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Abstract

Purpose—Regularizing parallel MRI reconstruction significantly improves image quality but

requires tuning parameter selection. We propose a Monte Carlo method for automatic parameter

selection based on Stein’s unbiased risk estimate (SURE) that minimizes the multi-channel k-

space mean squared error (MSE). We automatically tune parameters for image reconstruction

methods that preserve the undersampled acquired data, which cannot be accomplished using

existing techniques.

Theory—We derive a weighted MSE criterion appropriate for data-preserving regularized

parallel imaging reconstruction and the corresponding weighted SURE. We describe a Monte

Carlo approximation of the weighted SURE that uses two evaluations of the reconstruction

method per candidate parameter value.

Methods—We reconstruct images using the sparsity-promoting methods DESIGN and L1-

SPIRiT. We validate Monte Carlo SURE against the weighted MSE. We select the regularization

parameter using these methods for various noise levels and undersampling factors and compare

the results to those using MSE-optimal parameters.

Results—Our method selects nearly MSE-optimal regularization parameters for both DESIGN

and L1-SPIRiT over a range of noise levels and undersampling factors.

Conclusion—The proposed method automatically provides nearly MSE-optimal choices of

regularization parameters for data-preserving nonlinear parallel MRI reconstruction methods.

Keywords

parallel imaging reconstruction; regularization parameter selection; Stein’s unbiased risk estimate
(SURE); Monte Carlo methods

INTRODUCTION

While SENSE (1), GRAPPA (2), and SPIRiT (3) successfully reconstruct full field-of-view

(FOV) images from undersampled parallel MRI data, many recent developments improve

*Correspondence to: Daniel S. Weller, PhD, 4125 EECS, 1301 Beal Avenue, Ann Arbor, MI 48109 – 2122, Phone: 734-615-5735,
wellerds@umich.edu.

NIH Public Access
Author Manuscript
Magn Reson Med. Author manuscript; available in PMC 2015 May 01.

Published in final edited form as:
Magn Reson Med. 2014 May ; 71(5): 1760–1770. doi:10.1002/mrm.24840.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



upon these methods using regularization (4–7). Practical clinical use of such methods

requires selecting appropriate values of the regularization parameter(s). Often, a developer

hard-codes a single value that “works” over a range of tested situations, or a user tunes the

parameter manually for their particular application. When the scanning protocol remains

unchanged across many subjects, such reuse may be justifiable. However, in cases where

image contrast varies, some users may wish to ensure that their regularization parameters are

reasonable.

The problem of regularization parameter selection has a long history, leading to a variety of

techniques. In an extended scan session, one can adapt regularization parameters using data

acquired earlier in the scan (8). However, such adaptations require acquiring and

reconstructing a high quality data set initially without regularization. Many applications

cannot provide such a ground truth acquisition. For example, accelerated diffusion weighted

imaging can use shorter echo times, so an un-accelerated “ground truth” may actually have

reduced image quality (9): a longer single-shot sequence would have greater geometric

distortions and reduced contrast and signal from the long echo time. A multi-shot acquisition

would take much longer, making motion and fatigue potential issues. Dynamic studies such

as abdominal or cardiac perfusion imaging are corrupted by motion and other time-varying

effects that are hard to replicate to produce a ground truth suitable for regularization. The

same goes for dynamic contrast enhanced studies. Functional MRI is another area where

ground truths are often inaccessible due to limited temporal resolution and non-repeatability

of the underlying dynamic processes. While one could ignore these dynamics when they are

small in amplitude, as is the case with functional activation, doing so risks selecting

parameters that would not adequately preserve these small deviations in the reconstruction.

Other techniques automatically tune regularization parameters based on a statistical model

of the noise and just the acquired data (no training set). Among the most well-known, the

discrepancy principle (10), generalized cross-validation (11,12), and L-curve curvature

maximization (4,13,14) are founded in mathematical theory derived for quadratic

regularizers with closed-form solutions. Their extension to nonlinear regularization is

limited (15, 16). All these methods rely on the measurement residual, the difference between

the acquired (noisy) data and the measurement model applied to the reconstructed image(s),

to tune parameters. Thus, these methods are ineffective when the acquired data is preserved

by the reconstruction method, since the resulting residual is exactly zero, regardless of the

regularization parameter values. Although noisy, the acquired data contains essential details

that could be compromised by regularization, so many image reconstruction techniques aim

to preserve the acquired data, including regularized parallel imaging techniques like

DESIGN (6) and L1-SPIRiT (3, 7, 17, 18). In this paper, we propose a new error criterion

that is appropriate for data-preserving regularized reconstruction methods, for which we

derive a novel parameter selection scheme.

