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Introduction: Modularity in Molecular Recognition

Throughout evolution, simple structural motifs have been 
reused, specialized and combined to generate the diverse families 
of proteins in modern organisms. The assembly of proteins from 
simpler individual motifs or domains has imbued many proteins 
with different degrees of modularity. Modularity can be defined 
as a characteristic of complex systems that consist of multiple 
units with discrete functions.1 Modules have the following fea-
tures: they have identifiable interfaces with other modules; they 
can be modified and evolved with some degree of independence 
and they often maintain their functions when isolated and rear-
ranged. Modularity has been a particularly powerful concept 
that has facilitated the understanding of biological systems, as 
in many cases, the functions of proteins can be inferred from 
the sum of their parts, and in biotechnology, where assembly of 
heterologous domains has enabled the engineering and manipu-
lation of biological systems.1,2 These manipulations range from 
using well-characterized antibody epitopes or fluorescent protein 
domains to tag proteins of interest, to more complex applications 
such as the widely used yeast two-hybrid system, where splitting 
the DNA-binding and transcription activation domains from a 
transcription factor and fusing them to potential interacting pro-
teins enables the study of protein–protein interactions with high-
throughput in living cells.3,4 The principles of protein modularity 
have been particularly useful for synthetic biology, with a goal of 
engineering biological systems with either improved properties or 
new functions.1,5-11

Repeat proteins represent an interesting subset of proteins 
characterized by small, structural motifs of 20–50 amino acids 
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Pentatricopeptide repeat (PPR) proteins control diverse 
aspects of RNA metabolism across the eukaryotic domain. 
Recent computational and structural studies have provided 
new insights into how they recognize RNA, and show that the 
recognition is sequence-specific and modular. The modular 
code for RNA-binding by PPR proteins holds great promise for 
the engineering of new tools to target RNA and identifying 
RNAs bound by natural PPR proteins.
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that are repeated a variable number of times in tandem within 
each protein.12,13 The repeated motifs stack on each other to form 
elongated structures, which provide a large surface area that is 
particularly advantageous in forming macromolecular interac-
tions when compared with typical globular proteins. Often the 
entire array is required to form the binding surface; however, in 
a subset of repeat proteins that bind nucleic acids, the repeats 
act in a modular fashion, with each repeat interacting with a 
single nucleotide base. This was first observed in proteins of the 
Pumilio and FBF homology (PUF) family of RNA-binding pro-
teins,14 and recently it has been seen in transcription activator-like 
effector (TALE) proteins that bind DNA.15-18 These properties 
have enabled PUFs and TALEs to be used in many research 
applications involving the manipulation of RNA and DNA, 
respectively.19-32 The pentatricopeptide repeat (PPR) proteins 
are a large family of eukaryotic RNA-binding proteins that have 
been widely researched because of their diverse and important 
roles in organelle RNA metabolism, including RNA editing of 
functional important RNA bases by deamination.33,34 However, 
despite intensive study, determining their modes of RNA binding 
and whether they are modular has proved particularly elusive. 
The exquisite specificity of PPR proteins in locating individual 
editing sites within organelle transcriptomes provided indirect 
evidence that RNA-binding by PPRs might be sequence-depen-
dent35,36 and modular akin to PUFs and TALEs,37 while obser-
vations that the closely related tetratricopeptide repeat (TPR) 
protein family can recognize RNA in a sequence-independent 
manner,38,39 potentially conflicted with this idea. Now recent 
studies have shown that PPRs likely recognize their RNA targets 
in a modular and sequence-specific manner, similarly to PUF and 
TALE proteins.

