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Abstract
Objectives—Late-life major depression (LLD) is characterized by distinct epidemiological and
psychosocial factors, as well as medical co-morbidities that are associated with specific
neuroanatomical differences. The purpose of this study was to use interregional correlations of
cortical and subcortical volumes to examine cortical-subcortical structural network properties in
subjects with LLD compared to healthy comparison subjects.

Design—Cross-sectional neuroimaging study

Setting—General community

Participants—We recruited 73 healthy elderly comparison subjects and 53 subjects with LLD
who volunteered in response to advertisements.

Measurements—Brain network connectivity measures were generated by correlating regional
volumes after controlling for age, gender, and intracranial volume using the Brain Connectivity
Toolbox (www.brain-connectivity-toolbox.net).

Results—Results for overall network strength revealed that LLD networks showed a greater
magnitude of associations for both positive and negative correlation weights compared to healthy
elderly networks. LLD networks also demonstrated alterations in brain network structure when
compared to healthy comparison subjects. LLD networks were also more vulnerable to targeted
attacks compared to healthy elderly comparison subjects and this vulnerability was attenuated
when controlling for white matter alterations.

Conclusions—Overall, this study demonstrates that cortical-subcortical network properties are
altered in LLD and may reflect the underlying neuroanatomical vulnerabilities of the disorder.
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Objective
Late-life depression (LLD) is characterized by distinct epidemiological and psychosocial
factors, as well as medical co-morbidities (1). Among the striking features of LLD are
neuroanatomical alterations that have been demonstrated across a number of neuroimaging
studies. Structural imaging studies in LLD have identified volume alterations in prefrontal
cortex, hippocampus, amygdala, and basal ganglia structures (recently reviewed in (34)). In
addition, white matter hyperintensities have been seen in periventricular, deep white matter
and subcortical regions in LLD (24). More subtle white matter alterations have been
detected with diffusion tensor imaging (DTI) and magnetization transfer (MT) suggestive of
microstructural abnormalities, even in normal-appearing white matter (19,27,28). It has been
suggested that the combination of gray matter and subcortical volumetric changes and white
matter alterations are indicative of disruption of cortical-subcortical networks in LLD (26).
Kumar and Cook also propose that such structural alterations adhere to the functional
alterations seen in LLD given that the white matter connecting frontal and subcortical
structures is involved with mood regulation and emotional functioning via the limbic-
cortical-striatal-pallidal-thalamic circuit. Because of the hypothesized disruption in
structural connectivity and its implications for behavior, methods to ascertain the topological
organization of these networks would be of particularly utility in understanding LLD.

Several techniques to address structural connectivity have come to the fore in recent years.
One method involves examining structural covariance based on interregional correlation of
morphological measures such as cortical thickness, gray matter volume, or gray matter
density. This technique is based on the notion that positive correlations are related to
connectivity defined by axonal connections between regions with common trophic and
developmental influences (32). Structural covariance has been shown to reveal patterns of
correlation that reflect striking interhemispheric connectivity (33). Additionally,
interregional correlations of cortical thickness have been used to identify age-related
alterations in language networks and structural connectivity variations associated with
IQ(29).

For the present study, we adapted structural covariance techniques to a graph theoretical
approach in order to further understand brain connectivity alterations in LLD. Graph theory
models provide an organizational chart for the brain based on anatomical features by
creating a graph made up of nodes and edges that represent the network. Nodes are typically
defined by brain region and edges are the connections between those regions. These graphs
have quantifiable features that reveal characteristics about how information flows
throughout the network. Such features include the clustering coefficient, characteristic path
length, efficiency, and centrality. The clustering coefficient provides a measure of the degree
to which neighboring nodes are interconnected. The characteristic path length is the average
shortest distance between any two nodes. The optimal organization of a network has been
characterized by high clustering coefficients relative to small path lengths and has been
referred to as a “small-world” network(44). Small path lengths are also related to higher
network efficiencies, since with small path lengths, information transfer occurs more readily
throughout the network. Centrality is a measurement of a node’s importance or influence in
the network. These measures have been used to identify altered cortical network
organization in a number of conditions including Alzheimer’s disease, schizophrenia,
synesthesia, and normal aging (4,21,22,46). Results of these studies have revealed disease-
specific alterations in cortical organization, impaired network efficiencies, and regional
abnormalities associated with these conditions.

