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Abstract
Fluctuations in the repeated performance of human movements have been the subject of intense
scrutiny because they are generally believed to contain important information about the function
and health of the neuromotor system. A variety of approaches has been brought to bear to study of
these fluctuations, however it is frequently difficult to understand how to synthesize different
perspectives to give a coherent picture. Here, we describe a conceptual framework for the
experimental study of motor variability that helps to unify geometrical methods, which focus on
the role of motor redundancy, with dynamical methods that characterize the error-correcting
processes regulating the performance of skilled tasks. We describe how goal functions, which
mathematically specify the task strategy being employed, together with ideas from the control of
redundant systems, allow one to formulate simple, experimentally testable dynamical models of
inter-trial fluctuations. After reviewing the basic theory, we present a list of five general
hypotheses on the structure of uctuations that can be expected in repeated trials of goal-directed
tasks. We review recent experimental applications of this general approach, and show how it can
be used to precisely characterize the error-correcting control used by human subjects.

1 Introduction
Variability from trial to trial is always observed in repeated movement tasks. These
fluctuations in movement arise in part from various sources of inherent physiological noise
(Faisal et al., 2008; Osborne et al., 2005; Stein et al., 2005), extending even to the genetic
level (Eldar & Elowitz, 2010). It is increasingly being recognized that this noise may in fact
be critical to enabling and/or enhancing physiological function (Eldar & Elowitz, 2010;
McDonnell & Ward, 2011; Stein et al., 2005). Thus, inter-trial movement variability has
been the subject of intense scrutiny because it is seen as crucial to our developing
understanding of neuromotor health and function, including both motor control (Scott, 2004)
and motor learning (Braun et al., 2009; van Beers, 2009). Certainly, this general belief is not
new: clinicians concerned with the health of the nervous system have long used movement
variability as an important diagnostic indicator.
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Our perspective on movement variability is fundamentally dynamical in nature: that is, we
take as a general working hypothesis that movement variability is a key characteristic of
dynamics of biological perception-action systems. Practically speaking, this means that we
analyze variability data in order to extract information about the processes by which
observed fluctuations are generated and regulated.

Competing conceptual frameworks have been proposed in the literature to analyze
movement fluctuations to this end, each with a primary emphasis on a different aspect of
variability. Here, we focus on four of the most prominent of these frameworks: namely,
those emphasizing (1) goal equivalence and task manifolds; (2) stochastic optimal control;
(3) local dynamic stability; or (4) fractal dynamics. While conceptually there is considerable
overlap between these categories, in practice they are represented by specific classes of
experimental protocols and data analysis techniques, and have tended to be associated with
distinct research groups. Clearly, however, since these methods are all describing the same
physical processes, they must in some sense be consistent with each other, even if they are
not carried out at the same scale of observation. However, this expectation of an underlying
consistency has not always been reflected by the literature. Indeed, in some cases different
methods seem to suggest contradictory interpretations. The challenge, then, is how to
combine these different conceptual frameworks, and their associated data analysis methods,
into a coherent description of task performance, specifically with regard to observed inter-
trial fluctuations.

The first aim of this paper is to provide a review of the four conceptual frameworks
enumerated above. We then move on to describe how the organization of inter-trial
fluctuations can be studied by analyzing only body state variables that interact directly with
goal-level performance variables. To do this, the required body-goal interaction is defined
for a specific task using goal functions, which can be thought of as a hypotheses on the
strategy used to perform a given task. We discuss the fundamental properties of goal
functions, principal among them being the possible existence of a goal equivalent manifold
(GEM) and its associated sensitivity properties. We then include the idea of “GEM aware”
error-correcting optimal control, which closes the perception-action loop at the inter-trial
time scale and yields models of the trial-to-trial task dynamics. These models can be used to
make theoretical predictions about the structure of goal-level fluctuations, and to show how
they are generated by fluctuations at the body-level. We review recent experimental
applications of the GEM-based approach, showing how it provides a decomposition of
movement fluctuation data that can be used to identify the strategies used to regulate task
performance. The GEM framework helps to unify the task manifold, optimal control, local
stability and—to a lesser extent—fractal dynamics perspectives on movement variability. It
also provides a parsimonious interpretation of fluctuation data that avoids certain paradoxes
found in the literature.

2 Current Perspectives on Inter-Trial Fluctuations
2.1 Goal Equivalence & Task Manifolds

Movement variability arises from intrinsic physiological noise expressed through the
operation of an inherently redundant neuromotor system (Bernstein, 1967; Scott, 2004;
Todorov, 2004). Much work has sought to determine how muscles are organized into
functional synergies to resolve the redundancy question (d’Avella et al., 2003; Ivanenko et
al., 2007; Lockhart & Ting, 2007). However, these efforts generally characterize average
behavior and so provide few insights into movement variability, per se. Redundancy also
gives rise to equifinality: i.e., there are many, possibly an infinite number, of ways to
perform the same task (Bernstein, 1967). At its core, equifinality, also referred to as goal
equivalence, is simply a mathematical consequence of the fact that the space of effective
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body states needed to generate a movement has significantly greater dimensionality than the
space of variables needed to define the task itself.

One approach to addressing this issue experimentally is via uncontrolled manifold (UCM)
analysis (Latash et al., 2002, 2007; Schöner & Scholz, 2007). This analysis is based on the
fact that equifinality gives rise to a surface in the space of appropriate body-level state
variables (e.g., joint angles) such that all states on this task solution manifold correspond to
perfect task execution. UCM analysis assumes that such a manifold is defined at each instant
along a given movement trajectory, but the independent external goal of the task is typically
not considered in defining it. Rather, the task’s goal is represented by the ensemble average
movement of some quantity over a set of trials. UCM analysis further postulates that motor
control only corrects deviations orthogonal to the task manifold, since only they result in
performance error. In contrast, deviations along this manifold are left “uncontrolled”, giving
the method its name. These ideas are implemented experimentally by computing ratios of
the normalized variances orthogonal to and along a candidate manifold (Latash et al., 2002;
Schöner & Scholz, 2007): if a larger variance is found along the candidate manifold than
normal to it, the manifold is deemed to be a UCM, indicating that it is being used to
organize motor control. This approach has been applied experimentally to many different
tasks, including reaching (Freitas & Scholz, 2009), throwing (Yang & Scholz, 2005), sit-to-
stand (Reisman et al., 2002), quiet standing (Hsu et al., 2007), hopping (Yen & Chang,
2010), and walking (Robert et al., 2009). The approach has also been used to explore how
variance evolves over time during learning (Yang et al., 2007; Yang & Scholz, 2005).

Another approach that makes use of a task manifold is tolerance-noise-covariation (TNC)
analysis, which relates performance variability, described in terms of body-level variables,
to different goal-level “costs” estimated relative to a specified solution manifold (Cohen &
Sternad, 2009; Müller & Sternad, 2004; Ranganathan & Newell, 2010): the tolerance cost,
which measures how small body-level perturbations are amplified to produce goal-level
error; the noise cost, which measures the effect of overall body-level fluctuation amplitude
on goal-level error; and the covariation cost, which measures the extent to which the
different variables used to describe body-level fluctuations vary together so that their
distribution conforms to the geometry of the task manifold. An important feature of TNC
analysis is that its three costs make direct reference to goal-level errors and so characterize
how fluctuations at the body and goal levels are related. In contrast with UCM, the TNC
approach does not necessarily conceive of the task manifold as existing at each instant of an
action, but rather represents it in a minimal space of variables required to specify task
execution (e.g., the position and velocity of a ball at release during a throwing task). In
practice, the task manifold is determined using numerical simulations, and is used to
interpret the statistical analysis results. The TNC approach has been successfully used to
demonstrate how humans learn to minimize its three costs to achieve optimal performance.

Both the UCM and TNC approaches are data driven, and primarily describe the distributon
of ensembles of body-level data from multiple trials, in particular how this distribution
“aligns” with the task manifold. Though defined differently in each method, the task
manifold concept provides a theoretical basis for interpreting the geometrical structure of
observed variability. However, neither method analyzes the temporal structure of observed
inter-trial fluctuations, and so cannot be used to study how goal-level errors are generated,
or to quantify the degree of their regulation. While such approaches have successfully been
used to identify different motor control strategies and characterize motor learning, the lack
of a model describing how fluctuations unfold in time means that these analyses by
themselves have limited explanatory and/or predictive capacity.
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2.2 Stochastic Optimal Control
Optimality principles have been a major focus for understanding how the central nervous
system controls movement (Engelbrecht, 2001; Flash & Hogan, 1985; Hoyt & Taylor, 1981;
Rosen, 1967; Srinivasan & Ruina, 2006; Zarrugh et al., 1974). However, most optimization
approaches have been used to predict average behavior, not to explain observed variability.
In particular, they have not been used to address whether the nervous system merely
overcomes variability as an impediment to motor performance (Harris & Wolpert, 1998;
Körding & Wolpert, 2004; O’Sullivan et al., 2009; Scheidt et al., 2001), or instead regulates
variability in ways that maximize task performance (Cusumano & Cesari, 2006; Dingwell et
al., 2010; Todorov & Jordan, 2002) while minimizing control effort and allowing for
adaptability.

