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Glia and pain: Is chronic pain a gliopathy?
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Abstract

Activation of glial cells and neuro-glial interactions are emerging as key mechanisms underlying
chronic pain. Accumulating evidence has implicated 3 types of glial cells in the development and
maintenance of chronic pain: microglia and astrocytes of the central nervous system (CNS), and
satellite glial cells of the dorsal root and trigeminal ganglia. Painful syndromes are associated with
different glial activation states: (1) glial reaction (ie, upregulation of glial markers such as IBA1
and glial fibrillary acidic protein (GFAP) and/or morphological changes, including hypertrophy,
proliferation, and modifications of glial networks); (2) phosphorylation of mitogen-activated
protein kinase signaling pathways; (3) upregulation of adenosine triphosphate and chemokine
receptors and hemichannels and downregulation of glutamate transporters; and (4) synthesis and
release of glial mediators (eg, cytokines, chemokines, growth factors, and proteases) to the
extracellular space. Although widely detected in chronic pain resulting from nerve trauma,
inflammation, cancer, and chemotherapy in rodents, and more recently, human immunodeficiency
virus-associated neuropathy in human beings, glial reaction (activation state 1) is not thought to
mediate pain sensitivity directly. Instead, activation states 2 to 4 have been demonstrated to
enhance pain sensitivity via a number of synergistic neuro-glial interactions. Glial mediators have
been shown to powerfully modulate excitatory and inhibitory synaptic transmission at presynaptic,
postsynaptic, and extrasynaptic sites. Glial activation also occurs in acute pain conditions, and
acute opioid treatment activates peripheral glia to mask opioid analgesia. Thus, chronic pain could
be a result of “gliopathy,” that is, dysregulation of glial functions in the central and peripheral
nervous system. In this review, we provide an update on recent advances and discuss remaining
questions.
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1. Introduction

It is now well established that chronic pain, such as inflammatory pain, neuropathic pain,
and cancer pain, is an expression of neural plasticity, both in the peripheral nervous system
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(PNS) as peripheral sensitization [11,78] and in the central nervous system (CNS) as central
sensitization [111,139]. The most widely studied neuronal mechanisms are hyperexcitability
and sensitization of primary sensory neurons (peripheral sensitization) and enhancement of
excitatory synaptic transmission in spinal cord, brainstem, and cortical neurons (central
sensitization), caused by transcriptional, translational, and post-translational regulation.
Other neuronal mechanisms include disinhibition (reduced inhibitory synaptic transmission),
descending pathway facilitation (eg, from the brainstem to the spinal cord), and long-term
potentiation (LTP) in the cortex and spinal cord. These neuronal mechanisms have been
strongly implicated in the development and maintenance of persistent pain in rodents
[11,142,195,205,317]. Central sensitization and LTP are also involved in human pain
conditions[134,285]. In parallel to the progress in these neuronal mechanisms is the
increased recognition of the importance of non-neuronal cells, especially glial cells, in the
initiation and maintenance of chronic pain. Of note, over the last 10 years, the field of pain
research has witnessed a dramatic increase in the number of publications studying glia and
pain. Numerous reviews have been published in high-impact journals to address this
topic[24,52,68,80,160,164,200,209,247,273]. Here we provide a comprehensive and updated
review of glia and pain by integrating recent advances in both the pain and glial research
fields.

Glial cells in the CNS consist of 3 major groups: astrocytes, microglia, and oligodendrocytes
[69]. Glial cells in the PNS consist of satellite glial cells (SGCs) in the dorsal root ganglia
(DRGs) and trigeminal ganglia (TGs) and Schwann cells in the peripheral nerves. This
review will cover 3 types of glia—microglia,astrocytes, and SGCs—as their roles in pain
regulation are well documented.

1.1. Microglia

Microglia are macrophage-like cells in the CNS that originate from bone marrow-derived
monocytes that migrate during perinatal development. They are heterogeneously distributed
throughout the CNS. Under normal conditions, microglia are not as quiescent as many
investigators originally thought, as it has been shown that microglia actively sense their
environment with their ramified processes [93,175,199]. Notably, microglia dynamically
interact with synapses to modulate their structures and functions in healthy brain [246].
During development, microglial processes can engulf synapses, and synaptic pruning by
microglia, which involves the activation of the complement system, is necessary for normal
brain development. [186,221].