The goal of the present study is to measure cortical-subcortical network properties
associated with LLD using graph theory based methods. To our knowledge, this is the first
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application of this technique to examine whole-brain network characteristics associated with
LLD. DTI and resting-state fMRI are imaging modalities that tend to demonstrate regional
brain differences; the advantages of whole-brain network analysis (which may use the
aforementioned modalities as source material) allow one to understand the organizational
properties of the human brain when modeled as a graph, to examine the impact of specific
brain regions in this context, and to investigate possible abnormalities or alternations in
brain network properties in disease states. Given previous studies demonstrating white
matter alterations involved in the disruption of cortical-subcortical circuits, we hypothesize
that subjects with LLD will demonstrate altered connectivity patterns characterized by
decreased smallworld network properties, decreased global network efficiency, and impaired
network resilience when compared to healthy older adults.

Methods
Subject Recruitment

We recruited 53 patients (18 men and 35 women) diagnosed as having major depressive
disorder (MDD) using established DSM-IV criteria and 73 healthy comparison subjects with
no prior or current history of MDD (22 men and 51 women) who were 60 years of age or
older (range 60 – 91 years old). Subjects were recruited from the community in response to
local newspaper advertisements, newsletters, and radio advertisements. All study
participants provided written informed consent in keeping with the guidelines of the Human
Subjects Protection Committee of the University of California, Los Angeles.

All study participants received a Structured Clinical Interview for DSM based on the DSM-
IV. Inclusion criteria encompassed a diagnosis of MDD, Hamilton Depression Scale (20)
scores of 15 or greater on the 17-item scale, having not taken antidepressants and other
psychotropic medications for at least 2 weeks before clinical assessments, and absence of
dementia by medical history and mental status examination. Severity of depression was also
assessed using the Geriatric Depression Scale (49) (GDS) and Beck Depression Inventory
(5) (BDI). Comparison subjects did not meet criteria for MDD. Exclusion criteria for all
subjects were history of substance abuse or other Axis I disorder as determined from the
Structured Clinical Interview for DSM, clinical evidence of dementia, Mini-Mental State
Examination (MMSE;(17)) score of less than 26, neurologic disorder such as Parkinson
disease, history of transient ischemic attack, history of head trauma with loss of
consciousness, current or unstable serious medical illness, chronic disease such as syphilis
that could affect cognitive function, or history or evidence of psychotic symptoms or
concurrent Axis I psychiatric disorder. Stable chronic conditions, such as diabetes mellitus,
hypertension, or history of non-central nervous system cancers, were not exclusionary. All
subjects received a comprehensive laboratory assessment and a comprehensive
neuropsychological battery. The predicted Verbal IQ from the Wechsler Test of Adult
Reading (45)was assessed as a global measure of pre-morbid IQ.