The Modes of RNA-Recognition by PPR Proteins

PPR proteins contain a repeated motif that is typically 35 
amino acids in length (hence their name) and forms two anti-
parallel α helices (Fig. 1A).40,41 Proteins have been observed to 
contain between two and 30 individual PPRs.33 Some PPR pro-
teins appear to consist almost entirely of tandem PPRs, while 
others contain other domains, such as endonuclease or editing 
domains.33,42-44 There are two classes of PPR proteins that have 
been described. Proteins with arrays of PPRs that are all approxi-
mately 35 amino acids long are designated as “P class” proteins. 
The second type of PPR proteins are designated as “PLS class,” 
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Figure 1. Pentatricopeptide repeats. (A) A sequence logo illustrating the characteristic amino acid composition of PPR sequences. The logo was 
derived from 14,466 PPRs found in the PROSITE PPR entry (PDOC51375) using WebLogo.83 These sequences are derived from the following taxonomic 
groups: 86% plants, 5.7% fungi, 4.3% animals, 1.8% algae, 1% trypanosomes, and 1.2% others. Amino acids are color-coded according to the physio-
chemical properties of their side chains: small (A, G) in black, nucleophilic (C, S, T) in blue, hydrophobic (I, L, V, M, P) in green, aromatic (F, W, Y) in red, 
acidic (D, E) in purple, amides (Q, N) in pink and basic (H, K, R) in orange. Regions of α-helical structure are shown below. Amino acids are numbered 
based on the Pfam model, which functions as a minimal unit.54 Residue 34 is also defined as ii according to Kobayashi et al.,54 while the numbering 
scheme used by Fujii et al.53 is shifted to the N terminus by two amino acids such that amino acids 1, 4 and 34 in the Pfam model are annotated as 3, 6, 
and 1, respectively. (B) Schematic structures of a typical P class PPR protein, human PTCD3,84 and a typical PLS class PPR protein, Arabidopsis CRR22.85 
PPRs, mitochondrial targeting sequence (MTS), chloroplast targeting peptide (CTP) and the E/E+/DYW domain, often associated with editing PPR 
proteins, are highlighted. (C) The recognition code of PPRs for RNA bases. Only representative predictions by Yagi et al. are shown; for a full list, refer to 
the original research paper.57
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their target RNAs while P class proteins often form very stable 
complexes with their targets.48-52

The first insight about how PPRs bound their RNA targets 
came from studies on the evolutionary conflict between nuclear 
and mitochondrial genomes in plants.53 The coevolution of PPR 
proteins and their binding sites results in accelerated evolution 
that would be expected to be most evident in amino acids required 
for RNA binding. The amino acids where these effects were most 
evident were at positions 1, 4, and 34 within PPRs. Furthermore, 

and this class includes the PPR RNA editing proteins within 
chloroplasts and mitochondria of land plants.45-47 The PLS class 
of PPR proteins contain C-terminal domains required for RNA 
editing and a distinctive PPR architecture. These editing pro-
teins contain triplet repeats alternating between a typical PPR, a 
longer PPR of 35 or 36 amino acids and a short PPR of only 31 
amino acids (Fig. 1B).45 Although the significance of this obser-
vation is not clear, it may relate to the binding properties of the 
PPR array since editing PPR proteins associate transiently with 

Figure 2. Structures of PPR-containing proteins. (A) Crystal structure of two tandem PPRs within the human POLRMT protein (PDB accession code 
3SPA).60 The N-terminal PPR is colored in gray and the C-terminal PPR is colored in green. Residues 4 and 34 of each PPR are highlighted in red. The ac-
tive site residues predicted to be in close proximity to the phosphate groups in incoming nucleoside triphosphates are highlighted in blue. (B) Crystal 
structure of five-and-a-half tandem PPRs within the Arabidopsis thaliana PRORP1 protein (PDB accession code 4G24).61 PPRs are colored in alternating 
gray and green. Residues 4 and 34 of each PPR are highlighted in red and active site residues of the metallonuclease domain are shown in blue.
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specificity.57 Another interesting difference between P and PLS 
class proteins, observed by both groups, was that P class proteins 
typically had internal sequences in their RNA targets that did 
not appear to be recognized by PPRs. These sections of RNA 
are probably looped out from the RNA-protein interface and 
might occur because of a mismatch between the curvature of the 
PPR proteins and the distance between RNA bases, as has been 
observed for PUF proteins.14,26,56-59 A precise understanding of 
how amino acids within each PPR recognize individual bases and 
determine their binding specificities will clearly require detailed 
structural studies.