One means of formally exploring these issues is provided by the minimum intervention
principle (MIP), originally proposed as a general theoretical basis for computational
movement models (Todorov, 2004; Todorov & Jordan, 2002). The MIP ties the idea of task
geometry to stochastic optimal control theory, resulting in a computational framework for
predicting how movements are regulated in redundant motor systems (Todorov & Jordan,
2002; Valero-Cuevas et al., 2009). While not the only approach available (Guigon et al.,
2008; Yadav & Sainburg, 2011), stochastic optimal control provides computational models
that can indeed be both explanatory and predictive.

A variety of experimental investigations based on optimal control ideas have been carried
out (Diedrichsen, 2007; Izawa et al., 2008; Liu & Todorov, 2007; Todorov, 2004; Todorov
& Jordan, 2002; Trommershäuser et al., 2005; Valero-Cuevas et al., 2009). However, these
studies have focused primarily on variability measures for testing the validity of control
models, and have largely ignored the role of fluctuation dynamics arising from error-
correcting control near the task manifold. However, there is nothing inherent in such models
preventing fully dynamical analyses of this nature. On the contrary, given their control-
theoretic basis, one expects that the full range of dynamical properties used to characterize
dynamical systems, particularly regarding stability and temporal correlation properties of the
inter-trial fluctuation time series, to be relevant to future experimental explorations of MIP-
inspired models.

2.3 Local Dynamic Stability
Arguably the most fundamental dynamical properties of a system are those related to the
local stability of its solutions, defined by how the system responds to sufficiently small (i.e.,
“local”) perturbations (Full et al., 2002; Hirsch et al., 2004; Verhulst, 1996). In simple
terms, if a given steady state behavior persists in the face of local perturbations, it is stable,
otherwise it is unstable. In addition to quantifying the stability of steady states, local stability
analysis can also be used to signal impending changes in a system’s behavior, or, perhaps
most relevant here, to quantify the effectiveness or “strength” of a controller. Measures of
variability alone cannot quantify how a system responds to perturbations, and therefore do
not provide direct measures of local stability.

Not surprisingly, then, one approach to studying the temporal dynamics of trial-to-trial
fluctuations has been to adopt methods from nonlinear time series analysis (Kantz &
Schreiber, 1997) for assessing local dynamic stability. In applying such methods, the
naturally-occurring physiological noise processes (Faisal et al., 2008) that give rise to inter-
trial fluctuations are treated as local perturbations of an otherwise deterministic system.

Lyapunov exponents measure how trajectories that start near to each other in state space
diverge exponentially in time, on average, in the double limit as time goes to infinity and the
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distance between trajectories goes to zero. They have been extensively used to study chaotic
systems (Abarbanel, 1996; Kantz & Schreiber, 1997; Rosenstein et al., 1993), and indeed
the positivity of the largest Lyapunov exponent is an operational definition of chaotic
behavior. However, positive Lyapunov exponents estimated from experimental time series
do not “prove” that a system is chaotic if it is not known a priori to be predominantly
deterministic, something which definitely cannot be said of the human motor system.

Finite-time Lyapunov exponents (FTLE) (Dingwell & Cusumano, 2000; Dingwell & Marin,
2006), also known as local divergence exponents (McAndrew et al., 2011), local Lyapunov
exponents (Abarbanel, 1996), or finite size Lyapunov exponents (Gao et al., 2007), sidestep
practical problems associated with the difficult double limit in the definition of true
Lyapunov exponents. They are estimated by computing the average exponential rate of
divergence of neighboring trajectories over a specified, finite time interval. Thus, while they
cannot by themselves be used to identify chaotic behavior, they provide a direct, though
time-scale dependent, measure of the sensitivity of a system to local perturbations. Positive
exponents indicate local “instability” over the specified time scale, with larger exponents
indicating greater sensitivity to local perturbations.

If the system’s behavior is strongly periodic, such as during steady gait or other rhythmic
movements, the orbital stability can be conveniently estimated using Floquet stability
multipliers (Hurmuzlu & Basdogan, 1994; Su & Dingwell, 2007; Verhulst, 1996). To do
this, one defines a Poincaré map (Guckenheimer & Holmes, 1997; Verhulst, 1996) at a
reference point, or phase, of the periodic orbit. The Poincaré map shows how deviations
away from the orbit evolve in discrete time from one cycle to the next. The eigenvalues of
the linearized Poincaré map (Hurmuzlu et al., 1994; Su & Dingwell, 2007; Verhulst, 1996)
then give stability multipliers, which give the rates at which small perturbations away from
the limit cycle grow or decay. Multiplier magnitudes less than unity indicate stability greater
than unity, instability. In experiments, the linearized map is usually estimated directly from
data via linear regression.

Such methods have been used to assess the local dynamic stability of walking in both
humans (Hamacher et al., 2011; McAndrew et al., 2011; van Schooten et al., 2011) and
mathematical models (Bruijn et al., 2011; Roos & Dingwell, 2011). They have also been
applied to other tasks, such as lifting (Granata & England, 2006) , unstable sitting (Tanaka et
al., 2009), and reaching (Gates & Dingwell, 2011), and have been used to quantify the local
stability of stride-to-stride fluctuation dynamics in muscle function (Kang & Dingwell,
2009), as well as kinematics (Kang & Dingwell, 2008b).

Experimental stability analysis is primarily data-driven and so it, too, has limited
explanatory or predictive capacity. In addition, these methods are rooted in the study of
deterministic dynamical systems, and so their application to fundamentally stochastic
biological processes can lead to problems of interpretation. For example, the parallel
estimation of both FTLE and Floquet multipliers can lead to apparently contradictory
results, with the former suggesting “instability” and the latter “stability” for the same data
(Dingwell & Kang, 2007; Su & Dingwell, 2007). Such an apparent contradiction is
hypothesized to be due to the inherently multiscale nature of movement time series data,
with the FTLEs tending to probe the behavior on smaller, “noisier” time scales, and the
Floquet multipliers the behavior at the scale of the observed periodicity. Finally, standard
stability analysis makes no reference to goal directedness, and hence cannot by itself
identify variability structure arising from goal equivalence.
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2.4 Fractal Dynamics
Another family of approaches takes an explicitly stochastic perspective in analyzing
observed movement fluctuations, using techniques that have their origin in statistical
physics. Fractal dynamics (Goldberger et al., 2002) directly addresses the multiscale nature
of motor fluctuations, and examines time series data to, in effect, characterize the type of
stochastic process that underlies it, particularly in regard to its temporal scaling and
correlation properties.

For many tasks, movements on consecutive trials are correlated (Ganesh et al., 2010;
Ranganathan & Newell, 2010), and such dependencies, which cannot be captured by
variance measures alone, may be critical to understanding inter-trial control (Dingwell et al.,
2010; Scheidt et al., 2001). Auto-correlation based models have shown strong dependence of
each consecutive movement on the immediately preceding movement, for both reaching
(Gates & Dingwell, 2008; Scheidt et al., 2001) and walking (Dingwell et al., 2010). In many
cases, these correlations can persist across many consecutive repetitions of a task (Chen et
al., 1997; Delignièeres & Torre, 2009; Hausdorff et al., 1995), even to the point of
exhibiting long-range correlations (Hausdorff et al., 1995), also referred to as long-range
persistence, long-range dependence, or long memory. A time series is long-range correlated
if its autocorrelation decays slowly with the lag, typically according to a power law, so that
it does not have a finite correlation time.

Detrended fluctuation analysis (DFA) (Hausdorff et al., 1995; Peng et al., 1992)—or related
methods such as rescaled range analysis or spectral estimation (Gao et al., 2006; Rangarajan
& Ding, 2000)—has been extensively used to characterize these correlation properties in
experimental time series, including those from physiological processes and human
movement. The DFA algorithm computes the root mean square deviation from trends in
temporal windows of variable length, which is the “fluctuation” in the method’s name. By
plotting this fluctuation magnitude against the window size in a log-log plot, linear
regression can be used to obtain a DFA scaling exponent α(Hausdorff et al., 1995; Peng et
al., 1992).