We seek the parameter that minimizes the k-space mean squared error (MSE) for

reconstruction methods based on nonlinear regularizers such as the ℓ1 norm commonly used

to promote sparsity (19). Although k-space MSE may not be sensitive to local image errors

in small features of diagnostic value, it is a convenient quality measure used frequently in

the literature. MSE is the basis for many image reconstruction methods, including SENSE,
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which yields the MSE-optimal combined image consistent with the multi-channel data,

when given correct coil sensitivities (1). Since calculating the actual MSE would require

knowing the true image, we turn to Stein’s unbiased risk estimate (SURE) (20), which

approximates the MSE for a Gaussian noise model and accommodates nonlinear

reconstruction algorithms. Using the noise model and partial derivatives of the

reconstruction function, SURE yields an expression that is equal in expected value to the

MSE and can be minimized to select a suitable regularization parameter value without

knowing the true signal.

SURE has been exploited for parameter selection in denoising (21–23), deblurring (24–26),

single-channel MRI (16,27), and image-domain non-iterative SENSE reconstruction (28) for

uniform (nonrandom) undersampled parallel MRI. However, in its basic formulation,

evaluating SURE involves computing the Jacobian matrix of the targeted reconstruction

function. While feasible, analytically evaluating SURE is difficult for iterative methods and

requires exactly differentiating nearly every computation performed in a particular

implementation. A Monte Carlo SURE framework (23, 27) was derived to avoid this

complication, also motivating this work. The original derivation of the Monte Carlo

framework, and of SURE in general, is restricted to the denoising setting, where the entire

image is observed. Later work extends SURE to inverse problems such as image

reconstruction, using modified error metrics such as predicted-MSE or projected-MSE (16,

25–27). However, such frameworks share the limitation of discrepancy principle, cross

validation, and L-curve-based methods, that the criteria are based on the measurement

residual, which is insensitive to the parameter choice for data-preserving reconstructions.

That limitation also extends to the Monte Carlo nonlinear generalized cross validation

method described previously (16).

We extend the Monte Carlo SURE framework to regularized auto-calibrating parallel MRI

reconstruction methods that preserve the data. The novelty of our method consists of

applying parallel imaging to express the un-acquired (or full) k-space error criterion in terms

of just the k-space that we measure. This approach avoids the complications that arise from

data discrepancy but limits our method to parallel imaging applications. We demonstrate the

generality and utility of this method using two regularized iterative algorithms on real data:

DESIGN (6) and L1-SPIRiT (3,7). The first improves upon GRAPPA with uniform

undersampling, while the second applies compressed sensing (19) to random Cartesian

undersampling. In preliminary studies, we described the extension to parallel imaging with

uniform Cartesian undersampling and depicted simulated data using SURE-optimized

DESIGN (29), and we applied SURE to L1-SPIRiT for a range of synthetic noise levels (30).

Here, we validate the Monte Carlo estimate of the weighted SURE criterion against the true

weighted MSE for both parallel-imaging methods and apply the proposed method to

DESIGN for different noise levels and to L1-SPIRiT for various undersampling factors. We

conclude with a discussion of the implications of a general algorithm for automatic

parameter selection and useful extensions of this work.
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THEORY

Parallel imaging reconstruction methods like SENSE (1) use coil sensitivity profiles to

reconstruct a single full-FOV combined image from multiple coil channels of undersampled

k-space data. However, coil sensitivities may be difficult to measure accurately, motivating

auto-calibrating methods like GRAPPA (2) or SPIRiT (3) that do not require explicit

knowledge of those profiles. These methods typically operate in the k-space domain and fill

the Cartesian k-space grid for every coil, so the MSE of the full multi-channel k-space is the

cost function we aim to minimize. Methods like sum-of-squares (31) can be used to combine

these full-FOV data sets afterwards.

Measurement Model and Error Criteria

The target Cartesian k-space grid for an N-voxel volume can be represented as a length-N

vector; for P coils, these vectors stack to form the length-NP vector x. We undersample k-

space, acquiring M < N points arranged in some fashion, and represented as a length-M

vector. The sampling pattern for each receive coil is identical; we combine these vectors into

a length-MP vector y. The full k-space relates to the acquired data via the linear equation y =

Mx. When our sampling pattern is Cartesian, M is a simple MP × NP mask, where each row

has a single entry equal to one and all the other elements equal to zero. To complete our

model, we consider our measurements to be contaminated with additive complex Gaussian

noise η, independent across k-space locations, and correlated across channels, with zero

mean and covariance Λ:

[1]

To reconstruct the full k-space x from our noisy samples y, we focus on improving auto-

calibrating linear methods like GRAPPA and SPIRiT. The regularized version of these

methods is in general nonlinear and can be written as x̂ = fγ(y), where user-specified

parameter(s) γ control the level of regularization.

To guide selection of the regularization parameters γ, one might aim to use a criterion based

on the MSE of the full multi-channel k-space:

[2]

which is a function of the unknown true values of the full k-space x. When applied to

Cartesian under-sampled data, we are interested in preserving the acquired data in the

reconstruction, so Mfγ(y) = y, regardless of the value of γ. Thus, we attempt to minimize

the MSE weighted over the set of un-acquired k-space points:

[3]

where M̃ is the mask complementary to M for Cartesian undersampled data. One can use the

weighted MSE (WMSE) criterion directly only if one postulates a Bayesian prior model for
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x. Since such priors are rarely realistic for medical images, we take a non-Bayesian

approach where x is deterministic but unknown.