Structural Insights into PPR Protein Function

Although a PPR protein in complex with its RNA target has not 
been observed at an atomic level to date, the structures of two 
PPR proteins have been solved recently, providing insights into 
their potential binding mechanisms. The first structures of PPRs 
were observed in the human mitochondrial RNA polymerase 
(POLRMT).60 POLRMT is the sole RNA polymerase in mam-
malian mitochondria and closely resembles bacteriophage RNA 
polymerases such as that from T7. In addition, it contains a dis-
tinctive N-terminal extension that includes two PPRs (Fig. 2A). 
This region is essential for transcription of double-stranded pro-
moter DNA but not transcription from a melted promoter; how-
ever, the exact mechanisms are not known.60 The tandem PPRs 
within POLRMT form a pair of anti-parallel α helices, as pre-
dicted from their similarity to TPRs; however, they are nestled 
within and stabilized by surrounding structural elements, which 
is likely to be atypical for PPR proteins with long PPR arrays.60 
The positioning of the PPRs and their importance within the 
N-terminal domain, implies that they might interact with pro-
moter DNA bases or nascent RNA transcripts, although this has 
not been examined experimentally.

An array of PPRs was recently observed in the structure of 
a protein-only RNase P enzyme.61 Mature tRNAs are produced 
from larger precursor transcripts by the action of RNase P and 
RNase Z enzymes that cleave at their 5' and 3' ends, respec-
tively.62-64 Although RNase P has been known for decades to be a 
protein-bound ribozyme,65 new breakthroughs have shown that 
convergent evolution has also produced a protein-only RNase P 
enzyme.43,44,61,66-68 The protein-only RNase P was first identified 
in human mitochondria as a complex of three distinct proteins 
that are all required for RNase P activity: a tRNA methyltrans-
ferase (MRPP1/TRMT10C), a short chain dehydrogenase/
reductase (MRPP2/SDR5C1) and a PPR protein (MRPP3).44 
MRPP3 contains a C-terminal metallonuclease domain and was 
predicted to perform the RNA cleavage reaction.44 Studies of the 
plant and Trypanosome homologs of MRPP3, the proteinaceous 
RNase P protein (PRORP) family, revealed that unlike the 
human protein, they all function efficiently as isolated proteins 
and that different paralogs are responsible for mitochondrial and 
nuclear tRNA processing.43,66,68 Remarkably, despite their dis-
tinct compositions and evolutionary origins, PRORP proteins 
can functionally substitute for RNA-based RNase P enzymes in 
both E. coli and yeast nuclei.43,68

a computational model derived from analysis of co-varying resi-
dues predicted that these amino acids might be co-located on 
the internal face of one of the PPR helices.53 A detailed study 
by Kobayashi et al. used truncations of the Arabidopsis HCF152 
protein, consisting of two adjacent PPRs, to perform extensive 
mutagenesis to identify amino acids that are important for the 
affinity or specificity of RNA-binding by these proteins.54 This 
study identified residues 1, 4, 8, 12, and 34 as the most important 
for maintaining high-affinity RNA-binding. The close overlap 
between the positions identified by co-variation analysis53 and 
mutagenesis54 suggested that these residues play a key role in the 
recognition of RNA.55