The DFA exponent gives an easily-computed measure of the statistical persistence in a time
series, where “persistence” means that deviations are more likely to be followed by
subsequent deviations in the same direction. In contrast, “anti-persistence” means that
deviations in one direction are statistically more likely to be followed by deviations in the
opposite direction. In either case, the persistence can be of a short or long-range type.
However, for a known long-range process, a value of α greater than or less than 1/2
indicates that the time series is long-range persistent or long-range anti-persistent,
respectively. When α = 1/2 the time series is commonly said to be “uncorrelated”: more
precisely, it indicates that the process in question is short-range correlated, so that over
sufficiently long time scales it “looks” uncorrelated. Data-based estimates of exponents with
values significantly different from 1/2 have been commonly taken to indicate long-range
correlations. Unfortunately, DFA is highly prone to false positive results when used in this
way (Delignièeres & Torre, 2009; Gao et al., 2006; Maraun et al., 2004), because non-long-
range correlated processes (i.e., processes with finite correlation times) often appear
otherwise when evaluated using the DFA exponent alone (Drew & Abbott, 2006; Gisiger,
2001; Maraun et al., 2004; Torre & Wagenmakers, 2009; Wagenmakers et al., 2004, 2005).

As a simple example, the scalar autoregressive (AR) process given by xk+1 = λxk + νk, where
−1 ≤ λ ≤ 1 and ν is a mean-zero Gaussian random variable, has a finite correlation time for |
λ| < 1 and so, under those circumstances, it cannot generate time series that are long-range
correlated. Nevertheless, one can apply DFA to estimate α for such a time series, as shown
in Fig. 1. The figure shows that as the “stability multiplier” λ is varied, α can take on any
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value between 0 and 1.5. While the values of α correctly indicate whether or not the given
time series is persistent (α > 1/2) or anti-persistent (α < 1/2), to interpret the result as
indicating long-range persistence would obviously be wrong. Thus, characterizing long-
memory processes from data alone using DFA analysis requires additional information to
minimize the chance of false positives (Crevecoeur et al., 2010; Gao et al., 2006). In this
work, we will use DFA calculations only as a convenient way to characterize the statistical
persistence of our data across multiple lags: we will not use it to make any claims about the
presence or absence of long-range correlations in our data.

Detrended fluctuation analysis, and related methods, capture fundamental dynamical
information about a recorded time series, independent of variability magnitude. However, it
is again a purely data-driven method that makes no reference to goal-directedness and so
cannot by itself be used to study the organization of control in the presence of equifinality.
Indeed, the fact that fractal dynamics has not typically considered goal-equivalent structure
in movement fluctuations may underly apparent paradoxes in which different time series
from the same phenomenon can yield DFA exponents simultaneously indicating neuromotor
“health” and “dysfunction” (Dingwell & Cusumano, 2010; Terrier et al., 2005).

2.5 Summary
The four perspectives on movement variability analysis described above are by no means the
only approaches that can be applied to study motor fluctuations. There certainly are other
perspectives that have been or could be brought to bear, such as those related to information
theory or synchronization, among other possibilities (Davids et al., 2006). However, the four
perspectives enumerated here are representative of two fundamental categories: geometrical
methods that examine the effect of motor redundancy; and dynamical methods that
characterize the processes generating the observed time series. The UCM and TNC
approaches fall into the former category; local stability and fractal dynamic analysis falls
into the latter. The MIP, which is the only perspective discussed here that is not primarily
data-driven, represents a computational framework that can provide a bridge between these
two categories by incorporating goal equivalence into models of movement regulation. Such
models can, in principle, be used to explain and even predict the geometrical structure of
variability and the dynamical properties of observed movement fluctuations.

To date, however, most researchers working from within these perspectives have restricted
themselves to either only quantifying measures of variance, on the one hand, or quantifying
dynamical properties of uctuation time series, on the other hand. Even the control-theoretic
framework of MIP has also so far been tested experimentally using only variability measures
that miss much of the uctuation dynamics related to control. Thus, there remains a clear need
to develop a combined computational framework and model-based experimental approach
that combines the critical ideas and insights from the geometric and dynamical perspectives.
In the remainder of this paper, we describe just such a model-based framework, which
allows one to study how the human nervous system regulates goal-directed movements in
the face of inherent neuromuscular noise and motor redundancy.

3 Goal Equivalence and its Consequences
The goal equivalent manifold (GEM) concept was initially developed (Cusumano & Cesari,
2006) to study the relationship between variability at the body and goal levels using
sensitivity analysis, a well-known concept in engineering and other disciplines. The
intention was to use accessible laboratory variables to examine precisely how motor
performance (as measured by goal level variability) is generated, without necessarily
focusing on whether or not the variables represent “true” controlled variables, a frequently
stated aim of UCM (Scholz & Schöner, 1999). The GEM approach makes clear distinctions
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between the goal, the task, and the solution manifold, and it emphasizes that the task
manifold exists independent of, and prior to, any specific control scheme. Thus, the GEM
framework conceptually separates the task manifold and its associated sensitivity properties,
which in control jargon can be considered as part of the “plant”, from the “controller” used
to regulate variability, and so can reasonably distinguish between “passive” and “active”
properties of a given task.

3.1 Goal Functions and Task Definition
We define a task using a goal function, which expresses the relationship between the goal of
the task, the subject, and the environment needed for perfect task execution. We here focus
on discretizable tasks with precise, fixed, goal specifications and look at goal functions

(1)

where f is the vector-valued goal function of dimension Dg, and x is the body-level state
vector of dimension Db, The body state x is identified as a minimal vector of variables
needed to define task execution. Though it will be suppressed in what follows, here we also
include a vector p of parameters (specifying, e.g., the position of a target in a reaching task,
or the speed of a treadmill). Typically, the body state x is defined in terms of execution
variables, that is, by body-level kinematic quantities the specification of which are sufficient
to determine the execution of the task in any given trial. Any value of the body state x that
satisfies Eq. (1) will, by definition, exactly attain the goal.

As an example, consider the ball-throwing task (John & Cusumano, 2007) shown in Fig. 2A.
We imagine that a human subject drives the manipulandum of length R, which is hinged at
its base, and attempts to hit a target at a distance L, elevated above the ground by an amount
H. Neglecting air resistance, the elementary mechanics of projectile motion then gives the
scalar goal function f ≡ f as:

(2)

For this task, then, x = (θ,ω), where the angle θ and angular velocity ω are taken at the
release of the ball. Note that Db > Dg, since here Db = 2 and Dg = 1. All values of (θ,ω)
satisfying Eq. (2) correspond to ball trajectories that exactly hit the target. The goal-level
error is e, which has the same dimension as the goal function. In addition to the
“environmental” property of the local gravitational acceleration g, the goal function is
parameterized by the target positions L and H, and the “body” property R. Assuming that g
is a fixed parameter, the complete parameter vector is thus p = (R, L, H): changing any of
these parameters will change the goal function and hence its zeros.

3.2 The Goal Equivalent Manifold
Due to motor redundancy, the dimension of the body state variable x is typically greater than
the dimension if the goal function f, i.e., Db > Dg. As a direct result, there will not be a
unique solution to Eq. (2), but rather an entire set,

(3)

in which for compactness we have not displayed the dependence of fon the parameter vector
p. Though it is by no means necessarily the case, it frequently occurs in applications that the
set has the structure of a manifold, that is, of a surface in the body state space. In that case,
we refer to as the goal equivalent manifold (GEM) for the task.
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The GEM for the throwing task example is shown by the grey curve of Fig. 2B. Every point
on the GEM represents a strategy x ∈ that perfectly hits the target. Also in the figure are
black lines showing ±10% error at the target. Note that the spacing between the error
contours is not uniform, indicating that the sensitivity to body-level errors is not uniform
along the GEM: the smaller the distance between the error contours, the more sensitive
nearby strategies are to body-level errors. For this example, we see that it is better to use
strategies involving hard, direct throws, released with relatively large values of θ, rather than
lobbed throws, which have small θ.

Our definition of the task manifold is more similar to that conceived of in the TNC
approach, described in section 2, than it is to that of the UCM. As with the TNC approach,
the body state x in Eq. (1) is a minimal body-level variable that determines the outcome of
an individual trial. The dynamics within each trial is not referenced and, indeed, a subject is
free to undertake any action whatsoever prior to reaching the GEM. For example, for one
trial of the ball throwing task in Fig. 2, the manipulandum could be made to move directly to
the release point, or it could be oscillated randomly prior to the release point: either in-trial
strategy can yield identical performance at the goal level. Thus, in contrast with the task
manifold of UCM, the GEM definition does not use the average behavior during multiple
trials to define the “true” goal of an individual subject, but rather uses a relationship between
the body and goal (i.e., the goal function) that can be determined objectively for any subject.
By defining the task manifold in this way, we can examine the sensitivity properties that
relate fluctuations observed at the body and goal levels, as we now show. This emphasis on
the sensitivity properties of the GEM is unique to our approach.