MRI Acquisition and Volumetric Analysis
All subjects were scanned using a Trio Tim 3T MRI scanner (Siemens Medical Solutions,
Inc., Munich, Germany). High resolution 3D MPRAGE (Magnetization Prepared Rapid
Acquisition Gradient Echo) sequence was acquired on each subject with the following
parameters: FOV=240×210mm, TR/TE/TI=2200/2.24/900ms, flip angle 9°, 224 contiguous
coronal slices, in-plane resolution=0.9375×0.9375mm2, acquisition matrix=256×224, slice
thickness=0.9mm, NOA=1. All MRI results were examined for space-occupying and other
focal lesions, including stroke and all subjects were free of any gross neuroanatomical
abnormalities.
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After acquisition, cortical reconstruction and volumetric segmentation were performed using
the Freesurfer Image Analysis Suite (version 4.5.0, http://surfer.nmr.mgh.harvard.edu). The
technical details of these procedures are described in prior publications (13,16). Briefly, this
processing includes motion correction of volumetric T1 weighted images, removal of non-
brain tissue using a hybrid watershed/surface deformation procedure (36), automated
Talairach transformation, segmentation of the subcortical white matter and deep gray matter
volumetric structures (including hippocampus, amygdala, caudate, putamen, ventricles)
(15,16), normalization(39), tessellation of the gray matter white matter boundary, automated
topology correction(14,37), and surface deformation following intensity gradients to
optimally place the gray/white and gray/cerebrospinal fluid borders at the location where the
greatest shift in intensity defines the transition to the other tissue class (10,13). The
structural segmentation described above was used to identify white matter hypointensities
(WMH) on T1 weighted images as proxy measures of white matter hyperintensities found
on T2 weighted images. A prior study by Smith et al. demonstrated a good agreement
between Freesurfer and manual methods for measuring white matter hyperintensities (40). In
our own internal analysis, Freesurferobtained WMH values were highly correlated with
manual measurements of white matter hyperintensities in a test sample of LLD subjects with
both T1 and T2 weighted images available (r = .91, p < 10−7, n = 20).

Network Analysis
Network Construction—To construct connectivity matrices, we used the Freesurfer
image analysis suite to parcellate cortical and subcortical gray matter into a total of 82
regions of interest (41 per hemisphere). The list of regions is detailed in Appendix I. For
each subject group, we constructed a corresponding 82 × 82 brain connectivity matrix by
defining both the (i, j) and (j, i) components of the matrix to be the Pearson’s product-
moment correlation of regions i and j using volume measurements after controlling for age,
gender, and intracranial volume (rij). Connectivity matrices were binarized such that for any
matrix entry aij was equal to 1 if rij exceeded a given threshold (i.e. 0.2); otherwise aij was
set to zero. Binarized connectivity matrices were constructed using a range of thresholds
(from 0 to 1), thus creating networks of different densities. This was done to ensure that any
group differences in network measures were not due to differences in the number of
connections in any given matrix.

Network Parameters—The clustering coefficient of a network reflects the degree of
network segregation and can be measured by calculating gamma, the normalized clustering
coefficient (Creal/Crand). Creal is the clustering coefficient of the actual network and Crand
represents clustering coefficient of random networks of equal size and density to the actual
network. The characteristic path length indicates the degree of network integration and can
be measured by calculating lambda, a normalized characteristic path length (Lreal/Lrand).
Lreal is the average shortest path length for all node pairs in the network and Lrand is the
average shortest path length in a random network of equal size and density. The small-world
nature of the networks was determined by sigma, the ratio of gamma and lambda. Sigma
values greater than 1 are indicative of a small-world network, reflecting the optimal design
of a network balancing segregation and integration(44). These measures as well as network
strength (the mean positive and negative correlation weights) and global efficiency (a
measure related to the inverse of the path length) were calculated using the Brain
Connectivity Toolbox(35) (http://www.brain-connectivitytoolbox.net). Network influence
was measured using betweenness centrality to determine hubs. Betweenness centrality is a
measure of a node’s influence on the network and is defined by the proportion of all shortest
paths in the network that contain a given node. Details on the equations used to generate the
network metrics of interest have been previously published (35).
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Network Resilience—Resilience refers to the ability to withstand perturbations or failures
in the network. To measure network resilience, networks were constructed at a fixed density
of 19%, the lowest density at which all regions were connected in the networks in our
sample. This ensures the involvement of all regions in the network model without
extraneous connections that could influence the results of the subsequent failure analyses. In
the random failure analysis, nodes or regions were removed at random and the size of the
largest connected component was calculated as a measure of network resilience. In the
targeted failure analysis, hub nodes or regions were removed from the network in decreasing
order of importance, as assessed by betweenness centrality. In a secondary analysis,
networks were constructed using interregional correlations of volume controlling for age,
gender, ICV, and WMH volume to assess the impact of WMH on network resilience.