Applying SURE to WMSE Using Parallel Imaging

SURE is an unbiased estimate of the MSE of some unknown vector x from direct

measurements y = x + η corrupted by Gaussian noise η. Thus, approximating the WMSE (or

MSE) of the un-acquired (or full) multi-channel k-space would require directly measuring

the entire k-space x to apply SURE. Since we undersample k-space, we essentially need to

invert the measurement matrix M in Eq. [1] to minimize the WMSE in Eq. [3]. Since the

measurement matrix undersamples k-space, M is singular, and such an inversion naturally

would be ill-posed. This key problem is avoided in previous work by modifying the error

criterion to be a function of the measurement error only, like projected-MSE and predicted-

MSE (16, 25–27), which apply the measurement mask M to the reconstructed image(s).

However, such efforts do not work for reconstructions that retain the measurements. Our

novel contribution uses parallel imaging to perform the necessary inversion. We introduce

the linear operator G that estimates the full multi-channel k-space from the true k-space

values at the sampled locations. For instance, un-regularized parallel imaging methods like

GRAPPA and SPIRiT provide approximately true values of the full multi-channel k-space

when no noise is present: x ≈ GMx. Thus, we write

[4]

Given a properly calibrated G and an appropriate level of undersampling for the number of

channels and geometry of the array coil, minimizing this criterion should nearly optimize the

true weighted MSE, and minimizing the SURE for this error should yield γ that is also

nearly WMSE-optimal. In the examples using DESIGN and L1-SPIRiT as the regularized

reconstruction fγ(y), we choose the linear mapping G to be the un-regularized version of the

reconstruction fγ(y), namely GRAPPA and SPIRiT, respectively. However, the theory does

not require any such connection between G and fγ(y). We emphasize that we do not need to

consider noise amplification in choosing G, since G is applied to noise-free Mx in our

derivation, not to our actual observations y. However, the number of available coils and the

desired acceleration factor can influence the accuracy of this approximation, so we

investigate the effects of violating this assumption in our experiments. This use of G for

regularization parameter selection is unique to this work, and the last subsection of the

Methods section investigates how this approximation affects parameter selection.

Monte Carlo SURE Approximation

Expanding the approximate WMSE in Eq. [4], and using Eq. [1],

[5]

where [·]′ denotes the conjugate transpose operator. The WMSE isolates x to the first term

of Eq. [5], which does not depend on γ, so it can be considered a constant C and ignored
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when optimizing γ. The next two terms of Eq. [5] can be computed directly using fγ(y) and

Gy, but the last term is a function of both γ and the unknown noise vector η. Stein’s lemma

(16, 20, 25) approximates this last term, so that we can find γ that minimizes the WMSE.

Without our parallel-imaging-based approximation of the full k-space, we could not express

the un-acquired multi-channel k-space in terms of the acquired data and the noise, and there

would be no noise term in Eq. [5] to approximate using Stein’s lemma.

Now, we modify previous derivations of Monte Carlo SURE (23, 27) to include the matrix

G. When fγ(y) is (sub-) differentiable, let Jfγ(y) be the Jacobian matrix of all first order

partial (sub-) derivatives of fγ(y) with respect to y. Using the chain rule for derivatives, the

Jacobian of the expression G′M ̃′M̃fγ(y) is G′M̃′M̃Jfγ(y). This expression in combination

with Stein’s lemma implies (27) that

[6]

Applying Eq. [6] to the approximate WMSE in Eq. [5] yields the weighted SURE (WSURE)

function, which is an unbiased estimate of the WMSE:

[7]

However, this expression involves computing all the partial derivatives of the reconstruction

function. For iterative reconstructions, the Jacobian matrix could be computed step-by-step,

but such an approach requires a careful derivation customized for that particular

reconstruction method (16, 24, 26). For an iterative reconstruction like DESIGN and L1-

SPIRiT, expressions for the Jacobian matrices must be derived for each step in the

implementation. Instead, we use Monte Carlo SURE (23, 27), which does not require such

in-depth knowledge of the algorithm under consideration. Under mild conditions on fγ(y)

(23,27,29), the directional derivative Jfγ(y)b can be approximated by

[8]

for sufficiently small ε > 0. The scale factor  adjusts ε for the relative scale of

the data; this is motivated by the fact that some algorithms (like DESIGN) use an un-

normalized Fourier transform to relate k-space to image space, while others (like L1-

SPIRiT) use a normalized transform. Then, choosing b to be a vector of independent,

identically distributed complex zero-mean, unit-variance Bernoulli-distributed random

variables (i.e., the real and imaginary parts of each element of b are drawn independently

from { } with equal probability), we form a Monte Carlo approximation to the trace

of the Jacobian (23,27) with just one realization of b:

[9]

Weller et al. Page 6

Magn Reson Med. Author manuscript; available in PMC 2015 May 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Plugging this approximation into Eq. [7] yields the Monte Carlo estimate of WSURE:

[10]

The same b can be used for evaluating WSURE with different choices of regularization

parameter, so we can compute and store M̃GΛb just once. When we apply WSURE to

regularized GRAPPA or SPIRiT reconstructions, we can find the parameters γ that

minimize WSURE using a derivative-free minimization algorithm. In this work, we deal

with scalar γ, and we employ a coarse-to-fine parameter sweep, where we evaluate WSURE

for successively narrower intervals of γ.