3.3 Relating Body and Goal Level Variability
By definition, f(x*) = 0 whenever x* ∈  In general, however, e = f(x) is a measure of the
goal-level error, that is, of the performance of the task. Any fluctuation in the body state
away from the GEM will result in a fluctuation in the goal level error, e. In the ball-throwing
example, the error is a scalar (e ≡ e), as illustrated in Fig. 2.

For a skilled performer, the average body state over multiple trials will be close to the GEM.
Thus, in practice we can think of x* ≈ x̄ where x ̄ is the sample average, and write x = x* + u,
where u is the body-level fluctuation about the average strategy that lies on the GEM. For
small fluctuations, we can expand the goal function in a Taylor series to obtain the linear
approximation for the error at the target:

(4)

where the body-goal variability matrix A is the matrix of partial derivatives ∂f/∂x evaluated
at x* (Cusumano & Cesari, 2006).

The matrix A describes how errors at the goal-level, e, are functionally related to small
body-level fluctuations, u. By construction, A is a Dg × Db matrix, and since Db > Dg, it will
have more columns than rows. The range of A (its column space), denoted by ℛ is assumed
to have dimension Dg. This goal relevant subspace contains fluctuations that do result in
error at the target. In contrast, A has a Db − Dg dimensional null space, defined by = {u |
Au = 0} (Golub & Van Loan, 1996). All fluctuations restricted to this goal equivalent
subspace produce no error at the target. Since ℛ is orthogonal to  the Cartesian product of

and ℛ gives the entire body state space. It is easy to visualize and ℛ, since they are
represented by linear subspaces that are tangent and perpendicular, respectively, to the GEM
at every point. In the ball throwing example (Fig. 2B), therefore, both of these subspaces
will be 1-dimensional.
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To further characterize the body-goal interaction, the singular value decomposition (Golub
& Van Loan, 1996) of A is computed. The Dg singular values of A quantify the degree to
which the goal-relevant fluctuations at the body level are amplified to produce error at the
target (Cusumano & Cesari, 2006). In the ball-throwing example, A is a 1 × 2 matrix

(5)

evaluated at a point on the GEM, (θ*, ω*) ∈  The null space of A consists of fluctuations

with the form , where the superscript t denotes the transpose and c is any real

constant. In this case, the only singular value is easily found to be .

Considering an ensemble of repeated trials about a given strategy x* ∈  and assuming
sufficiently small, independent fluctuations in each of the goal-relevant directions, it can be
shown (Cusumano & Cesari, 2006) that the performance at the target, as measured by the
standard deviation of the error σe, is given by

(6a)

(6b)

in which: si is the singular value in the direction of the ith basis vector (i = 1, 2,…, Dg) of the
goal-relevant subspace ℛ σi is the component of body-level variability in the same
direction; and ℛ; σi is the component of the total body variability σu lying in ℛ Equation
(6a) is the result in its most compact form. The expanded identity Eq. (6b) shows that the
goal-level variability can be interpreted as the product of three factors, which, from left to
right, are: an “gain” factor, showing how goal-relevant variability is amplified by the
sensitivity properties of A; an “alignment” factor, showing the fraction of the total
variability that is goal-relevant; and a body-level variability factor, which is simply σu.
These three factors are similar in interpretation, respectively, to the tolerance, covariation,
and noise costs referred to in TNC analysis. However, whereas the TNC approach uses its
costs to study motor learning, Eqs. (6) explicitly connect the “steady state” or “learned”
values of these quantities to goal-level performance, based only on the goal function Eq. (1).

3.4 Change of Variables
Perhaps the most fundamental issue in dynamical modeling is the need to identify
appropriate state variables, and this need is particularly acute in regard to models of the
human movement system (Beek et al., 1995). Furthermore, since it is usually the case that
more than one set of state variables can be used, understanding the effect of coordinate
transformations is of critical importance. We thus consider a new body state variable y
related to the original state x by the coordinate transformation

(7)

There are two general contexts in which such a transformation might occur. The first is
simply that we might want to select another minimal set of “execution variables”,
generalized coordinates (Greenwood, 1988) that specify the task. For example, in the ball
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throwing task of Fig. 2, we have used the body state variables θ and ω, and, though these are
perhaps the most natural, there are other possibilities, such as Cartesian coordinates, for
specifying the position and velocity of the ball at release.

The other context is more fundamental to the problem of human movement: given a state
space of execution variables, a goal function, and its related GEM, we may ask how it is that
a subject actually manages to generate a given value of the state x in a given trial. That is,
using a robotics analogy, we may want to use a new set of variables that describe how the
“end effector” coordinate x is “actuated” during a trial. One way such new “action
variables” might be obtained would be from a model of in-trial dynamics. Such a model
would result in a function of the form

(8)

where τ is the time of the movement for the trial, x0 is the initial condition, and β is a set of
parameters that control the in-trial behavior. Assuming the same initial conditions for each
trial, the in-trial “action template” of Eq. (8) can be written as x = Φ (τ; β) ≜ g(y), which
gives y ≜ (τ; β) as the new action variable.

This idea has been developed at some length and will be further developed in forthcoming
papers (John, 2009; John & Cusumano, 2007; John et al., 2013), however here we need only
consider that a coordinate transformation Eq. (7) exists, for whatever reason. Then, the
original goal function f(x) will transform to a new goal function f ̃(y) by

(9)

Furthermore, the body-goal matrix A, which determines the sensitivity properties of the
GEM and which is obtained by differentiation as in Eq. (5), will be related to the new matrix
Ã by application of the chain rule:

(10)

where we have substituted for A and g after the last equals sign using Eqs. (5) and (7).

The implications of these transformations are immediately apparent. First, the GEM itself

will transform into the space of new variables, since by definition  and

from Eq. (9) we see that every  will correspond to a unique x ∈  However, the
transformed manifold will generally have a very different appearance. More importantly,
Eq.(10) shows that the original and transformed body-goal matrices will be different, in
general, and hence their singular values will also be different. This indicates that the GEM
itself transforms directly, but the sensitivity properties along it are not invariant under
coordinate transformations, although they do transform in a predictable way via Eq. (7).

As a simple example of how this all might work, return to the ball throwing example and
consider the possibility that the manipulandum dynamics within each trial is governed by an
in-trial controller that extremizes the mean-squared torque (John & Cusumano, 2007) so that
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(11)

where τ is the time of release in the trial. This assumption, together with at-rest initial
conditions, yields the following action template, which transforms the execution variables
(θ,ω) into action variables (τ, β)(John & Cusumano, 2007):

(12)

in which β is a parameter that controls the angular jerk of the torque-optimal action within
one trial, and τ is the movement time.

The above transformation can be directly substituted into Eq. (2) to yield the transformed
goal function f̃(τ, β) which can then be used to find the transformed GEM, as shown in Fig.
3. By comparing Fig. 3 to Fig. 2B, we see that the sensitivity properties along the GEM in
the two spaces, as represented by the distance between the ±10% goal-level error contours,
are quite different. The best strategy in the “action space” is represented by the circle in Fig.

3: it is the point  with the lowest sensitivity to body-level errors. However, the
corresponding point in the original “execution space”, also represented by a circle in Fig.
2B, does not correspond the best strategy in terms of (θ, ω) ∈ 

The above discussion indicates the difficulty in making inferences on neuromotor function
using only variance-based measures of movement fluctuations: the lack of coordinate
invariance means that the observed variability structure can be strongly deformed merely by
choosing different state variables. As we show below, this problem of coordinate
dependence can be largely overcome by including a dynamical assessment of fluctuations in
the GEM framework.

4 Closing the Perception-Action Loop
To this point, we have developed the GEM framework by discussing properties of the task
that exist independent of any control mechanism used to regulate motor fluctuations. In this
sense, the existence of a GEM, along with its sensitivity properties, can be thought of as a
“passive” feature of the task. Even if one were to build a mechanism to carry out the
throwing task of Fig. 2A that consisted only of inanimate bars and springs, and then applied
random impulses to release the ball toward the target, such an uncontrolled, and indeed
“mindless”, system would still have the GEM of Fig. 2B.

What is missing from this account, however, is any ability to examine of how a given
ensemble of body-states collected over multiple trials unfolds over time, something which is
of obvious importance in the study of motor regulation. We therefore add the idea of inter-
trial error-correcting control to the passive properties of the GEM, which results in a class of
simple explanatory models and yields a set of general hypotheses on the dynamical structure
of inter-trial fluctuations observed in experiments.

