalence of this
important regulatory mechanism in multiple kingdoms of lifel”- 18, However, only the
thiamine pyrophosphate (TPP) riboswitch has been found outside eubacteria, and none has
been found in mammals!2.

Because the aptamer domains of riboswitches form multiple Watson and crick bases with
their ligands, riboswitches are typically very specific for their ligands and can discriminate
between their true ligands and other similarly structured molecules®. This specificity of its
metabolite enables ariboswitch to serve as a cellular sensor. An example of thisisthe
adenine riboswitch whereby a single base pair change from U to C in the ligand binding site
changes the affinity of the riboswitch for adenine to guanine!®. This riboswitch isfound in
the YUTR of the ydhL mRNA and forms a secondary structure upon binding to adenine that
prevents the formation of the terminator loop and transcription termination. High levels of
adenine hence result in high protein levels of ydhL, which is a purine efflux pump, to pump
purines out of the cells. Another example isthe SAM riboswitch. Distinct classes of the
SAM riboswitches can bind to S-adenosylmethione (SAM), a coenzyme for methylation, or
S-adenosylcytosine (SAH), abyproduct of the methylation reaction, even though SAM and
SAH are highly similar in structure (Fig. 1A). This distinction isimportant to prevent the
accumulation of toxic SAH and to recycle SAH to form SAM®. The diversity of SAM
riboswitches also illustrates the possibility of multiple RNA structural solutions to the same
biochemical challenge, raising the need to experimentally probe RNA structural dynamics
rather than relying purely on sequence conservation.

Dynamics of RNA structures in higher eukaryotes- mammals

The dynamics of RNA structureis also arecurring theme in mammalian RNAs. While the
binding of protein factors to specific RNA elements has been extensively studied, it is
recently emerging that this binding can result in a corresponding change in RNA structure,
which affects gene expression. The VEGFA mRNA contains a 125 base, hypoxia stability
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region, in its UTR and the structure of this region changes depending on whether the cell

is exposed to normoxic or hypoxic conditions in the presence of interferon gammaZC. During
normoxia, the presence of the GAIT complex resultsin the VEGFA mRNA to form a
structure that is not permissive to translation. However during hypoxia, the binding of
HNRNPL resultsin the RNA conformation to switch to a different structure that permits
protein translation.

MicroRNAs (miRNASs) are ~23-nt short RNAs that modul ate gene expression in normal
development and disease pathogenesis. Recently, RNA conformations within a transcript
have also been found to be one of the determinants of whether atranscript is targeted by
specific miRNAs. The interaction between miRNAs and 3' UTRs of their targets can lead to
MRNA destabilization and/or trandation inhibition. Accessibility of miRNA target sites can
influence miRNA binding, as target sites that are buried in secondary structures may
sterically hinder their interaction with miRNAs?. Interestingly, accessibility of miRNA
target sites can change in different biological states indicating an additional layer of gene
regulation?2. One prime example is the regulation of levels of p27, a cyclin dependent
kinase inhibitor, during different stages of the cell cycle. p27 protein level islow in dividing
cells but high in non-dividing, quiescent cells. Upon growth factor stimulation, Pumilio-1
protein is activated, binds to the p27 mRNA 3 UTR, and resultsin a RNA structural change.
This structural change exposes the microRNA target sitesin the 3’ UTR of p27, allowing
miR-221 and miR-222 to interact with the p27 3’ UTR, causing translation repression and a
reduction in p27 protein levels (Fig. 1B).

Thereis an increasing amount of genome-wide datasets on RNA binding proteins and their
targets, as well as where these proteins bind to their mRNA targets?3-2°, Probing RNA
structures in a genome-wide manner both in-vitro and in-vivo would enable us to study both
the structural context that determines protein binding to RNAs as well as identify regions of
RNA structural changes that occur in the presence and absence of protein binding. As many
of such structural changes result in meaningful functional outputs, such as changesin
tranglation or decay, this would enrich our mechanistic understanding of how RNA
structures impact cellular function.