Statistical Analysis
Demographic and clinical variables were analyzed using an independent sample t-test for
continuous variables and chi-squared test for categorical variables. Levene’s Test for
Equality of Variances were used for all t-tests (30). Overall correlation strength differences
were determined using a two-sample ttest after performing a Fisher r-to-z transformation.
According to the methods of He et al(22), specific interregional correlation differences were
analyzed by determining whether correlations were first significantly nonzero within both
subject groups after false discovery rate (FDR) (6) correction and then were significantly
different between groups after FDR correction. All tests were two-tailed and FDR correction
was performed with a significance threshold set at q < .05. Between-group differences in
network metrics and network resilience measures were determined using non-parametric
permutation tests with 1000 iterations (8). Significance was set a threshold of p < .05.

Results
Clinical and demographic data

There was no significant difference in age, gender, ethnicity, education, MMSE or verbal IQ
between subject groups. As expected, LLD subjects scored significantly higher on self-rated
depression measures (Table 1).

Global network characteristics
Both HC and LLD networks demonstrated extensive positive and negative interregional
correlations with strong correlations between bilateral homologous regions (Figure 1). The
LLD network had significantly overall stronger positive (t = −26, df = 5500, p < .0001) and
more negative correlation strengths (t = 4.25, df = 485, p < .0001) compared to the HC
network (Figure 2). When examining specific interregional correlations, with the exception
of the left middle frontal and medial orbitofrontal gyri, LLD correlations were significantly
higher compared to HC, particularly between interhemispheric and interlobar regions (Table
2). Across a range of network densities, LLD networks tended to have higher gamma and
lambda values compared to HC networks with a select number of densities showing a
significant difference between groups (Figure 3A and 3B). While at smaller network
densities, LLD networks had less “small-worldness” compared to HC networks, we
observed very few significant differences in small-world characteristics as measured by
sigma (Figure 3C). However, normalized global efficiency was significant lower in LLD
networks relative to HC networks (Figure 3D) for select densities.

Network Influence
Abnormalities in network influence were assessed at a fixed network density of 19%. The
small-world parameters of the networks generated at this density are shown in Table 3.
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Thirteen regions demonstrated altered network influence in the LLD network compared to
the HC network (Table 4). These regions comprise both elements of limbic networks
(bilateral hippocampus, right amygdala, right insula, right entorhinal cortex) and the default
mode network (left paracentral, left fusiform, right precuneus, right inferior parietal, right
bank of the superior temporal sulcus). The location of significantly different network hubs is
shown in Figure 4.

Network Resilience
While HC and LLD networks did not differ when nodes were removed randomly (Figure
5A), there was a significant difference between network resilience when nodes were
removed in order of influence (Figure 5B). To further explore such significant group
differences, networks were constructed controlling for the presence of WMH. Differences in
network resilience were present to a lesser extent and were no longer statistically significant
(Figure 5C).

Conclusions
Using graph theory-based network analytical techniques, we have shown that LLD networks
demonstrate stronger connection strengths, preserved small-world networks but with a
tendency towards higher clustering coefficients and path lengths, and lower global
efficiencies compared to HC networks. In addition, LLD networks have altered network
influence in limbic and default mode network regions and lower resilience against failure
than may be partially explained by WMH burden.