4.1 Inter-Trial Error Correction
A typical experiment of this type, carried out over N trials, will result in time series of the

chosen body state variable, . Our desire is to develop the simplest possible models
that can contribute to a fundamental understanding of how error-correcting control and goal-
equivalence interact to generate observed variability. We therefore choose to work at the
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level of observations, and consider the trial-to-trial task dynamics to be governed by a
simple update equation of the form:

(13)

where: c is the controller to be found, assumed to depend only on the current state; Nk is a
matrix representing signal-dependent noise in the motor outputs; and vk is an additive noise
vector representing unmodeled effects from perceptual, motor, and environmental sources.
For convenience, we also include a diagonal matrix of gains, G: given an optimal controller
cdesigned with G = I (where I is the identity matrix), suboptimal performance can be
examined by simply setting G ≠ I

The structure of Eq. (13) is motivated by the idea that, in the absence of noise, a skilled
performer (for whom xk will be near the GEM) would not need to make corrections between
trials, so that the “performance” would be nearly constant (that is, xk+1 ≈ xk). On the other
hand for zero control, c = 0, and Gaussian white noise νk, the fluctuations in xk would be a
Brownian motion (i.e., a random walk). Thus, heuristically speaking, we can think of the
controller as “modulating” the inter-trial dynamics to lie somewhere between perfect
repetition and an unconstrained random walk in state space.

Equation (13) is only intended to model the inter-trial dynamics, not the full neuro-
biomechanical dynamics within trials. That is, it is a model of the process that regulates
fluctuations away from perfect performance by adjusting the body state at each trial. In this
sense, the chosen state variable plays the role of a control parameter for the action during
individual trials. Phenomenological models of this type are consistent with the idea of an
overall 532 hierarchical control with an inter-trial component (Eq. 13) that provides error
correcting adjustments to an within-trial component that is approximately “ballistic” or
“feed-forward” during each individual trial.

In (Burge et al., 2008; Diedrichsen et al., 2005; van Beers, 2009), error-correcting con
trollers similar to Eq. (13) have been used to study motor learning. Those models, which did
not consider task redundancy, had controllers that depended explicitly on the goal-level error
ek instead of the body state xk. Here, in contrast, task redundancy is a central concern, and
Eq. (4) gives ek = A(xk − x*). Thus, our controller depends implicitly on the error of the
previous trial. However, the error at the next trial appears explicitly in the cost function used
to determine c, as discussed in the next section.

4.2 Stochastic Optimal Controller
There are multiple ways one might apply control theory to design the controller, c
(Jagacinski & Flach, 2003). Motivated by a generalized interpretation of the minimum
intervention principle (MIP) (Todorov, 2004; Todorov & Jordan, 2002) we here use a
stochastic optimal control approach (Ogata, 1995; Stengel, 1994), and take our cost function

to be the expected value  where has the general quadratic form

(14)

in which f is the goal function, c is the controller we seek, uk = xk − x* is the deviation from
a “preferred operating point” (POP) on the GEM, and the positive definite matrices ci (i =
1,2,3) are the relative weights for each component of the total cost.

The first term in Eq. (14) is the cost of error at the goal level, where here we assume direct
error feedback (that is, the error is “perceived” exactly by the performer). Note that after Eq.
(13) is used to replace xk+1 in Eq. (14), the noise terms are now included in the cost
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function, which is why stochastic optimization is required. The second term represents the
cost of the control effort, and the third term represents the cost of deviating from the POP.
Thus, the system will attempt to drive the goal-level error to zero at each step, while also
minimizing the control effort and the distance from the POP. By varying the weighting
matrices Ci, one can study the variability generated by systems with different control
structures via numerical simulations with Eq. (13).

We further restrict our attention to unbiased controllers. That is, consistent with our general
assumption of a skilled performer, we assume that on average the subject’s performance is

perfect so that . We treat this as a constraint and let 
where λ is a Lagrange multiplier. Then, the value of xk+1 is substituted for using the right
hand side of Eq. (13), and ℋ is extremized yielding a system of Db equations via ∂ℋ/∂c = 0,
the solution of which gives the controller c. Thus, c can be categorized as a single-step,
unbiased controller, obtained by solving a standard “quadratic regulator” problem (Ogata,
1995; Stengel, 1994).

Of course, it is possible to relax any number of the assumptions we have made in
constructing this class of inter-trial task dynamical system. For example, we can consider a
dynamical dependency on states with lags greater than 1, allow solutions to be biased, or add
new terms to our cost function. However, as we show in the next section, recent
experimental applications have demonstrated that these various simplifying assumptions
can, indeed, yield models that provide useful insights into the structure of observed
variability.

4.3 Local Stability Near the GEM
Continuing with our focus on skilled performance, as in section 3.3 we assume that the
deviations ufrom the GEM are small. Adding to this the assumption of small noise inputs Nk
and νk, we can linearize the controller Eq. (13) (John & Cusumano, 2007) about an
operating point x* on the GEM to obtain:

(15)

in which the matrix B = I + GJ, where J = ∥c/∥x is the Jacobian of the controller evaluated at
x*. Thus, small fluctuations are governed by the linear map of Eq. (15), and the Db
eigenvalues and eigenvectors of B determine the dynamic stability properties of the system.
In what follows, we focus on the case when B possesses real, distinct eigenvalues. We
remark in passing that, as discussed in section 2.4, the linearized controller above is an
autoregressive (AR) process, and hence cannot generate time series that exhibit long-range
persistence.

When all eigenvalues λi (i = 1, 2,…,Db) have magnitudes |λi| < 1 the operating point is
asymptotically stable (Hirsch et al., 2004; Verhulst, 1996), meaning that in the absence of
noise, fluctuations would decay to zero over multiple trials. On the other hand, if one or
more eigenvalues has |λi| = 1 the operating point is unstable and fluctuations grow over time,
something that is not to be expected in the performance of a human subject. Finally,
eigenvalues with |λi| = 1 are transition values, representing neutrally stable directions in the
state space: in the absence of noise, fluctuations neither grow nor diminish.

In the limit of a pure MIP controller, the POP term in Eq. (14) is absent (i.e., the matrix C3 =
0). In this case, one can show (John, 2009; John & Cusumano, 2007) that there will be Db −
Dg eigenvectors that lie in the goal equivalent space which is tangent to the GEM, and the
corresponding eigenvalues will be neutrally stable, having magnitudes equal to 1. The
remaining Dg eigenvalues will have magnitudes between 0 and 1, and will correspond to
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eigenvectors that are transverse, though not necessarily perpendicular, to the GEM. For the
optimal controller (G = I), these eigenvalues will be exactly equal to 0, whereas for the
slightly suboptimal controller they will still be close to 0. This means that fluctuations
transverse to the GEM are strongly diminished in subsequent trials, and hence we refer to
these transverse eigenvalues as strongly stable. This general situation is shown
schematically in Fig. (4) for the simple case when Dg = 1 and Db = 2.

With a pure MIP controller, the GEM is similar to a UCM: by design, the GEM is
“uncontrolled”, and hence fluctuations along it are not corrected. However, with a little
reflection it is easy to see that in the presence of noise such uncontrolled, neutrally stable
behavior will result in unbounded random walk dynamics along the GEM, something which
is never observed in experiments. This is easily confirmed by simulations with models of the
type discussed here (John, 2009; John & Cusumano, 2007). Thus, in general one expects to
have a nonzero POP term in the cost function Eq. (14) (C3 ≠ 0), which will localize the
fluctuations around the operating point. However, consistent with our generalized
interpretation of the MIP hypotheses, we expect the resulting control along the GEM to still
be relatively weak (meaning that C3 is still small), resulting in weakly stable eigenvalues
tangent to the GEM, with magnitudes near to, but slightly less than, 1. For small POP
perturbations to the ideal MIP controller, the weakly stable eigenvectors will still be nearly
tangent to the GEM.

For the ball throwing example, an ideal MIP controller will have two eigenvalues, a
neutrally stable one, λ1 = 1, and a stable one, 0 ≤ |λ2| < 1, with eigenvectors tangent and
transverse to the GEM, respectively, as illustrated in Fig. (4). For the optimal controller, the
strongly stable eigenvalue will be λ2 = 0, and for a slightly suboptimal controller |λ2| > 0 but
still very small. Finally, by adding a weak POP component to the controller, the neutrally
stable eigenvalue λ1 will be a bit smaller than 1, that is, it will become weakly stable (again,
see Fig. 4).