Computational approaches to RNA secondary structures

Given the experimental difficultiesin measuring RNA structure, algorithms for predicting
RNA structure from primary sequence have been developed and applied in many
settings?5-31. When accurate, these approaches have clear advantages, as they do not require
experimentation, and can also be used to predict the structure of any arbitrary transcript,
including hypothetical transcripts with designed mutations. Indeed, approaches based on
computational predictions have led to many biological discoveries and insights. For
example, for specific classes of ncRNASs whose members share structural properties
essential for their function, computational methods utilizing secondary structure predictions
were successfully used to annotate new members of that ncRNA class. Examples include
methods for predicting tRNAs32 33 snoRNAs32 and microRNAs®*. By combining RNA
structure predictions with comparative genomic analysis, the more general task of
identifying novel ncRNAs from a genome sequence has also been addressed in many
organisms3®-37 Finally, several methods have been developed for identifying structural
motifs that are common to multiple RNAs, and that may have arolein the subcellular
localization, stability, or the function of the RNA in which they are embedded3® 3841 (Fig.
2a,b).
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Computational RNA structure prediction—covariation

Several different approaches exist for predicting RNA secondary structure. Methods based
on comparative sequence analysis rely on the fact that many of the known functional RNA
structures are conserved in evolution. Examples include tRNAs, rRNAs, and group | and
group 11 introns*2 43, Covariation methods determine secondary structure by examining
conservation patterns of basepairs among homologous or paral ogous genes. Such
covariation methods search for two distinct genomic sequences in which evolutionary
seguence changes in one sequence are accompanied by compensatory sequence changesin
the other sequence that preserve RNA structure®2. For example, the pairing of G-C
nucleotides between two distinct genomic sequences can be maintained at the structure level
in another speciesif the G-C nucleotides have changed to A-U nucleotides (Fig. 2c). The
structure can be determined directly from the pattern of conserved pairings when enough
homologous sequences are available, and several methods exist for this?”: 4447 In other
cases, a combined thermodynamic-covariation method can be used*®.

Computational RNA structure prediction—thermodynamic modeling

When only a single sequence is available, an accurate and popular method is thermodynamic
computation of the minimal free energy structure. This method uses efficient dynamic
programming algorithmsin conjunction with experimentally-derived energy parametersto
scan the entire landscape of possible secondary structure configurations and identify the
most thermodynamically stable structure?®: 49. 50, For sequences that are shorter than 700bp,
~70% of the known basepairs are correctly predicted by these methods. However for longer
sequences, the accuracy drops to ~20-60% when the predicted structures are compared to
high resolution crystal structures and structural predictions obtained using comparative
analysis®l: 52, As an alternative to free energy minimization methods, algorithms based on
probabilistic modeling using stochastic context-free grammars (SCFGs) were also
developed, but since their accuracy islower, thus far they have not replaced free energy
minimization methods?8. Another recent improved strategy was devel oped using both
thermodynamic modeling and machine learning methods, and the strategy was based on
choosing the nucleotide set with the maximal sum of pairing probabilities® 54, An
interesting application of thermodynamic modeling techniques is the evaluation of potential
RNA structural changes caused by noncoding single nucleotide polymorphisms associated
with human diseases. Laederach and colleagues identified multiple disease-associated
mutationsin UTRsthat alter the mRNA structural ensemble of the associated gene,
providing new hypotheses for causes of human disease and variation®®.

Computational RNA structure prediction—Incorporating experimental data

Another successful approach has been to incorporate experimentally derived structural
information into computational predictions. This approach has been in use since the first
prediction algorithms became available and has been further devel oped throughout the
years?® 56-59 \When the experiment can only derive binary information for each nucleotide,
namely whether the nucleotide was paired or unpaired, the dynamic programming algorithm
can be modified such that large positive free energy terms are added to nucleotides that are
known to be unpaired, thus restricting the algorithm from marking them as paired®’. More
recently, methods that use quantitative, nucleotide resolution experimental data (discussed
below) to direct the prediction of afolding algorithm have been introduced, by integrating
an additional per nucleotide pseudo-free energy term into the dynamic programming
agorithm®®. This method was shown to significantly increase the accuracy of structure
prediction.
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Ongoing challenges