Interregional Volume Correlations
Stronger correlation strengths seen in LLD networks may be related to compensation for
disrupted pathways or the relatively novel notion of “hyperconnectivity”, which has been
described in a number of pathological conditions, such as schizophrenia and autism (11,31).
Stronger correlation strengths in LLD may also be related to more consistent volume loss.
However, the correlations matrices were constructed controlling for intracranial volume
which may mitigate this influence. The stronger correlations in LLD also reflected positive
correlations where HC subjects had negative correlations. The negative correlations are
possibly related to anticorrelated networks often reported in fMRI studies, thus positive
correlations in LLD may indicate a failure to segregate competing neuronal processes (18).
Despite most studies showing lower fractional anisotropy (2,9,48) (FA) or magnetization
transfer ratios (19,28) (MTR) in LLD, indicating findings that may predict lower correlation
strengths, several depression studies using a number of different imaging modalities have
demonstrated increased connectivity. Two DTI studies by Taylor et al (42,43) showed that
treatmentresistant LLD patients had higher FA in frontal regions at baseline and lower
reductions in anterior cingulate FA after one year. Additionally, in a study by Zhang et al
(50), younger MDD patients had significantly increased connectivity, particularly in long-
distance connections that linked lobes. This data across the lifespan is in line with ours
showing that the specific correlations that were stronger in LLD crossed hemispheres and/or
lobes. Less consistent, however, was the single correlation that was significantly lower in
LLD represented a local connection between left prefrontal regions.

In studies focused exclusively on LLD, it has been shown that increased cortical-subcortical
connectivity is present compared to non-depressed controls; for example in a resting-state
functional MRI (rs-fMRI) study by Kenny et al (25). Likewise, PET studies have revealed
increased glucose metabolism in bilateral superior frontal gyrus, precuneus, and inferior
parietal lobule(41). More recently, a rs-fMRI study by Sheline et al (38) identified a “dorsal
nexus”, located in the dorsomedial prefrontal cortex, intersected by three resting-state
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networks with increased activity in depression. Activity of the dorsal nexus also positively
correlated with depression severity. It has been suggested that this region may serve as a
therapeutic target for stimulation-based treatments like deep brain stimulation (DBS). Of
note, in addition to the global correlation differences observed in the present study, the
specific interregional differences occurred between brain areas involved the default mode
network (precuneus, superior frontal cortex), affective networks (entorhinal cortex, superior
temporal lobe), and regions that bridge these networks (isthmus of the cingulate). In
summary, our results are consistent with growing evidence that connectivity in depression
may be characterized by hyperactivity and disruption of these circuits may have therapeutic
benefits.

Small-World Network Properties
Across a range of network densities, there was a tendency for LLD networks to have higher
gammas (normalized clustering coefficient), higher lambdas (normalized path length) and
lower global efficiencies relative to comparison subjects. A similar pattern has been recently
reported in a study demonstrating lower global efficiencies and increased path lengths in
remitted geriatric depression patients (3). It has been hypothesized that the ideal structure of
a network exhibits small-world architecture characterized by high clustering coefficients and
low path length s(44). The pattern of higher clustering coefficients and higher path lengths
thus represents an aberration of the optimal organization of a network. While these network
parameters may be difficult to interpret without clinical or cognitive correlates, this pattern
has been observed in disease states such as Alzheimer’s disease (AD). In He et al, the
authors demonstrated that AD networks were characterized by higher clustering coefficients
and higher path lengths (22). Furthermore, in a subsequent DTI study, in AD networks,
higher path lengths were associated with worsening performance on the California Verbal
Learning Task (CVLT), while global efficiency was positively associated with CVLT
performance (32). This suggests that, in the case of AD, measures like path length and
global efficiency may characterize how network disorganization can impact cognitive
function associated with disease processes. LLD networks demonstrated altered network
influence in regions comprising the limbic systems and the default mode network. There
have been a number of studies demonstrating altered functional connectivity of these
systems in LLD. For example, in a resting-state fMRI study, Wu and colleagues
demonstrated decreased subgenual anterior cingulate connectivity and increased
dorsomedial and orbitofrontal connectivity in LLD (47). There have been interesting clinical
correlates found in a recent PET study that showed, in LLD patients, citalopram reduced
cerebral metabolism in the regions that overlapped with significant hub regions found in the
present study, namely medial temporal lobe, precuneus, and amygdala (12). Given that our
patient sample is unmedicated, our results suggest that altered network influence may be
reflected in abnormal elevations in cerebral metabolism.