Next, we summarize two regularized reconstruction methods that illustrate the broad

applicability of Monte Carlo WSURE to regularization parameter selection: DESIGN (6)

and L1-SPIRiT (3, 7). GRAPPA is a popular and time-tested auto-calibrating parallel

imaging reconstruction method for uniformly spaced undersampled k-space data. The

regularized method DESIGN is attractive from a computational standpoint because it

denoises the GRAPPA reconstruction output, instead of iteratively reapplying GRAPPA to

denoised data, which would be slower. L1-SPIRiT also is a useful example of an auto-

calibrating regularized reconstruction method because it can readily process nonuniformly

or randomly undersampled k-space data.

DESIGN: Sparsity-promoting GRAPPA

For uniformly undersampled Cartesian k-space, the GRAPPA reconstruction directly fills

missing k-space in all the coil array channels with a linear combination of neighboring

acquired points weighted by a shift-invariant kernel. GRAPPA reconstruction is

implemented efficiently using convolution or the Fast Fourier Transform (FFT). For Rx × Ry

two-dimensional undersampled 2D k-space, the GRAPPA method using a set of Bx × By 2D

kernels gp,q,rx,ry [bx, by] for each input/output channel pair (p, q) and target frequency shift

(rx, ry) evaluates

[11]

These GRAPPA kernels are calibrated the usual way, using a least-squares fit with densely

sampled k-space training data, potentially with regularization. Then, we regularize the

GRAPPA reconstruction using a null space formulation of the data-preserving DESIGN

method (6):

[12]

where x̃/x̃* is the length-(N − M)P vector of missing k-space for all the coil channels, ΛG is

the noise covariance of the GRAPPA-reconstructed missing data ΛG = M̃GΛG′M̃′, γ is the

regularization parameter of interest, Ψ is the linear sparsifying transform,  is the inverse
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FFT, and ||·||1,2 is the joint sparsity-promoting hybrid ℓ1/ℓ2 norm. To evaluate this mixed

norm, for each transform coefficient, we form a vector of that coefficient’s values across all

the coil channels, and we compute the sum of the ℓ2 norms of these vectors. The matrix G
corresponds to convolving the GRAPPA kernels with the under-sampled k-space. Because

GRAPPA introduces correlations among many frequencies into the noise covariance ΛG,

and such a covariance matrix is expensive to store or invert, we simplify the matrix by

ignoring the correlations across frequencies, considering only the noise amplification and

correlation across coils (32). The resulting optimization problem can be implemented using

any number of algorithms; we use a Split-Bregman approach (33) with auxiliary variable w
= Ψ (M̃′x̃′ + M′y).

Sparsity-regularized SPIRiT

While GRAPPA is effective for uniformly-spaced Cartesian undersampling, a more flexible

method is desirable for nonuniformly undersampled k-space. The SPIRiT reconstruction

method is an iterative formulation that uses kernel-weighted linear consistency equations

similar to the GRAPPA convolution equation in [11] to estimate missing k-space data.

However, SPIRiT consistency equations operate over the entire k-space, including un-

acquired frequencies. For a 2D Bx × By kernel sp,q[bx, by] with sq,q[0, 0] = 0, the consistency

equation for the point x[kx, ky, q] is

[13]

The data-preserving version of SPIRiT forms a linear system x = Sx of these consistency

equations over all of multi-channel k-space and minimizes the least-squares fit constrained

by the data consistency equation y = Mx:

[14]

This constrained optimization problem can be regularized using an additional sparsity term

on the wavelet-transformed images obtained by taking the inverse FFT of the full multi-

channel k-space, yielding the regularized problem

[15]

The projection-onto-convex-sets-based implementation called L1-SPIRiT (7) uses a sparsity-

promoting shrinkage operation on the sparse transform of x, controlled by the predetermined

scalar threshold γ.

METHODS

We demonstrate our parameter selection method on real data from consented subjects in

accordance with IRB-approved protocols using a GE Discovery 3T MRI scanner with a
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vendor-supplied 8-channel array coil. We performed six repetitions of a T1-weighted 3D

spoiled gradient echo sequence (TR = 10.1 ms, TE = 4.3 ms, FA = 16 degrees, BW = 31.25

kHz) to sample a 256 × 256 × 10 Cartesian multi-channel reference volume with 24×24×3

cm FOV, 0.94×0.94×3.0 mm resolution, and no acceleration. We separately saved four

repetitions of a T1-weighted 2D spoiled gradient echo sequence (TR = 20.0 ms, TE = 9.1

ms, FA = 10 degrees, BW = 15.63 kHz) to sample a 256 × 256 multi-channel axial slice

with 24 × 24 cm FOV, 0.94 × 0.94 × 4.0 mm resolution, with no acceleration, similar to T1-

weighted slice-by-slice acquisitions used for overlaying anatomical information. We used

3D and 2D acquisitions to add generality to the data sets for validation purposes. The

averaged data are used as low-noise reference images for the experiments that follow.