Despite their many successes, current prediction algorithms have several limitations. First,
RNA moleculesin solution may adopt secondary structures that are only partially
determined by thermodynamics, as RNA molecules can undergo conformational changes
upon interaction with other RNAs and RNA-binding proteins. These context-dependent
RNA protein interactions are extremely complex to model and are thus excluded from all
prediction algorithms. Second, although our knowledge of thermodynamic rules and
parameters has greatly improved, it is far from being complete?®: 57: 60. 61 Finglly, most
folding algorithms use approximations in order to efficiently scan the vast |andscape of
possible secondary structures. Important limitations are the difficulty to predict pseudoknots
(RNA topologies that contain non-nested nucleotide pairings) or take into account long-
range model and tertiary structure interactions. Pseudoknots have been observed in a number
of functional RNA sequences, such asribosomal RNAS (rRNAS), transfer RNAs (tRNAS) or
the genomes of viral RNAS%2, where they have been shown to be involved in unique
mechanisms of viral trangation initiation and elongation83, Thus, ignoring pseudoknots
results in inaccurate structure predictions2 64, In contrast to the prediction of nested
structures (free of pseudoknots), which can be efficiently solved using dynamic
programming, predicting structures that contain pseudoknots is very challenging
computationally. Pseudoknot prediction has proven to be a class of computational problems
with no fast solutions, termed “NP-complete”, for alarge class of models of pseudoknots®.
Asaresult, several methods have been devel oped that focus on specific types of
pseudoknotst6-68, or employ heuristicst®-73, to bring running time to down. Nonetheless,
computational prediction of pseudoknot still scales exponentially with the length of the
RNA [on the order of O(n"4)-O(n"6) where n is the length of the RNA sequence].

Thus, although the extensive research and development of RNA structure prediction tools
has led to many successes and discoveries, the applicability of existing toolsis till limited
and further experimental datais needed to bridge the knowledge gap. However, the
accumulation of additional experimental data should lead to better optimization of existing
algorithms and to the development of new strategies, some of which may combine
experimental and computational approaches.

RNA structure maps—the first steps

Probing RNA structures in solution by RNA footprinting

RNA footprinting is a method that probes RNA in solution using a variety of chemical and
enzymatic probes’. With in vitro footprinting, an RNA of interest is typically transcribed in
vitro and folded in solution before being subjected to a battery of different structural probes
that determine which of the bases are single stranded, double stranded, or solvent

exposed’® 7>, Chemicals including dimethyl sulfide (DMS), 1-cyclohexyl-(2-
morpholinoethyl)carbodiimide metho-p-toluene sulfonate (CMCT), kethoxal, lead (Pb2+)
and N-methylisatoic anhydride (NMIA), and nucleasesincluding RNase |, T1, A and S1
nuclease, interact with single stranded or flexible bases to modify or cleave them/6-20;
enzymes such as RNase V1 recognize and cleave at double stranded bases8l; hydroxyl
radicals cleave at RNA bases that are solvent exposed®? 83, The combinatorial usage of the
above probes provides structural information on most bases in the RNA. Upon cleavage or
modification, the reaction sites can be detected by autoradiography, or aternatively reverse
transcription, followed by gel or capillary electrophoresis (Fig. 3). The location of the
cleavage is determined from the migration pattern of the bands and the intensity of the bands
can be quantified using image processing tools, such as the program semiautomated
footprinting analysis (SAFA)84.
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RNA footprinting can also be performed in vivo8® 86, Because some RNAs are able to fold
into alternative conformationsin vitro that do not reflect their in vivo biological
conformations, structure probing in vivo may provide more accurate information on
biologically relevant RNA structures®’. RNA footprinting can be carried out inside the cells
using chemicals that can penetrate the cell membrane such aslead and DMS, or with high
energy X-rays8? 86.88 | ead probing has been successfully applied to in vivo structure
probing in bacteriawhile DM S has been applied to both prokaryotic and eukaryotic

cellsB6. 88, However, in vivo RNA footprinting may not be able to interrogate all regions of a
RNA of interest due steric hindrance from protein interactions. The dynamic cellular
environment also presents RNA in heterogeneous states. RNA in different stages of its
lifecycle during transcription, translation and decay are al present. Averaging the structural
signal from heterogeneous states may also prove to be inaccurate. As such, structural
probing in vitro and in vivo provide complementary information about RNA structures. In
all footprinting experiments, it isimportant to titrate the amount of structural probe used to
single hit kinetics such that on average, the RNA of interest is only cleaved once per
molecule. This ensures that the footprinting is performed on the original folded RNA,
instead of on RNA that has refolded incorrectly after it has been cleaved.