Network Resilience
Results of our study also revealed that LLD networks were less resilient compared to
healthy comparison networks. This pattern has been exhibited in neurological diseases such
as temporal lobe epilepsy and Alzheimer’s disease (7,22). In addition, He et al found that
both local and global network efficiencies decreased with increasing total white matter
lesion load (23). Loss of network resilience has been hypothesized to be related to deficits in
parallel organization due to underlying disease processes. This is likely to be valid for the
present study as well since our results demonstrated that the impairments in network
resilience were attenuated when controlling for WMH. Thus, in LLD, it appears that
impairments in network resilience may be, at least in part, due to disruptions of the
corticalsubcortical networks by WMH.
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Limitations
The results presented in this study must be interpreted in the context of a few limitations.
First, using structural covariance to construct the network depends on interregional
correlations, thus collapsing individual data to a single network representing the entire
subject group. This limits the ability to correlate specific network metrics with individual
clinical or cognitive characteristics. In addition, white matter hyperintensities were detected
by the automated algorithm on T1 images as hypointensities. This is not as sensitive and
specific as methods that use T2 FLAIR images to measure WMH. However, controlling for
our WMH measure was sensitive enough to attenuate impaired network resilience observed
in LLD. Finally, LLD subjects represented a heterogeneous sample of late-onset and
earlyonset LLD, thus subtle differences dependent on depression subtypes could not be
ascertained. Despite these limitations, we are able to demonstrate network-level differences
based on structural connectivity in LLD that are consistent with findings from published
functional connectivity analyses.

Conclusion
In summary, the novel application of graph theory-based connectivity analysis reveals that
corticalsubcortical network properties are altered in late-life depression and may reflect the
underlying neuroanatomical substrates of the disease. These network properties are
characterized by stronger connection strengths and altered small-world characteristics which
contribute to impaired network efficiency and resiliency. Future studies using DTI to
construct structural networks and functional connectivity analysis from rs-fMRI studies will
help elucidate the clinical and cognitive correlates of these altered network properties in
late-life depression and provide possible targets for therapies that modulate the activity of
these networks.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Interregional volume correlation matrices.
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Figure 2.
Correlation strength. The late-life depressed correlations matrix had overall significantly
higher positive strengths (t = −26, df = 5500, p < .0001) and significantly more negative
strengths (t = 4.25, df = 485, p < .0001). Error bars represent one standard deviation.
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Figure 3.
Global network metrics. A. Gamma B. Lambda C. Sigma D. Global Efficiency. Significance
was established if the absolute difference between groups was greater than 95% of the
differences observed in 1000 resampled groups (p < .05).
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Figure 4.
Hub differences. Coronal view of a transparent brain with hubs that are stronger in healthy
comparison subjects indicated in red, while stronger hubs in late-life depressed subjects are
in blue
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Figure 5.
Network resilience. A. Random Failure Analysis B. Targeted Failure Analysis C. Targeted
Failure Analysis controlling for white matter hypointensities (WMH). Significance was
established if the absolute difference between groups was greater than 95% of the
differences observed in 1000 resampled groups (p < .05).
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Table 3

Cross-sectional network metrics.

HC LLD

Gamma 2.38 2.35

Lambda 1.15 1.24

Sigma 2.066 1.897

Normalized Global Efficiency 0.93 0.9

Network parameters at network density of 19%, minimum threshold at which all regions are connected in the network for healthy comparison (HC)
and late-life depressed subjects (LLD).
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Table 4

Hub regions.

HC> LLD LLD > HC

Ih paracentral gyrus Ih fusiform gyrus

Ih postcentral gyrus rh precentral gyrus

rh inferior parietal lobule rh precuneus

rh bank of the superior temporal sulcus rh insula

Ih hippocampus rh lingual gyrus

rh hippocampus rh entorhinal

rh amygdala

HC – Healthy comparison, LLD – Late-life depressed
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