We processed the acquired raw multi-channel data using MATLAB. Both T1-weighted

images were cropped tightly around the subject’s head before undersampling and

reconstructing the data. Then, we undersampled an axial slice of the reference volume using

the desired sampling scheme (uniform or nonuniform Cartesian), and we reconstructed the

data using the auto-calibrating method of choice (GRAPPA-based DESIGN for uniform

Cartesian sampling or L1-SPIRiT for nonuniform). Since we are interested in reconstructing

images without sensitivity maps, we formed combined images using a sum-of-squares

algorithm (31). Reconstructed images are evaluated against the ground truth (when

available) using difference images and weighted MSE. Figure 1 shows the coil-combined

reference images for both T1-weighted data sets after cropping. The signal-to-noise ratio

(SNR) of the acquired data (in dB) is calculated using

[16]

where ||·||* is the nuclear norm. The nuclear norm is used because each coil has a potentially

different noise level, which correspond to the singular values of Λ after whitening the noise

to remove correlations.

Validation of WSURE as an estimate

Using our averaged T1-weighted acquired slices as low-noise ground truths, we added

complex Gaussian noise so the total noise covariance matches the covariance of a single

acquisition before averaging in each instance. The synthetic noise reduces the fully-sampled

SNR from 30 dB to 22 dB for the first data set, and 26 dB to 20 dB for the second. We

applied the GRAPPA-based DESIGN method to uniformly 2 × 2 undersampled k-space and

the L1-SPIRiT method to 2D Poisson-disc nonuniformly undersampled Cartesian k-space

(undersampling factor R ≈ 5), leaving a 24 × 24 non-undersampled block of central k-space

for calibration data in both instances to train the 4 × 4-block GRAPPA and 5 × 5 SPIRiT

kernels. In this and the experiments that follow, DESIGN was implemented using twenty

Split-Bregman iterations and an isotropic (discrete) total variation (TV) sparsifying

transform, and L1-SPIRiT was implemented using 25 projection-onto-convex-sets (POCS)

iterations with the 4-level ‘db4’ orthonormal DWT sparsifying transform (the code is

publicly available at http://www.eecs.berkeley.edu/~mlustig/Software.html).
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We computed WSURE values for both DESIGN and L1-SPIRiT using the expressions in

Eqs. [7] and [10] over ranges of γ known to contain the WMSE-optimal values (γ ∈ [10,

104] for DESIGN and γ ∈ [10−4, 0.1] for L1-SPIRiT) and several choices of ε (ε ∈ {10−5,

10−4, 0.001, 0.01} for both methods). The difference in ranges of γ can be ascribed to the

relatively different scales of the k-space data – the implementation of L1-SPIRiT uses the

unitary FFT operator, while DESIGN uses the un-normalized FFT. These WSURE estimates

were generated using the same realization of the complex random vector b, and we

computed M̃GΛb just once. Also, when evaluating WSURE for the same γ and different

values of ε, we reused fγ(y). To validate WSURE as an appropriate proxy for the MSE

criterion, we compared these values to the true WMSE in Eq. [3] and approximate WMSE in

Eq. [4]. To gauge the precision of our estimates, we repeated our WSURE calculations for a

total of twenty realizations of b to compute the sample standard deviations of these Monte

Carlo estimates. To generalize our validation, we repeated these experiments for both data

sets, using the same values of ε in each.

Parameter Selection for DESIGN

Using ε = 10−4 for both T1-weighted data sets, we computed the WSURE-optimized

DESIGN reconstructions for uniformly 2 × 2 undersampled Cartesian k-space data with

various noise levels. For the first data set, we added simulated complex Gaussian noise to

the averaged multi-channel reference k-space before undersampling to produce a range of

1.2 dB to 13 dB SNR. We added noise to the second data set to yield a range of 4.6 dB to 17

dB SNR as well. We found the WSURE-optimized reconstruction using a coarse-then-fine

two-level parameter sweep of γ, with the coarse level considering γ between 0.01 and 106

for the first data set and between 10−3 and 105 for the second. We compared the WSURE-

optimized reconstruction against the WMSE-optimal reconstruction found using

MATLAB’s fminsearch() function from a starting point of γ = 1000 for the first data set and

γ = 10 for the second. This WMSE-optimal reconstruction takes advantage of the fully-

sampled ground truth to avoid the x ≈ GMx approximation. We also included a comparison

against an L-curve-like curvature maximization of the log-log pareto optimality curve for

DESIGN, trading off ℓ1,2 norm joint sparsity for least-squares consistency with the GRAPPA

reconstruction [12]. To maximize the curvature, we used a two-level parameter sweep over

the same range as for WSURE. We emphasize that this method differs from L-curve

methods in that the L-curve balances the data prediction residual norm with the

regularization term. Since DESIGN preserves the acquired data, the data prediction residual

does not depend on γ, so the standard L-curve method cannot be applied. The un-

regularized GRAPPA reconstruction was included as a baseline.