Application of capillary electrophoresisto RNA structure probing is an important step in
increasing the throughput of RNA structure data. Although RNA probing in solution can be
readily implemented for short RNAS, probing of long RNASs can be challenging. Gel
electrophoresis typically resolve about a hundred bases of RNA at atime and hence probing
an RNA of several kilobases long would require running tens to hundreds of gels. Capillary
electrophoresis allows the resolution of 300-650 bases from a structure probing experiment
and multiple lanes can be run at the same time to increase its throughput of RNA structure
probing®®: 9. The readout of the probing experiment is typically through the reverse
transcription of a5’ fluorescently labeled DNA primer that anneals specifically to the RNA
of interest. If the RNA is several kilobases long, multiple primers are designed to anneal
along the length of the transcript. Modification or cleavage of the RNA template resultsin
premature stops in the primer extension reaction, leading to different lengths of the cDNA
product which are resolved by capillary electrophoresis. Software tools such as CAFA and
Shapefinder can automate the data acquisition from capillary electrophoresis and further
improve speed and accuracy8® 9 (Fig. 3).

SHAPE and its applications to long RNAs

The method SHAPE uses the chemical NMIA and its derivatives to interrogate flexible
regionsin RNA secondary structure®0. The 2 OHs of flexible bases are able to orient
themselves more readily for attack by the electrophile NMIA, resulting in the formation of
2-O adducts. These 2-O adducts can be detected by reverse transcription and capillary
electrophoresis. As every ribonucleotide contains a2’ OH, SHAPE has the advantage of
being able to probe most basesin an RNA. With the coupling of SHAPE to capillary
sequencing, SHAPE has been applied to interrogate the secondary structures of long RNAS,
such asthe 16S rRNA and the RNA genome of the human immunodeficiency virus
(H|V)59' 91,92

The construction of the secondary structure of the HIV genome using SHAPE was a
landmark that demonstrates the substantial value of comprehensive RNA structure
analysis?L. The HIV genomeis a 9kb long single stranded RNA that encodes nine open
reading frames that are trandated into fifteen proteins important for HIV infection and
replication. Initial probing of the first 900 bases of the HIV genome across four different
biological states showed highly similar secondary structuresin virio and ex virio%.
Regulatory regions within the 900 bases are found to be more structured than protein coding
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regions, and multiple regions within the RNA are found to interact with the nucleocapsid
proteins. Structure probing of the entire 9kb HIV genome ex virio by SHAPE further found
numerous regions within the genome that have functional rolesin HIV replication®. These
structured RNA domains provide insights into Gag-Pol frame-shifting, hyper-variable
domains, and translocation of the Env protein. Interestingly, the nucleotides that encode for
loops between independently folded protein domains are more structured than their
surrounding bases, and are able to fold into secondary structures that retard the mobility of
ribosomes for co-transational protein folding of modular domains®?.

Coupling RNA footprinting, such as SHAPE, to capillary sequencing has opened the door to
structure probing of large RNAs, and it islikely that more RNA genomes, such asthe polio
virus and HCV virus, will be structurally probed to understand the role of RNA structuresin
viral replication. Furthermore, RNA structure probing is likely to extend beyond the probing
of asingle viral genome to families of viral genomes, to discover conserved or rapidly
evolving structural elementsthat are likely to be functionally important in viral biology or
pathogenicity. To facilitate this, the throughput of RNA structure probing can be greatly
enhanced by coupling RNA footprinting to high throughput sequencing, which provides
orders of magnitude of more sequencing information than capillary sequencing.