Transforming the fluctuation variables by uk = P qk, where P is the matrix whose columns
are the eigenvectors of B, allows one to study the uncoupled inter-trial dynamics in the
weakly and strongly stable directions. Given the almost perfect alignment of the weakly
stable subspace with the GEM, it is clear that only fluctuations in the strongly stable
subspace result in appreciable error at the goal level. Though a general discussion is beyond
the scope of this paper, in the case where Dg = 1 , as in the ball throwing example, it can be
shown (John, 2009; John & Cusumano, 2007) that Eq. (6a) relating body and goal-level
variability can be modified to include the effect of controller stability as

(16)

where: σe and σℛ the standard deviations of the goal-level and goal-relevant fluctuations,
respectively; s is the lone singular value of the body-goal matrix A; and λ ≈ 0 is the strongly
stable eigenvalue governing fluctuations transverse to the GEM. The above expression
shows that, for a skilled performer, strongly stable control transverse to the GEM will have
little effect on the magnitude of goal-level variability. Rather, the “passive” sensitivity along
the GEM, as represented by the singular value of the body-goal matrix, will control
performance. Recall, however, that the scaling relationship of Eq. (16) is only expected to be
valid in the limit of small fluctuations near the GEM.

4.4 General Experimental Hypotheses
The ideas presented above illustrate how the GEM framework combines a consideration of
goal equivalence with error-correcting control. The result is arguably the simplest possible
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formal description of how goal-level fluctuations (and therefore task performance) are
generated and regulated. Using these ideas, one can build a variety of models for different e
discrete tasks simply by developing suitable goal functions (Eq. 2) and by adjusting the
parameter matrices Ci (i = 1, 2, 3) in the cost function Eq. (14). One could also imagine
more radical changes to the cost function involving the addition of new costs, for example
related to ergonomic or other considerations. Thus, used as a modeling framework, the GEM
approach can be used to examine the consequences of various goal function and/or
controller assumptions using simulations, which in themselves can provide insight
intomovement regulation.

More importantly, however, the models represent experimentally testable hypotheses on the
organization of inter-trial fluctuations. Based on the mathematical features of the models, as
described above, and backed by numerical simulations, we are led to a set of general
hypotheses on the variability observed during repeated trials of discrete, goal-directed
movement tasks. Under the assumption of skilled movements, for which fluctuations are
relatively small and near the GEM, we expect to following to hold for any “GEM-aware”
inter-trial controller:

H1 Db – Dg eigenvectors of B (Eq. 15) will form a subspace that lies in, or very
near, the tangent space to the GEM, N, which has the same dimension. The
corresponding eigenvalues λi (i = 1, 2,…, (Db – Dg)) will indicate weak stability
without over-correction: that is, 0 < λi < 1 and λi ≈ 1.

H2 Dg eigenvectors of B will form a subspace that is transverse (but typically not
perpendicular) to the GEM. The corresponding eigenvalues will indicate strong
stability: |λi| ≈ 0 (i = 1, 2,…, Dg).

H3 The correlation properties of the fluctuating time series will reflect the stability
properties of H1and H2, with statistical persistence tangent to the GEM, and
little or no persistence transverse. In the limit as the control along the manifold
is reduced to zero, the fluctuations tangent to the GEM approach a random walk.

H4 The goal-level variability σe will scale according to Eqs. (6). In the case when
Dg = 1, this means that σe/σℛ ≈ s, as in Eq. (16).

H5 As a natural consequence of hypotheses H1-H4, one also expects that the
variability perpendicular to the GEM will be much less than variability along it:
σℛ/σ  < < 1.

Hypotheses H1-H3 are related to the “active” (i.e., dynamic) properties of the controller,
with H3, which is concerned with persistence (not necessarily of the long-range type), being
essentially a corollary to the first two. In contrast, H4 is related to the “passive” sensitivity
properties along the GEM. Note that only hypothesis H5, which is to some extent a
combined effect of the other four, has been previously emphasized in other methods that
have been used to explore the role of motor redundancy. However, an important weakness
of H5 is that the variability ratio it describes is not invariant under coordinate
transformations. For example, using principle component analysis (Mardia et al., 1979) one
can easily construct a linear coordinate transformation that yields new body-level variables
with arbitrary variance. While the possibility of such “artificial” coordinate transformations
does not completely undermine the experimental utility of variability ratios (Sternad et al.,
2010), it does suggest that variability ratios alone may be inadequate tests for hypothesized
task manifolds. In contrast, H1-H4 will be true in any coordinate system (John et al., 2013),
due to the coordinate invariance of the local stability properties (Hirsch et al., 2004;
Verhulst, 1996).
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5 Experimental Applications
We now illustrate some of the ways the ideas presented in the previous sections can be
implemented by describing recent experimental studies. Our intention here is not to repeat
all of the main results in each case, but rather to discuss how the hypotheses H1-H5 have
been tested and, to date, verified to be true. The reader is referred to the cited papers for
additional details

There are two contrasting approaches that we have so far taken in implementing the GEM-
based analysis. In one, different explicit models of the form Eq. (13) are formulated and
used to generate model-based “surrogate data” predicting the statistical structure of
variability for the task. In the other, no such “first principles” model is constructed, but the
matrix B of the linearized controller model Eq. (15) is instead estimated directly from the
fluctuation data, and the eigenstructure of the estimated matrix is obtained and compared to
the geometry of a hypothesized goal function and GEM.

5.1 Treadmill Walking
Walking on a motorized treadmill requires only that subjects not walk off either end of the
machine (Dingwell et al., 2010). This means that subjects must, over time, walk at the same
average speed as the treadmill and stay in the same average position. However, substantial
fluctuations in both position and speed due to changes in stride length and/or stride time can
and do occur, and can be sustained over multiple consecutive strides (Dingwell et al., 2001,
2010; Owings & Grabiner, 2004).

Considering only the sagittal plane, the treadmill walking task is specified by an inequality
constraint of the form

(17)

where: Ln and Tn are the stride length and time, respectively, at stride n; v is the treadmill
speed; K is nominally half the treadmill’s length; and N is the total number of strides. There
are many possible strategies that one could use to satisfy this requirement, including a
variety of “drunken” or “silly” walks. However, we chose to test the simplest possible
strategy, defined by the scalar goal function f(Tn, Ln) = Ln − vTn = 0, which makes the sum
in Eq. (17) identical to zero, and is equivalent to a strategy of matching the treadmill speed
at each stride (i.e., Ln/Tn = v, see Fig. 5A). Thus, the body state is x = (Tn,Ln), equivalent to
a discretization of the walking task using an impact Poincaré section at heel strike, and each
stride represents one “trial”. Therefore, in this case we have Dg = 1, and Db = 2, as with the
ball throwing example (Fig. 2).

Stride times and lengths were recorded from healthy subjects walking at five speeds (Kang
& Dingwell, 2008a,b). The specified goal function (Fig. 5A) was used to define a gait
fluctuation variable u = (δT, δP), where δT and δP are deviations from the mean in directions
tangent and perpendicular to the GEM, respectively. Subjects exhibited significantly lower
variability for goal-relevant δP fluctuations than for goal-irrelevant δT fluctuations (Fig. 5B),
consistent with H5. More importantly, DFA analysis showed antipersistent δP deviations (0
< α < 1/2), indicating immediate overcorrection of perturbations off of the GEM, but
persistent δT deviations (1/2 < α < 1), consistent with indifferent control of perturbations
along the GEM (Fig. 5B). Independent from any consideration of whether or not the
observed persistence indicates long-range correlations (and we make no claim that it does,
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because that is not our focus), these results support H3, and indicate that movement
regulation was organized with respect to the hypothesized GEM.

Stochastic control models of the form Eq. (13) where developed using variants of the cost
function Eq. (14), each of which tried to minimize errors with respect to the hypothesized
constant speed goal function. Figure 5B shows results for two such models: an ideal
minimum intervention principle model (MIP), with C3 = 0 in Eq. (14); and an overcorrecting
model (OVC) with preferred operating point (C3 ≠ 0). When compared with results from
human subjects (Fig. 5B: HUM), these models demonstrated that healthy human treadmill
walkers are not precisely optimal (Fig. 5B: MIP), but instead consistently slightly over-
corrected small deviations in walking speed at each stride (Fig. 5B: OVC) (Dingwell et al.,
2010). The OVC model predictions show a strong qualitative match with experimental
findings, whereas the pure MIP model predictions do not.

To further demonstrate that the constant speed GEM of Fig. 5A was not the only one
subjects could have adopted, we created an additional model (POS) that minimized errors
with respect to a goal function for constant absolute position on the treadmill. On average,
these two control strategies are essentially identical, but predict very different stride-to-
stride fluctuation dynamics. Figure 5C compares experimental (HUM) DFA results and
those predicted by OVC and POS models. The absolute position at stride n, Dn, of human
subjects had highly persistent fluctuations, a feature captured by the OVC model, which is
controlling speed instead of position, but not by the POS model, which controls position not
speed. This further reinforces the view that nonpersistence of a quantity is associated with its
control, whereas persistence indicates weak or even, if the fluctuations approach a random
walk, no control.