Microglia are further activated after various insults such as nerve injury, by displaying
morphological changes, such as a change from ramified to amoeboid shape [57] and
upregulation of microglial markers (CCR3/CD11b, major histocompatibility complex Il
[MHC I1], and ionized calcium-binding adaptor molecule-1 [IBA1]) [93,227] (Table 1).
After peripheral nerve injury, microglia in the spinal cord undergo rapid proliferation
[14,23,55,151], and this proliferation is already very prominent 2 days after spared nerve
injury [227].

Numerous studies have demonstrated a critical role of microglia in the development of
neuropathic pain [43,113,197,252], as well as acute inflammatory pain [229,311].
Minocycline, a nonselective inhibitor of microglia, has been shown to reduce neuropathic
pain, inflammatory pain, and postoperative pain [13,86,100,197], but its role in reducing the
established late-phase neuropathic pain is limited [197]. Importantly, recent progress has
identified a large number of molecules that are induced in microglia after painful injuries,
especially nerve trauma (Tables 1-4).
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1.2. Astrocytes

Astrocytes are the most abundant cells in the CNS and were historically regarded as support
cells. Work over the past decade indicates that astrocytes play multiple active roles in acute
and chronic neuronal diseases such as seizure, stroke, and ischemia [133]. Unlike microglia
and oligodendrocytes, astrocytes form physically coupled networks mediated by gap
junctions, which, among other functions, facilitate intercellular transmission of Ca2*
signaling and exchange of cytosolic contents, and display oscillations in ion permeability
through astrocytic networks. Gap junction communication is mediated by homo- and
heteromeric associations of hemichannels, such as connexin-43 (Cx43), the predominant
connexin expressed in astrocytes [27]. Although astrocytes are typically immune labeled by
glial fibrillary acidic protein (GFAP), GFAP immunoreactivity labels only major branches
and processes of astrocytes. The actual territory occupied by an astrocyte is much larger than
that revealed by GFAP immunostaining. Of note, each astrocyte forms a non-overlapping
territory or domain [106,133], which collectively resemble a lattice framework, appearing
crystalline in nature. Although the implications of this organization are not fully understood,
it becomes lost when astrocytes transition to reactive states [181]. In addition, astrocytes
have extensive contacts with both synapses and cerebral blood vessels, and control the
increase in blood flow evoked by synaptic activity. The astrocyte-mediated blood flow
increase is fundamental to the bloodoxygen-level-dependent (BOLD) signal detected by
functional magnetic resonance imaging (fMRI) [106].

It is estimated that a single astrocyte can enwrap 140,000 synapses and 4 to 6 neuronal
somata, and can contact 300 to 600 neuronal dendrites in rodents. [22,69,180]. A close
contact with neurons and synapses makes it possible for astrocytes not only to support and
nourish neurons but also to regulate the external chemical environment during synaptic
transmission.

The growing appreciation for active roles of astrocytes has led to the proposal of a “tripartite
synapse” theory, based on the facts that (1) glia respond to neuronal activity with an
elevation of their internal Ca2* concentration and trigger the release of chemical transmitters
from glia themselves, and (2) glial transmitters cause feedback regulation of neuronal
activity and synaptic strength. According to this theory, astrocytic processes are active
components of synapses, in addition to pre- and post-synaptic components [7]. Although
active contribution to synaptic activity remains a possibility, several recent studies have
challenged the theory of the tripartite synapse, by demonstrating that alterations in astrocytic
Ca?*do not modulate synaptic transmission[4,172,193]. In reviewing these conclusions,
however, it is important to note that most of the classical studies of the tripartite synapse are
based on electrophysiological analysis of acute slices prepared from rodent pups. Since the
expression of membrane proteins as well as neural circuits undergo significant changes
during development [16,61], it is possible that the concept of receptor-mediated
Ca?*signaling as a key feature defining astrocytic participation in higher neural function will
be expanded to include other intracellular signaling pathways. Of note, glutamate-dependent
neuroglial CaZ*signaling differs between the young and adult rodent brain [223]. Thus,
alternative pathways for astrocytic modulation of synaptic transmission exist: 1 of the
essential housekeeping duties of astrocytes is to maintain potassium hemostasis. Recently, it
has been shown that receptor-mediated increases in astrocytic Ca2*can modulate neural
network activity by active uptake of extracellular K* [263]. Because the extracellular
concentration of K*is an important determinant of the resting membrane potential and
thereby of neuronal activity, active uptake of K*represents a simple yet powerful tool for
rapid modulation of neural networks.