Genome-wide RNA structure maps—the next generation

Parallel analysis of RNA structure (PARS) and Fragmentation sequencing (Frag-seq)

The application of next-generation sequencing allowed the next major advance in genome-
wide measurements of RNA structure, since millions of sequence reads can be obtained in a
single experiment (Fig. 4). Cleavages or modifications at double or single stranded bases
from structure probing can be captured and converted into cDNA librariesthat are
seguencing compatible. These sequencing reads are mapped back to the genome or the
transcriptome to identify the transcript and the locations along the transcript that the
cleavages occurred. The intensity of the cleavage at a base can also be calculated by
summing the reads that are mapped to the base. This strategy allows the simultaneous
identification of double or single stranded/flexible bases in thousands of RNAsin one
experiment. In astrategy termed Parallel Analysis of RNA structure (PARS), deep
seguencing reads of double- or single-stranded regions of RNAs generated by RNase V1 and
S1 nuclease respectively are compared?l. An alternative strategy, named Fragmentation
sequencing (Frag-seq), quantifies deep sequencing reads generated specifically by RNase
P1, asingle-strand specific nuclease®,

Using PARS, Kertesz et al. measured the secondary structure of the yeast transcriptome,
generating structural information on ~4.2 million basesin over 3000 yeast transcripts?L.
Mapping PARS scores to known structures of regulatory motifs, such as Ashl localization
elements (required to properly localize Ashl mRNASs to the yeast bud tip) and the internal
ribosomal entry site of URE2 mRNA, indicates that PARS is able to capture the structural
information in these elements, demonstrating the utility of this high throughput data. The
large amount of PARS data providesinsightsinto the global structural organization of
MRNASs, including the presence of more secondary structure in coding regions as compared
to untrandated regions, a three-nuclectide periodicity of secondary structure along the
coding regions and an anti-correlation between mRNA trandation efficiency and structure
over MRNA trandation start site (Fig. 5). Using Frag-seq, Underwood et al. correctly
reconstructed the secondary structure of snoRNAs in mouse cells®. Both Frag-seq and
PARS data can be integrated into structure prediction programs for more accurate RNA
secondary structure prediction. PARS data was used to constrain a thermodynamic RNA
structure prediction algorithm as binary inputs (paired vs. unpaired), while custom algorithm
was developed to accommodate Frag-seq data. In essence, the nature, number, and location
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of structured regions in the transcriptome can be rapidly discovered, leading to many
hypotheses and potentia insightsinto gene regulation.

Comparison of PARS and Frag-seq reveals the complementary nature of the information
that they both provide. First, because Frag-seq isolates RNAs between 20 to 100 bases after
P1 cleavage without an additional fragmentation step, many sequence reads came from
small nuclear RNAs, such as snoRNAS, while larger RNAs may be under-represented.
Second, structured regions appear as “blanks’ on Frag-seq data, and other information is
thus necessary to ensure that these regions are not missed due to mapping or cloning
difficulties. Third, while PARS compares the cleavage sites of asingle- vs. double-strand
specific enzymes, Frag-seq uses as background the endogenous 5" OH and 5’ P within the
transcriptome. This latter control can also identify regions that vary in their ability to be
cloned and amplified during library production. Thus, by combining features from PARS
and Frag-seq, future experiments can exploit the strengths of each to improve the accuracy
of genome-scale measurements of RNA structure.

Recently, SHAPE has also been coupled to deep sequencing®. Lucks et al. in vitro
transcribed seven short RNAS, each appended with a unique sequence tag (a barcode). After
reacting with the SHAPE chemical 1IM7 to acylate flexible bases, the reacted bases are
indirectly detected by their ability to terminate the reverse transcription reaction and read out
by sequencing the cDNAs. Because of the bar code, multiple sequences, even those with
extensive sequence similarity, can be probed simultaneously. SHAPE-seq data correlate well
with SHAPE followed capillary sequencing datafor RNase P and pT181 attenuator,
showing that sequencing largely captured similar structural information as capillary
sequencing. This approach is likely useful for studying multiple mutants of one RNA or
multiple members of closely related RNA family. Comparison of SHAPE-seq with PARS or
Frag-seq illustrates several trade-offsin experimental design. The use of individual barcodes
to assign identity to RNAs enables studies of highly related RNAs, but limits the ability to
scal e the same procedure up genome-wide, particularly when RNA sequences are not known
apriori. Also, the choice to measure the cDNA product in SHAPE-seq, rather than directly
clone the RNA fragments in PARS and Frag-seq, means that the processivity of reverse
transcription becomes a dominant factor in SHAPE-seq data processing and the modeling of
RNA secondary structure. SHAPE-seq signal progressively decays from 3’ to 5 of the RNA
template, the direction of reverse transcription, and a detailed mathematical model has been
developed to correct for this signal decay®®. Such models and the use of many more internal
primers may allow full length mRNAS to be assessed by SHAPE-seq.