Barkan et al. recently used computational analysis of correla-
tions between specific PPR residues and RNA bases within their 
binding sites to elucidate the code for RNA recognition by PPR 
proteins.56 This was facilitated by the elucidation of the foot-
prints of a few well-characterized PPR proteins on their target 
RNAs.48,50,51 Alignment of all possible combinations of amino 
acids of each PPR to each base showed a significant correlation 
between the identities of amino acids at positions 4 and 34 and 
particular bases within the RNA footprint (Fig. 1C).56 This code 
for RNA recognition was confirmed experimentally by mutat-
ing residues 4 and 34 in two PPRs within the well-characterized 
PPR10 protein to show that the recoded mutant PPRs had the 
new, predicted specificities according to the code. When the code 
was applied to the PLS class of editing PPR proteins, they all 
aligned exactly four bases upstream of the edited base, indicating 
that the PPR array provided a very accurate “molecular ruler” for 
modification of specific bases. Interestingly, although the code 
accurately predicted the binding preferences of the canonical and 
short PPRs within editing PPR proteins, every third, long PPR 
could not be accommodated by the predicted code. This led to 
the proposal that every third, long PPR might not directly bind 
RNA bases, potentially explaining the ability of editing PPR pro-
teins to dissociate from their RNA targets more easily.56

Yagi et al. recently used an alternative computational approach 
to determine the code for RNA recognition by PPRs.57 Analysis 
of amino acids with significantly low variability when found 
opposite a particular nucleotide base confirmed the importance 
of residues 4 and 34, as observed by Barkan et al.,56 but also this 
group predicted that the amino acid at position 1 in the PPR 
motif plays a role in PPR specificity (Fig. 1C). They found that 
the amino acid at position 4 played the most significant role in 
base specificity and mainly discriminated between purines and 
pyrimidines, while the amino acid at position 34 distinguished 
amino and keto groups. Amino acids at position 1 appeared to 
be responsible for fine-tuning the recognition of particular bases. 
The codes described by the two groups are highly overlapping 
and generally harmonious, although in the code predicted by 
Yagi et al., the specificity of amino acids at positions 4 and 34 can 
sometimes be significantly modulated by particular amino acids 
at position 1 (Fig. 1C). Like Barkan et al., they found that edit-
ing PPR proteins bound four bases upstream of their target base; 
however, they found that the identity of some amino acids in the 
long PPRs correlated with certain bases, implying that some of 
these repeats in PLS class proteins might influence RNA-binding 
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be altered to modify their specificities provides further evidence 
of their modularity and indicates that they might be engineered 
to target RNAs of interest, as has been the case for PUFs.19-21,25-32

Before the code for PPR-RNA binding can be widely applied 
to understand natural PPR proteins or engineer artificial RNA-
binding proteins, a number of outstanding issues must be resolved. 
These include the structural details of PPR-RNA binding, the 
deviation from the RNA recognition code of long PPRs in PLS 
class proteins and PPRs of diverse organisms outside of the plant 
kingdom, molecular details determining the balance between 
affinity and specificity and an understanding of the additional fac-
tors that are required for the activity of PPR proteins. Furthermore, 
the development of robust methods to produce recombinant PPR 
proteins, which are predominantly insoluble, would help the 
analyses of their affinity and specificity for RNA targets in vitro. 
Nevertheless, PPR proteins have essential roles in many cellular 
processes,33,37,44,45,49,55,62,66,68,76-78,80,81 which makes resolving these 
gaps in our knowledge of fundamental importance. Furthermore, 
PPR proteins have a number of desirable features that make the 
development of their applications in biotechnology and synthetic 
biology quite appealing. Natural PPR proteins have been observed 
to contain between two and 30 individual PPRs,33 providing con-
siderable flexibility in the complexity of the RNAs they might 
bind. The PPR proteins characterized to date operate in mitochon-
dria, chloroplasts and nuclei; locations where the most common 
RNA-directed tool, RNA interference, cannot function or func-
tions poorly to target RNA.82 Furthermore, proteins that contain 
PPRs have often been observed to contain many other domains 
with diverse roles in RNA metabolism, such as RNA cleavage, 
modification and control of translation;33 illustrating their poten-
tial structural compatibility as a fusion partner. These qualities will 
likely be very useful for making new research tools to manipulate 
aspects of RNA biology that have been neglected due to a lack of 
appropriate reagents and for controlling gene networks to build 
cells with new properties in synthetic biology. Whatever comes 
next in PPR biology and biotechnology, it is clear that we are at a 
defining juncture in this research field.