The use of optimal control models in this context allowed us to make concrete,
experimentally testable predictions about the precise nature of the stride-to-stride fluctuation
dynamics. This, in turn, allowed us to draw clear conclusions about the control strategies
people used when walking on treadmills. This analysis of movement fluctuations allows us
to discern differences between possible control strategies, even if those strategies are not
distinguishable on average. Thus, the use of computational control models via Eqs. (13) and
(14) provides a degree of both explanatory and predictive capability that cannot be achieved
by approaches that rely solely on analyzing variance.

5.2 Virtual Shuffleboard
Shuffleboard is one of the simplest tasks involving “throwing” at a target, making it
attractive as an experimental system for studying goal-directed movement fluctuations. A
virtual shuffleboard apparatus was developed (John, 2009; John et al., 2013) in which a
custom built manipulandum is used to move a shuffleboard cue and puck on a virtual court.
In a given trial, subjects accelerate the instrumented manipulandum from a fixed rest
position along a linear bearing, and are able to track the subsequent motion of the puck as it
is released from the cue and heads toward the target. The shuffleboard court, puck, cue, and
target are all represented in the 3D virtual world and projected onto a screen in view of the
subject.

The virtual court is modeled as a horizontal plane with Coulomb friction acting between the
puck and ground. Thus, the dynamics of the puck after release is governed by the equation ẍ
= −μg, where x is the position of the puck, g is the gravitational acceleration, and μ is the
friction coefficient. The goal of each trial is to hit a target located a distance L from the
origin of the system. The manipulandum is started from rest at x = 0 for each trial. The final
rest position of the puck is a function of the position x and velocity v at the puck’s release,
and so one can show (John, 2009; John et al., 2013) that the scalar goal function is
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(18)

Any combination of the body state x = (x, v) for which f(x, v) = 0 will perfectly hit the target.
Thus, for this system we again have Dg = 1 and Db = 2.

Experiments were carried out with 4 young healthy male adults. The friction coefficient μ
was selected from 8 values chosen so that perfect trials would require between 3 and 5 sec.
The 8 values where split into “high” and “low” groups of 4, and each subject was given
from each group. Subjects were allowed to practice until their average error over 50 trials
was ≤ 10% of the target distance. Then the data collection phase began, during which
subjects performed 500 trials in 10 sessions of 50 trials each over 2 days. All sessions took ≤
7 min, and subjects had at least 5 min rest between sessions. Position and acceleration
sensors on the manipulandum were used to determine the time of release of the virtual puck,
by computing the moment when the contact force between puck and cue dropped to zero. At
that moment, the value of (x,v) were recorded, and used to generate the subsequent motion
of the puck on the screen in real time. Subjects could then observe the stopping position of
the puck, and obtain error information via direct visual feedback.

In this case, rather than testing controller hypotheses using different cost functions Eq. (13),
as was done with treadmill walking, we used the (x,v) fluctuation time series to estimate the
matrix B in the linearized controller Eq. (15) via linear regression (John et al., 2013). The
eigenvalues (i.e., the stability multipliers) and eigenvectors of B were then estimated.
However, these sorts of estimates are known to be highly sensitive to matrix estimation
errors, and so a simple bootstrapping method was employed to yield robust estimates with
confidence limits (Akman et al., 2006; Press et al., 1992). From the initial set of 500 trials
for each subject, 1000 random subsamples of 100 trials each and their subsequent were
generated. Each of the 1000 subsamples was used to estimate the map B, which in turn
yielded eigenvectors and eigenvalues for the fluctuation process. This procedure thus
yielded empirical probability densities for all estimated quantities.

The eigenvalue results are shown in Fig. 6A: one eigenvalue, with a median value of −0.03,
is very close to zero across all 8 subjects and friction conditions, indicating a strongly stable
direction in which fluctuations are quickly damped out; the other, with a median value of
0.77, is much closer to unity and hence indicates a weakly stable direction. Furthermore, it
was found that the eigenvector associated with the strongly stable direction had a median
angle of 53.8° with the tangent to the GEM(so that ø = 36.2° in Fig. 4), whereas the
eigenvector associated with the weakly stable direction had a median angle of 1.5° with the
GEM. These results are entirely consistent with hypotheses H1 and H2, showing that control
acts strongly to suppress deviations transverse to the GEM, but much less strongly along it.

Using the goal function Eq. (18), the body-goal matrix is found as A = [1, 2v*/μ], which has

a single singular value  (John et al., 2013), where v* is the ensemble
average velocity of release for the different subjects/conditions. The sensitivity could then
be estimated for each subject/condition using this theoretical expression for s, together with
the known values of μ and measured values of v*. The root mean square goal-level error, σe,
and the component of body-level variability perpendicular to the GEM, σℛ, were computed
and used to obtain σe/σℛ = s and plot it against s. The result is shown in Fig. 6B, for which
the relevant quantities were again computed using a boostrapping approach. We see that

 to high accuracy, thus showing that the skilled performance scales with the
passive sensitivity along the GEM. This result supports H4, indicating that the goal level
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variability of skilled performance is determined predominantly by the goal function (John,
2009), not active error correction per se, because of the strong stability found transverse to
the GEM and Eq. (16). This result also validates, at least in this instance, a major
assumption of our analysis, namely that for skilled movements the fluctuations are
sufficiently close to the GEM to justify the use of linearized models.

5.3 Reaching
Determining if humans exploit task redundancies when the redundancy is de-coupled from
the task itself is critical to determining how general such strategies are. Here, we derived a
class of uni-directional reaching tasks, defined by a family of goal functions that explicitly
defined the redundancy between reaching distance, D, and time, T (Smallwood et al., 2012).
All (T, D) combinations satisfying any specific goal function defined a GEM. We tested
how humans learned two such functions (Fig. 7A), D/T = c (for constant c), corresponding
to constant speed, and DT = c, which has no direct, concrete interpretation. Thus, in both
cases, the body state is given by x = (T, D), so that Db = 2 and Dg = 1.

The tasks so defined, though very different, had a point of intersection that could be
achieved by similar reaching movements. Ten young healthy subjects participated. The
results presented here come from consecutive days, Day 1 and Day 2. Subjects made
smooth, out-and-back reaching movements. They were instructed to reach as near or as far
as they desired and at whatever speed they desired. After each reach, subjects were given
feedback about their performance (i.e., the final T and D for that reach) and their relative %
error with respect to the GEM for that task. Most importantly, however, the GEM itself was
never directly displayed to the subjects. Subjects were only instructed to minimize errors.

Subjects exhibited significant learning and consolidation of learning (Brashers-Krug et al.,
1996; Krakauer et al., 2006) for both tasks. Interestingly, learning the D/T task first
facilitated (Brashers-Krug et al., 1996; Krakauer et al., 2006) subsequent learning of the DT
task, while learning the DT task first interfered with (Brashers-Krug et al., 1996; Krakauer et
al., 2006; Wulf & Shea, 2002) subsequent learning of the D/T task (Smallwood et al., 2012).

For both tasks, and consistent with hypothesis H5, subjects exhibited greater variability
along each GEM than perpendicular to it (Fig. 7B), however this differences less
pronounced for the DT task than for the D/T task. Additionally, consistent with hypotheses
H1 and H2, for both tasks subjects actively corrected deviations perpendicular to each GEM
faster than deviations along each GEM (Fig. 7C), as measured by stability multipliers λ
estimated in each direction. Interestingly, the difference in stability was comparable for both
tasks, though a bit more pronounced for the DT task (Fig. 7C), despite exhibiting smaller
variance ratios than the D/T task (Fig. 7B). These results demonstrate that subjects’ ability to
actively exploit task redundancies to minimize overall control effort, by exerting more
control transverse to the GEM than along it, does indeed generalize across multiple tasks
(Smallwood et al., 2012), even ones that are abstractly defined.

6 Discussion, Conclusions, and Future Directions
In this paper we have described a conceptual framework for the experimental study of
movement variability that synthesizes geometrical methods, which focus on the role of
motor redundancy, and dynamical methods that characterize the processes that regulate the
repeated performance of skilled tasks. We have grounded the description of our approach,
which is centered on the idea of the goal equivalent manifold (GEM), with a review of four
of the key perspectives currently used to study movement variability. These perspectives,
while each having provided many important insights, have to date eluded unification into a
single, coherent description of observed fluctuations. The GEM approach provides a model-
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based analysis of fluctuation data that shows how dynamical measures of motor
performance, such as those based on stability and correlation analyses, are related to the
geometrical structure of variability resulting from goal equivalence. In so doing, our
approach ensures a consistent interpretation of different variability measures that helps avoid
apparent paradoxes found in the literature, particularly when using such measures to make
inferences about the health of the neuromotor system.