Performance of WSURE for L1-SPIRiT

Using ε = 10−4, we studied the same performance trends for the L1-SPIRiT reconstruction

method for a range of undersampling factors on both T1-weighted data sets. We performed

Poisson-disc random Cartesian undersampling for accelerations between 2 and 6, and we

repeated finding the WSURE-optimized and WMSE-optimal L1-SPIRiT reconstructions for

each sampling pattern. The noise level was held fixed at 13 dB SNR and 14 dB SNR,

respectively, for the two data sets (again adding synthetic complex Gaussian noise to the

averaged reference k-space before undersampling). We used a coarse-to-fine two-level
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parameter sweep to find the WSURE-optimized γ, with the coarse level sweeping γ
between 10−7 and 10 for both data sets, and we used fminsearch() with a starting point of γ
= 0.01 (again for both data sets) to find the WMSE-optimal γ. We also computed the L-

curve-like log-log pareto optimality curve of the SPIRiT-consistency and sparsity terms [15]

and maximized its curvature using the same two-level parameter sweep for both data sets.

This L-curve-like method is not a standard L-curve method for the same reason as for the

DESIGN reconstruction. Un-regularized SPIRiT was provided as a baseline.

Violating the Assumption x = GMx

At high levels of acceleration, or when the coil channels do not provide sufficient spatial

encoding to overcome that acceleration, the linear parallel imaging method symbolized by G
does not satisfy x = GMx, even for noise-free k-space x. In such cases, our WSURE metric

may not accurately reflect the true WMSE, and automatic parameter tuning may suffer. To

investigate the effects of such a violation, we applied L1-SPIRiT to the first data set at a high

level of undersampling, R ≈ 6. For this undersampling factor, we repeat the validation

experiment carried out earlier on the first data set, using the same range of ε and γ as before.

RESULTS

The results of our validation experiments for DESIGN and L1-SPIRiT are illustrated for

both T1-weighted data sets in Figs. 2 and 3, respectively. The value of ε shown is 10−4 for

both data sets with both DESIGN and L1-SPIRiT. The other values of ε considered yielded

essentially identical curves to these curves, implying that WSURE estimates are fairly

insensitive to ε for either of these nonlinear methods. For ease of comparison, the constant

term in Eq. [10], which depends on the true value x, is computed from the reference k-space

and added to WSURE estimates in the figures. This value is a constant offset, so it is not

needed to find the WSURE-optimized γ. In both cases, the trend of WSURE estimates

follows the shape of the curves for both true and approximate WMSE, although they tend to

deviate more for smaller values of the regularization parameter. In addition, the approximate

WMSE values are similar to the true WMSE values, validating the approximation GMx ≈ x
made in Eq. [4]. In addition to having similar shapes, these curves share similar minima,

validating the accuracy of our proposed WSURE error criterion. The error bars depicting ±5

sample standard deviations from the sample mean of our 20 WSURE estimates also suggest

that a single realization of b is sufficiently precise to choose γ that minimizes the WMSE

effectively. The maximum observed sample standard deviations were 1.2 and 0.63 percent

of the mean for DESIGN and L1-SPIRiT, respectively.

Figure 4 shows the optimal γ’s and WMSE values for the first T1-weighted data set of the

WSURE-optimized and WMSE-optimal DESIGN reconstructions, for a range of noise

levels, with 2 × 2 uniform Cartesian undersampling. The curves for the second data set

display similar behavior and can be found online as supplementary material. The staircase-

ramp effect observed in the plot of WSURE-optimized γ is due to the coarseness of the

employed parameter sweep. Additional sweep levels would not be meaningful considering

that the change in WMSE is so small around the minimum as to be nearly comparable to the

standard deviation in the Monte Carlo WSURE estimates. The L-curve-like method
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maximizing the curvature of the log-log pareto optimality frontier tends to overestimate γ
for both these data sets, particularly in the cases of high input SNR. For the second data set,

the L-curve-selected γ does not increase monotonically, indicating difficulty in estimating

the second derivative of the log-log pareto curve numerically for this application. The

WMSEs of the reconstructions guided by L-curve selection suffer as a result. The multi-

channel k-space WMSE values for the WMSE-optimal and WSURE-optimized choices of γ
show little difference between reconstructions optimal for these error criteria, so we examine

the reconstructed sum-of-squares-combined magnitude and difference images for data set #1

with 10.3 dB input SNR and data set #2 with 16.7 dB input SNR, all in Fig. 5. Both WMSE-

optimal and WSURE-optimized DESIGN reconstructions display similar reduction in noise

level over the GRAPPA-reconstructed image and minimal residual image structure in the

difference images. Both data sets’ reconstructions for DESIGN with L-curve-selected γ
portray significant oversmoothing.

The results for WSURE-optimized L1-SPIRiT yield nearly WMSE-optimal performance

over a range of undersampling factors for both T1-weighted data sets. The trends in the

optimal choices of γ and the resulting WMSE’s plotted in Fig. 6 for the second data set with

14 dB SNR noise nearly match the optimal performance over the entire range of

acceleration. The curves for the first data set with 13 dB input SNR are similar to these

curves; they can be found online as supplementary material. The same staircase-ramp effect

is observed for the WSURE-optimized γ curve due to the resolution of the parameter sweep.