Advances relative to prior methods

The genome-scale RNA structure maps have three important advantages over prior methods.
Thefirst advantage is the amount of data measured by deep sequencing, which in itself is
rapidly developing. While RNA footprinting with capillary sequencing is still very much
directed at interrogating asingle RNA of interest, PARS and Frag-seq have the power of
probing structures of entire transcriptomes, comprised of tens of thousands of transcripts.
Second, the degree of parallel multiplexing is much enhanced in the new methods. Capillary
sequencing istypically performed with one purified RNA product and one primer per well.
Thus, to study multiple genes, an investigator needs to clone each of these genes aswell as
prepare unique primers that span the length of the transcripts. In contrast, due to the
massively parallel nature of deep sequencing technology, thousands of distinct RNAs of
multiple kilobases long can be probed easily with high throughput sequencing, as long as the
RNAs are fragmented to a size that is captured by the library preparation. This genome-wide
approach allows biologists to compare the structural profile of one transcript to another in
the transcriptome easily, enabling them to classify transcripts according to specific structural
features.
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Finally, PARS and Frag-Seq can a so perform de novo transcript discovery and probe the
structures of RNAs that were either not known to be present previously or underwent post-
transcriptional modifications such as alternative splicing or RNA editing. In contrast, for
capillary sequencing (or SHAPE-seq asit is currently practiced), the nucleotide sequence, as
well as how the RNA is spliced, needs to be known so as to design primers along the length
of the RNA to identify the bases that reacted with structural probes. This processis not only
tedious but also restricts capillary sequencing to be used on structure probing of transcripts
that are well annotated in the transcriptome.

Despite potential advantages, care and thoughtful controls are necessary to design and
interpret genome-scale RNA structure maps, as has been done with RNA footprinting by
capillary sequencing®. Key considerations include replicates to examine reproducibility,
titration of structural probes to maintain single-hit kinetics, and controls to assess various
biases that may arise from library preparation, deep sequencing, or mapping®’. The use of
positive control RNAs with well known structuresthat are doped into the genome-scale
reactionsis a useful measure to assess the quality of structural information generated by

deep sequencing.

Using RNA structure maps to understand the transcriptome—the future

Much remains to be done and learned from genome-wide maps of RNA structure. First, it is
likely that multiple technical advances will improve the quality of the maps. With classic
RNA footprinting, multiple enzymes and chemical reagents are used to generate a consensus
picture of RNA structure, and it is likely that multiple reagents, including DMS, lead and
others, will be adapted to deep sequencing readouts. The use of third generation, single

mol ecule sequencing platforms that do not require amplification, and are capable of reading
hundreds to thousands of nucleotides, may also expand the range of questions that can be
addressed. For instance, long-range structural impacts of aternative splicing of exons
located hundreds or thousands of bases apart can be more simply evaluated.

Second, in vivo and dynamic RNA structure maps will yield critical understanding of how
RNA structures may change and help regulate different biological states. Currently, both
PARS and Frag-seq have probed the structures of RNAs that are isolated from cells and
renatured in vitro, but these techniques can be readily applied to native RNA isolated
without denaturation. Several chemical probes such aslead, DMS, NMIA and hydroxyl
radicals, have been used successfully to probe RNA structuresin vivo by penetrating
cellular membranes’: 82 88,92 RNA footprinting can also occur under diverse conditions,
such as alterations in temperature, the presence of specific proteins, or small molecule
ligands, to probe the impact of these perturbations on RNA structurel0: 22 98,99,

Third, new computational strategies are emerging to better integrate experimental and
computational RNA structures and delineate the impact on RNA function®8: 59, The
challenges are to predict the accurate structure of an RNA given its profile in the genomic
RNA structure map, and further predict impacts of changesin the RNA structure (due to
single nucleotide polymorphism, changesin biological state, or drug) on biological outcome.
Itislikely that cross comparison of genomic RNA structure maps with high resolution maps
of RNA-protein interactions will be one immediate avenue whereby such integrative
analyses can yield useful biological insights?® 2,
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Figure 1.