Our approach has multiple features that distinguish it from other approaches to movement
fluctuation analysis that are based on some notion of goal equivalence. First, we note that
goal equivalence itself is a basic property of redundant systems, regardless of the nature of
control used to regulate them. Indeed, a GEM can exist even for a completely uncontrolled,
or open loop system. In this way, we make a clear distinction between the “plant” (the task
definition via goal functions) and “controller” (defined via cost functions) that allows each
to be tested by separate experimental hypotheses. Second, we distinguish between “passive”
and “active” contributions to goal-level variability, with the sensitivity properties along the
GEM representing the former, and the stability properties of fluctuation dynamics near the
GEM representing the latter. Third, our approach incorporates an examination of the effect
of coordinate transformations on the task manifold itself (the GEM), its sensitivity
properties, and the local stability properties of error-correcting control near the GEM.
Unlike approaches based purely on variability ratios, the dynamical measures central to our
approach should be invariant under reasonable coordinate transformations. Finally, our
description of the GEM framework culminates with a set of five general hypotheses for
“GEM aware” inter-trial control, only one of which has been previously used to examine
motor variability in the context of goal equivalence.

It is already generally accepted that motor control is organized around some notion of goal
equivalence. Our contribution is to show that the organization of fluctuations can be studied
unambiguously by analyzing only body state variables that interact directly with goal level
performance variables, as defined for a specific task using goal functions. Simple optimal
control models defined using these goal functions provide a model-based decomposition of
the data that can be used to study specific strategies used to regulate task performance. This
perspective helps to unify motor fluctuation analysis methods based on local stability, task
manifolds, correlation, and feedback control. Our approach not only describes variability
data, but in principle can be used to make model-based predictions about fundamental
features, such as dependence of stability properties and fluctuation statistics on model
parameters. One type of variability analysis with which our current approach has yet to fully
reconcile is fractal dynamics (such as via DFA). This stems largely from the fact that our
controller models use proportional feed back, resulting in autoregressive time-series models
(as in Eq. 15) that are known to be incompatible with long-range persistence. One possible
avenue to overcoming this limitation, should it be desired, would be to consider models of a
completely different type, that can support true long-range memory processes (such as, for
example, controllers of “bang-bang” type). Despite this limitation, however, our work has
shown that a parsimonious interpretation of persistence estimates (whether or not they
correspond to truly long-memory processes) is best achieved by considering the nature of
error regulation near the GEM.

We have presented recent experimental applications of our approach that illustrate how the
five hypotheses have, so far, been demonstrated to hold. Certainly, much more work is
needed to examine the limitations of the various assumptions underlying our methods in
their current form. The structure of the GEM framework, as currently implemented, depends
on the tasks under consideration being either intrinsically discrete, or being amenable to
discretization via, for example, Poincarée sections. This mathematical convenience yields a
set of tools that are relatively simple to define and use, and can in principle be applied to a
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very wide range of possible movement tasks. Nevertheless, in future work one would like to
see the fundamental ideas underlying the GEM approach expanded to continuous-time tasks.
One avenue for pursuing this might involve developing the idea of action variables, as
defined in section 3.4, and implementing them experimentally to better understand the
relationship between in-trial and inter-trial control.

To date we have focused on the analysis of movement fluctuations for skilled performers,
meaning that deviations from the GEM are small, so that goal-level and body-level
variability scale according to Eqs. (6), and linearized controller models are adequate. There
is a need to further develop these ideas for application to the movements farther from the
GEM, for which nonlinear effects would be important, such as would be necessary for the
study of motor learning. Our recent work on reaching tasks described in section 5.3 is a step
in this direction.
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Figure 1.
Plot of the scaling exponent α vs. λ for the autoregressive (AR) process xk+1 = λxk + νk,
where −]-1 ≤ λ ≤ 1 and ν is a mean-zero Gaussian random variable. For each λ, α was
estimated by applying the DFA algorithm to time series of 2 × 104 values of x, with σν = 0.1.
The vertical bars show the standard error in the slope estimate used for α. The given AR
process is known to have a finite correlation time for |λ| < 1, and hence in this case α ≠ 1/2
does not indicate long-range persistence.
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Figure 2.
A ball throwing task example (John & Cusumano, 2007). (A) Schematic representation of
the task, the goal of which is to hit the target; the body state is x = (θ,ω), so Db = 2, and the
goal-level error is e, so Dg = 1. (B) A typical GEM for the task (gray line), and ±10% error
contours (black lines) in the execution variable space. The GEM is the set containing all
values of x that satisfy Eq. (2), giving trajectories that exactly hit the target. Angular
variables are displayed in radians. The circle is for later comparison with Fig. 3.
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Figure 3.
GEM (gray line) and ±10% error contours (black lines) for the ball throwing task (Fig. 2A)
transformed to the action space, corresponding to values of (τ, β) that result in target-hitting
trials. The GEM was transformed by substituting Eq. (12) into Eq. (2). The circle indicates
the “best” strategy on the GEM, which has the lowest sensitivity to body-level fluctuations.
Its transformed location in the execution space is identified by the same symbol in Fig. 2B.
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Figure 4.
Schematic diagram in the body state space illustrating the stability geometry for a typical
MIP controller with weak POP perturbation. The dimensions of the various spaces shown
are identical to those for the ball throwing example of Fig. 2B. The dimensions of ℛ and 
are Dg and Db − Dg, respectively and typically φ ≠ 0.
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Figure 5.
(A) GEM for walking on a treadmill at constant speed (Ln/Tn = v). (B) Experimental (HUM)
results and model predictions for pure minimum intervention principle (MIP) and
overcorrecting (OVC) controllers. Humans (HUM) exhibited: significantly greater δT
variability than (δP) variability (p < 1 × 10−5); significantly greater statistical persistence for
δT than for δP fluctuations (p < 1 × 10−5); and anti-persistence (0 < α < 1/2) for goal-
relevant δP deviations, but persistent (1/2 < α < 1) δT deviations (adapted from Dingwell et
al., 2010). These characteristics were matched qualitatively by the OVC model, not the MIP.
(C) DFA results for absolute position Dn and δP deviations, from experiment (HUM) and
models for OVC and absolute position control (POS). Although OVC and POS models
predict the same average speed and absolute position, the OVC model qualitatively matches
HUM DFA results; the POS model does not. Although both the OVC and POS models
predicted the same average speed and position on the treadmill over time, the POS model
clearly demonstrated very different stride-to-stride fluctuation dynamics than the OVC
model and HUM subjects. All error bars indicate ±95% confidence intervals for each mean.
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Figure 6.
Results for the shuffleboard experiment for all subjects and friction conditions. (A) Stability
multipliers (eigenvalues of B as in Eq. 15) estimated from fluctuation time series: the
strongly stable eigenvalue (blue probability densities) is near zero and corresponds to an
eigenvector that is transverse to the GEM, whereas the weakly stable eigenvalue (red
probability densities) is close to 1 and corresponds to an eigenvector nearly tangent to the
GEM. The probability densities were estimated using a bootstrapping technique. Dashed
blue and red lines indicate 5 and 95 percentiles for all subjects/conditions. (B) Scaling
behavior of normalized task performance, showing dominant effect of passive sensitivity:
σe/σℛ = s to high accuracy, where s is the singular value of the body-goal matrix A for the
goal function (Eq. 18). Red dots indicate bootstrapping estimates from data for all 8
subjects/conditions, blue line is from regression.
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Figure 7.
(A) GEMs for two different reaching tasks (Dn/Tn = c and DnTn = c), with typical data from
one subject. (B) Experimental normalized standard deviations for all subjects, for each task
after Day 1 and Day 2 of practice, for tangential (δT) and perpendicular (δP) deviations from
each GEM. For both tasks, subjects exhibited significantly greater variance in δT than for δP.
However, this effect was more pronounced for the D/T task (p < 0:0005) than for the DT
task (p = 0:019). (C) Stability multipliers (λ) for all subjects estimated for each task after
Day 1 and Day 2 of practice, for δT and δP deviations from each GEM. Subjects exhibited
significantly higher stability (smaller λ) for goal-relevant δP fluctuations than for goal-
equivalent λT fluctuations for both tasks (p < 0:0005). However, in contrast to the variability
results (B), these effects were slightly more pronounced for the DT task than for the D/T task
(adapted from Smallwood et al., 2012). All error bars indicate between-subject ±95%
confidence intervals.
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