While the L-curve-like curvature maximization of the log-log pareto optimality curve yields

suboptimal γ curves for both data sets, the WMSEs appear to be much closer for L1-SPIRiT

than DESIGN. The reconstructed images in Fig. 7 confirm the numerical comparisons for

the 4× undersampled case for both T1-weighted data sets, as the sum-of-squares-combined

magnitude and difference images are nearly indistinguishable between the WSURE-

optimized, and WMSE-optimal, and L-curve-based reconstructions. Each yields noticeable

noise reduction over the un-regularized SPIRiT reconstruction shown for comparison.

Lastly, we investigate the effects of violating the x = GMx approximation used to form

WSURE estimates. In the case of L1-SPIRiT with the first T1-weighted data set, shown in

Fig. 8, WSURE validation appears to show a breakdown in the approximation starting at R

≈ 6, but at this high level of undersampling, the image quality of even the WMSE-optimal

L1-SPIRiT reconstruction is degraded beyond the point of diagnostic utility. The WSURE-

optimized choice of γ is a bit off the WMSE-optimal choice, but the additional loss of

image quality appears negligible.

DISCUSSION

The experiments validate the use of Monte Carlo WSURE for regularization parameter

selection for both DESIGN with uniform Cartesian and L1-SPIRiT with nonuniform

Cartesian undersampling, over a wide range of acquisition parameters including different

undersampling factors and noise levels. Since the derivation of the Monte Carlo WSURE

method is applicable to data-preserving reconstruction methods, and the implementation

requires only the ability to evaluate the reconstruction function, this approach to parameter

selection should readily generalize to other parallel imaging reconstruction algorithms. Also,
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the Monte Carlo WSURE can be applied to existing reconstruction methods like L1-SPIRiT

without considering the implementations of such methods. Our method requires just two

evaluations of the regularized reconstruction per candidate γ. While hard-coding

regularization parameters may suffice to produce high-quality images in some instances, as

suggested by the relatively narrow range of WMSE-optimal γ for the presented

experiments, being able to choose such parameters automatically would reduce the burden

on programmers and practitioners to ensure parameter choices are indeed reasonable. This

paper describes a novel way of using parallel imaging to estimate the WMSE (or MSE) with

SURE for image reconstruction problems that applies to data-preserving methods. This

ability to tune parameters for algorithms that preserve the acquired data sets the proposed

method apart both from previous work using SURE and popular parameter selection

methods like discrepancy principle, cross-validation, and L-curve curvature maximization.

In this paper, we consider uniform and nonuniform Cartesian undersampling, but our

framework also can handle regularized non-Cartesian parallel imaging reconstructions and

reconstructions that do not preserve the data with only minor modifications. However, in

non-Cartesian parallel imaging, where the reconstructed k-space typically are located on a

Cartesian grid, preserving the data makes less sense, and existing Monte Carlo SURE-based

methods can be applied instead. More sophisticated cost functions that preserve edges and

local details may also be compatible with the WMSE and WSURE framework.

Our experiments involved optimizing a single regularization parameter, but our SURE-based

method extends to tuning multiple parameters. In the multivariate case, various

minimization methods can be used (34,35). However, these methods may be more sensitive

to initialization and nonconvexity of the error criterion with respect to the regularization

parameters.

A limitation of the framework is the approximation GMx ≈ x that is necessary to relate the

measurement locations to the full k-space; at high accelerations, this approximation becomes

limited by the number and geometry of the coils (or more generally, the limitations on linear

reconstruction G). We demonstrated that at the level of acceleration where this

approximation becomes an issue, the quality of even the WMSE-optimal images is too low

to be useful. Another limitation is the need to choose the noise scaling parameter ε. Our

validation experiments indicate that choosing the absolute best ε is not critical, and that a

wide range of ε would yield similar results, even for nonlinear reconstruction methods like

DESIGN and L1-SPIRiT.

CONCLUSION

We described an extension to the Monte Carlo SURE method for regularized auto-

calibrating parallel imaging reconstruction methods like DESIGN and L1-SPIRiT. We

performed experiments on real data to validate WSURE estimates of the WMSE and

demonstrated that the Monte Carlo WSURE estimates yield nearly WMSE-optimal

reconstruction quality for both uniform undersampling with DESIGN and nonuniform

Cartesian undersampling with L1-SPIRiT. In these experiments, we also compared our

method against an L-curve-like method for parameter selection that tended to oversmooth
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the reconstructed images. We concluded with a discussion of useful extensions and possible

limitations of our method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The combined normalized reference images from data sets #1 (a) and #2 (c) are shown alongside inset regions enlarged to show

detail (b, d).
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Figure 2.
WSURE for GRAPPA-based DESIGN, shown for data sets #1 (a) and #2 (b) with ε = 10−4, are similar in shape to the true

weighted MSE curves and the GRAPPA-approximated weighted MSE curves and are minimized by nearly the same value of γ
as the true WMSE curves in each case. The error bars on WSURE curves correspond to plus/minus five standard deviations

from the mean WSURE value. Only the error bars were estimated from 20 realizations of the complex Bernoulli noise vector b;

the WSURE curves correspond to using just the first realization of b. The curves are shown for 2 × 2 uniform undersampling