Diversity and dynamics of RNA structures. A, Different classes of SAM riboswitches bind
specifically to SAM. The backbone of the riboswitch isin grey while the SAM moleculeis
colored. SAM-1146 [PDB number: 2GIS]; SAM-11147 [PDB number:2QWY]; S(MK)
riboswitch48 [PDB number3E5C]. Images are generated using Pymol. B, Dynamic changes
in p27 mRNA structure upon Puf binding results in changes in p27 gene expression. Left
panel: During quiescence, the miRNA binding sitein 3UTR of p27 isin afolded structure
and is not accessible to miRNA. Trandation of p27 mRNA resultsin high p27 protein levels
to maintain quiescence. Right panel: During cellular proliferation, binding of Puf proteinsto
p27 mRNA causes a structural change that allows miRNA binding sites to be accessible to
miR-221 and miR-222, resulting in translation repression of p27. Low p27 levels alow the
cellsto exit cellular quiescence and enter the cell cycle. [Figure modified from Kedde M. et
al, 2010]
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Predicting structural motifs for RNA binding protein (RPB) targetsin mRNASs from
different organisms. A, By applying an RNA motif finder, investigators were able to identify
asignificant stem-loop structural motif by analyzing the eight known targets of the human
RBP Sam68. B, The same RNA motif finder was used to analyze data collected from alarge
study on mRNA localization during fly embryonic development, to predict significant
motifsin six sets of colocalized maternal transcripts. Shown is the structural motif enriched
in each set of MRNAs. C, Conservation of base pairs in homologous sequences directs
structure prediction. Sequence covariation found at aligned positions. Shown is an example
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alignment of seven RNA seguences. In the example, sequence covariation in between the
two sets of marked columns hint at interacting bases.
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Structure probing by RNA footprinting followed by gel and capillary electrophoresis. An
RNA of interest istypically in-vitro transcribed, folded and subjected to a combination of
single and double stranded structural probesin solution. Cleavagesin double or single
stranded regions can either be identified by running a gel electrophoresis (RNA needs to be
radioactively labelled at one end) or be identified via primer extension followed by capillary
electrophoresis (primer needs to be florescently labelled). The bands from gel
electrophoresis can be quantitated using a program called SAFA, while bandsin capillary
electrophoresis are identified and quantitated using CAFA or ShapeFinder. In gel
electrophoresis, the SAFA quantitated green lines refer to the intensity of S1 nuclease
cleavages while the red lines refer to the intensity of RNase V1 cleavages. The positions of
these cleaved bases are determined from the RNase T1 ladder and akaline hydrolysis
ladder. In capillary electrophoresis, the red line indicates the intensity of structure probing
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sites that are detected by reverse transcription, while the grey line corresponds to a ladder
that positions the RNA bases.
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Figure4.

PARS and Frag-seq methods. A, PARS strategy. In PARS, polyA selected RNA isfolded in
vitro and incubated with either RNase V1 or S1 nuclease to probe for double and single
stranded regions respectively. RNase V1 and S1 nuclease cleave resulting in a 5P leaving
group. The enzymatically probed RNA is then fragmented. As enzymatic cleavage products
contain 5'P whereas fragmentation and degradation products have 5OH, only true structure
probing sites can be ligated to adapters and reverse transcribed. The cDNA library is
sequenced using high throughput sequencing and the resulting reads are mapped to the
genome to identify double/single stranded regions in the transcriptome. A PARS score can
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be calculated at each base whereby a positive PARS score indicates that a base is double
stranded and a negative PARS score indicates that a baseis single stranded. B, Fragseq
stratgy. Nuclear RNA isfolded in vitro and probed in solution with P1 endonuclease. P1
cleaves at single stranded regions, resulting in a 5'P leaving group. This 5'P can be captured
by adapter ligation, followed by reverse transcription and high throughput sequencing.
Sequencing reads are mapped back to the genome to identify where single stranded bases
are located in the transcriptome. Fragseq also contains controls which include sequencing of
endogenous 5'P and 5'OH that are originally present in the untreated RNA samples. A
cutting score can be calculated at each base which incorporates reads from P1 nuclease and
reads from endogenous degradation or fragmentation products. A positive cutting score
indicates that the base is single stranded.