Conclusions

Recent breakthroughs using bioinformatics and structural 
analyses have revolutionized our understanding of the roles 
of PPRs in RNA binding. These studies have set the scene  
for future studies to determine the structural basis of PPR-
RNA recognition and to test the potential of this code to be  
applied in a modular manner in synthetic biology and 
biotechnology.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

Work in our laboratories is supported by fellowships and grants 
from the Australian Research Council, the National Health and 
Medical Research Council and the Royal Perth Hospital Medical 
Research Foundation.

The crystal structure of the Arabidopsis protein-only RNase P, 
PRORP1, has revealed the most insightful picture of PPR structure 
to date.61 PRORP1 forms an L-shaped structure, where the array 
of five and a half PPRs forms one arm and the metallonuclease 
domain forms the other (Fig. 2B). The 11 α-helices of the PPR 
array stack to form a right handed super helix, reminiscent of the 
well-characterized TPR proteins, with which they share sequence 
similarity. The electrostatic potential of the array’s surface is overall 
neutral, implying that it interacts predominantly with the RNA 
bases of its target tRNAs. Furthermore, it is compelling to note 
that the amino acids at positions 4 and 34 of each PPR form a 
path to the active site of the metallonuclease domain (Fig. 2B). 
Detailed tRNA-binding studies have shown that single-stranded 
bases within the D and TψC loops are required for PRORP1 bind-
ing.67 These loops are also bound by the RNA-based RNase P from 
E. coli and the two enzymes might bind tRNAs in a similar mode, 
providing a functionally similar outcome, despite different types of 
catalysis.61 Importantly, studies of PRORP1 provide insights into 
the likely structures of P class PPR arrays.

Future Directions: Understanding  
and Engineering PPR Proteins

A potentially complicating factor in using the concept of modu-
larity to manipulate and understand biological systems is that, 
over the course of evolution, motifs and domains that may once 
have functioned independently can evolve new functions and 
interactions that depend on neighboring domains or other mac-
romolecules or small molecules within their cellular network. 
This means that motifs and domains are seldom truly modular 
in biological systems. For PPRs, this is evident due to the inher-
ent structures of repeat arrays, where stacking between individual 
repeats stabilizes the entire array. Furthermore, it has become 
clear that many PPR proteins require other interacting proteins 
to function. For example, the human mitochondrial RNase P 
protein MRPP3 has catalytic activity only when it forms a com-
plex with MRPP1/TRMT10C and MRPP2/SDR5C1.44 The 
mammalian mitochondrial PPR protein, LRPPRC, which is 
important for polyadenylation and translation, forms an intimate 
complex with another RNA-binding protein, SLIRP, such that 
each protein requires the other for their stability.69-71 Importantly, 
the editing PPR proteins of Arabidopsis must associate with mul-
tiple organelle RNA editing factor (MORF) family proteins or, 
in some cases, an autonomous DYW domain protein, DYW1, 
to deaminate their target RNA bases.72-75 To date, a complete 
description of the proteins required for RNA editing has not 
been elucidated. Curiously, the MORF family proteins interact 
directly with the PLS PPR array,74 further complicating the pic-
ture of how the editing PPR proteins recognize RNA. However, 
the recently elucidated code for PPR-RNA recognition provides 
evidence that each PPR can recognize a specific base indepen-
dently of its neighboring repeat’s specificity. This has enabled the 
prediction of the RNA targets of plant PPR proteins;57 however, 
divergence from the typical code by yeast and mammalian PPR 
proteins might make prediction of their targets challenging.57,76-79 
Nevertheless, the fact that individual PPRs within proteins can 
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