(with a 24 × 24 fully-sampled central ACS block), with 22.3 dB input SNR for the first data set and 19.7 dB input SNR for the

second.
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Figure 3.
WSURE for L1-SPIRiT, shown for data sets #1 (a) and #2 (b) with ε = 10−4, closely tracks both the true weighted MSE and the

SPIRiT-approximated weighted MSE curves. WSURE curve error bars correspond to plus/minus five standard deviations from

the mean WSURE value. Only the error bars were estimated from 20 realizations of the complex Bernoulli noise vector b; the

WSURE curves correspond to using just the first realization of b. The curves are shown for R ≈ 5 Poisson-disc undersampling

(with a 24 × 24 fully-sampled ACS region), with 22.3 dB input SNR for the first data set and 19.7 dB input SNR for the second.
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Figure 4.
Varying the noise level of 2×2 uniform undersampled data, the sparsity-promoting DESIGN method yields similarly lower

WMSE (a) for both WMSE-optimal and WSURE-optimized choices of γ, relative to the un-regularized GRAPPA

reconstruction, for the first data set. The WMSE of the DESIGN reconstruction using the WSURE-optimized choice is within

0.038 dB of the true WMSE-optimal DESIGN reconstruction. This behavior is consistent with the WMSE-optimal and

WSURE-optimized choices for the DESIGN regularization parameter γ (b) being nearly the same for this example. The L-

curve-style method, however, appears to overestimate γ, yielding images with slightly higher WMSE, and in the high-SNR

case, worse than performing un-regularized GRAPPA.
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Figure 5.
The GRAPPA-reconstructed image (a) and difference image (b) for data set #1 with 10.3 dB input SNR display significant

noise, while DESIGN with both WMSE-optimal (e,f) and WSURE-optimized (i,j) choices of γ effectively denoise the image

while losing only a small amount of detail. The L-curve-based method (m,n) oversmooths the image, resulting in significant

blurring artifacts. Similar results are observed for the second data set with 16.7 dB input SNR, where remaining noise in the

GRAPPA reconstruction (c,d) is mitigated by DESIGN using the WMSE-optimal (g,h), WSURE-optimized (k,l), and L-curve-

selected (o,p) choices of γ. Again, oversmoothing in the L-curve-based reconstruction is visible in the second data set. The

difference images are displayed at 5× scale.
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Figure 6.
The sparsity-regularized L1-SPIRiT reconstruction for data set #2 with 14 dB input SNR yields lower WMSE (a) for both the

WMSE-optimal and WSURE-optimized choices of γ, relative to the un-regularized SPIRiT reconstruction. The L1-SPIRiT

reconstruction using the WSURE-optimized choice is within 0.056 dB of the true WMSE-optimal L1-SPIRiT reconstruction.

The WMSE-optimal and WSURE-optimized choices for the L1-SPIRiT regularization parameter γ (b) tend to decrease slowly

as the undersampling factor increases. The larger values of γ from the L-curve-like method increase the WMSE, but not as

substantially as for DESIGN. The plotted values of R account for the central k-space calibration region.
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Figure 7.
The un-regularized SPIRiT reconstruction (a) and difference image (b) for data set #1 with R ≈ 4 Poisson-disc undersampling

and 13 dB input SNR display significant noise, while L1-SPIRiT with WMSE-optimal (e,f), WSURE-optimized (i,j), and L-

curve-selected (m,n) choices of γ effectively improve image quality by nearly the same amount. The L-curve-based method

results in a slightly oversmoothed image, although the difference is not as apparent as for the DESIGN reconstruction. Similar

conclusions can be inferred from the second data set with R ≈ 4 Poisson-disc undersampling and 14 dB input SNR. The SPIRiT

reconstruction (c,d) is relatively noisy, while L1-SPIRiT with WMSE-optimal (g,h), WSURE-optimized (k,l), and L-curve-

selected (o,p) choices of γ all denoise the image while avoiding substantial oversmoothing. The difference images are displayed

at 5× scale.
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Figure 8.
At an acceleration of R ≈ 6, WSURE for L1-SPIRiT, shown for data set #1 with ε = 10−4, tracks the SPIRiT-approximated

weighted MSE curve when the x = GMx approximation is violated (a). However, both these curves do not follow the true MSE

curve as closely as before. The resulting WSURE-optimized γ hence is slightly off, but the overall performance degradation in

the WSURE-optimized image (d) is insignificant compared to the low quality of the WMSE-optimal L1-SPIRiT reconstruction

(c). The un-regularized SPIRiT reconstruction (b) is shown for reference. WSURE curve error bars correspond to plus/minus

five standard deviations from the mean WSURE value. Only the error bars were estimated from 20 realizations of the complex

Bernoulli noise vector b; the WSURE curves correspond to using just the first realization of b.
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