Nat Rev Genet. Author manuscript; available in PMC 2013 December 10.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Wan et al.

Average PARS score

0 20
Position

40

Average PARS score

0.4
0.2 _ﬂ—'—
0

1 2 3
Codon position

Periodicity
in CDS and
not in UTRs

|

60

80

100 120

Page 25

- 2.0

Stop

- 1.5

Average PARS score

-120 -100 -80 (-60 -40 -20 0 20 40 60

Position

Accessibility of
5'UTR increases
translation rate

Structures near
start codon reduces
translation rate

Ny

.8

Structures in
coding sequence
and UTRs are
associated with
mRNA transport

Figure5.
Structural organization of the mRNA transcriptome. Thousands of yeast mMRNAS are
structurally probed in PARS and aligned according to their start and stop codons. The
average PARS score of the coding sequence (CDS) is shown in blue; 5" untranslated region
(UTR) inyellow; 3’ UTR in red. The organization of secondary structures within the
transcriptome revealed an increased accessibility of RNA structure near the start codon
important for trandation efficiency, shown by the negative spike. The coding sequenceis
more structured than the UTRs, as shown by the higher average (blue ling), compared to the
UTRs (orange and red lines). Some of these structures are important for cellular processes
such as mRNA transport. A three nucleotide periodicity (inset box) in RNA isaso seenin
the coding region and is absent from the UTRs.
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Diverseroles of RNA structure in gene expression. Several recent examples are highlighted.

Process RNA type | Examples Role of RNA structures Refs
Transcription | LncRNAs Xist, HOTAIR, ANRIL, Double stem loop and other structural motifs recruit Polycomb | 100-104
promoter associated RNAs complex for gene silencing.
ncRNA Mitochondria RNA G-quadruplex structures cause transcription termination- 105
mammals
Riboswitch | Adenine, guanine, lysine, Structure change upon ligand binding resultsin either 5,106-111
glycine, T-box, trp, SAM, transcription termination or activation- bacteria
preQl
Splicing mRNAs Tau, cardiatroponin Protein binding to stem loop at cause alternative splicing- 112,113
mammals
CD59, XBP1 IRE1a recognizes stem loop for splicing- mammals 114
14-3-3¢ Inter-intronic RNA pairing resultsin mutually exclusive 115
splicing-Drosophila
Riboswitch | Group | ribozyme, TPP Binding to metabolites alters splicing- bacteria, fungi, plants 116, 117
RNA mRNAs Hacl Localization to yeast ER membrane 118
Localization
ATP2, ATM1 Localization to yeast mitochondria 119
K10 A form helix causes localization to anterior of Drosophila 120
oocyte
PSD-95/CaMKlla G-quadruplex in UTR targeting to neurites-mammal's 121
Beta-actin Localizes to the leading edge of fibroblasts/neurons-mammals | 122,123
ncRNA Promoter RNA Stem loop results in nucleoli localization—mammals 124
Trandation mMRNASs p27, VEGFA Protein binding causes structural changesin mammals 20,22
Collagen genes, amyloid Stem loop at YUTR 125-127
precursor protein, ferritin
BCL-2, ERa, TRF2 G-quadruplex in YUTR affects translation-mammal's 128-130
URE2 Stem loop asinternal ribosomal entry site- yeast 131
ncRNA rRNA Binding of Z-DNA-binding domain to rRNA structures block 132
trandation-bacteria/mammals
Riboswitch | FourU, ROSE element, cspA RNA thermometers respond to temperature changes 99, 133-135
RNA Decay mRNAs Rps28b Structure recruits decapping proteins for decay-yeast 136
Cth2 adenosine/uridine-rich (ARE) elementsin 3'UTR-yeast 137
BDNF Stem loop in 3UTR prevents decay in presence of Ca2+ — 138
mammals
Riboswitch | GIcN6P riboswitches Ligand binding results in cleavage of RNA 139,140
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