Studies using astroglial toxins (eg, flurocitrate and a-aminoadipate), astroglial aconitase
inhibitor (sodium fluoroacetate), or inhibitors of the astroglial enzyme glutamine synthetase
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(eg, methionine sulfoximine) in adult animals suggest that astrocytes are important both for
the induction and maintenance of inflammatory and for neuropathic pain
[30,31,69,83,110,161,184,200,272]. Proliferation of spinal cord astrocytes has been
demonstrated in models of neuropathic pain, such as rhizotomy [151] and spinal nerve
ligation [248]. Conversely, inhibiting astrocyte proliferation in the spinal cord was shown to
reduce neuropathic pain [248].

1.3. Satellite glial cells

Satellite glial cells (SGCs) are prominent glial cells in the PNS. They are found not only in
sensory glia (DRGs and TGs) but also in sympathetic and parasympathetic ganglia. Like
Schwann cells, SGCs are derived from neural crest cells. SGCs are characterized by thin
cellular sheaths that surround the individual neurons. They exhibit many similarities to
astrocytes: (1) both express the glial markers GFAP, S100, and glutamine synthetase; and
(2) both form gap junctions [89]. The number of SGCs in DRGs and TGs is muchlower than
that of astroctyes in the spinal cord. Unlike astrocytes, each SGC contacts only 1 neuron.
Strikingly, the gap of extracellular space between the SGC sheath and the associated
neuronal plasma membrane measures only 20 nm, allowing for close interactions and
effective signaling between neurons and SGCs [89]. Emerging evidence suggests that SGCs
are activated after painful injuries and play an active role in the development of persistent
pain [29,54,91,107,150]. SGCs also exhibit enhanced coupling in persistent inflammatory
and neuropathic pain [54,295].

2. Different activation states of glia after painful stimuli and injuries

After painful stimuli and injuries, glia exhibit variable alterations in functions and
morphologies, including the following: (1) ionic changes (eg, intracellular Ca2*rises in
astrocytes); (2) posttranslational regulation (eg, phosphorylation of mitogen-activated
protein kinases [MAPK]); (3) translational and transcriptional modulation (eg, modulation
of surface molecules, glial markers, pro- and anti-inflammatory mediators); (4)
morphological changes (eg, hypertrophy); and (5) proliferation. These changes are
associated with different activation states of glia (Fig. 1). Below we discuss activation states
that are frequently measured in the pain research field.

2.1. Glial reaction: Changes in glial markers and/or morphology

Most studies define glial activation as upregulation of the glial markers such as CCR3/
CD11b, IBA1, and GFAP, which are often, but not always, associated with morphological
changes (eg, hypertrophy or process retraction/extension). Thus, we refer to this glial
activation state as glial reaction.

Observations that nerve injury induces microglial responses date back to the 1970s [3].
Microglial reaction (microgliosis) in the spinal cord has been intensively investigated after
peripheral nerve injury. Nerve trauma induces very robust microglial reaction, such as
hypertrophy and upregulation of the microglial markers CD11b, IBAL, and CD68 in the
spinal cord and brainstem[118,252,300] (Fig. 2). IBA1 is probably the most widely used
marker for microglial reaction in the pain field, partly because the IBAL antibody from
Wako Chemicals works better than other antibodies of microglial markers. As expected,
microglial reaction is also very robust after spinal cord injury [86,102]. Furthermore, chronic
opioid exposure, streptozotocin-induced diabetic neuropathy, and surgical incision result in
microglial reaction [49,192,275,310]. However, microglial reaction is less evident after bone
cancer [98] and chemotherapy-induced neuropathy [297,307], depending on the doses of
chemotherapy drugs and severity of nerve damage after tumor growth (as shown by ATF-3
expression in DRG neurons) [23,303]. Intra-articular but not intraplantar injection of
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complete Freund’s adjuvant (CFA) induces microglial reaction[222], because of deep tissue
(joint) injury and possible axonal injury (Table 1). Interestingly, in young rats (P10),
nerveinjury-evoked spinal microglial reaction is not so evident, in parallel with the absence
of nerve injury-induced neuropathic pain in these young animals [170,256]. Furthermore,
prior neonatal injury can “prime” the spinal microglial response to adult injury, resulting in
enhanced microglial reactivity [13]. Microglia can also be primed by previous insult in
adults, leading to enhanced pain intensity and duration of the second insult [87].

Compared to microglial reaction, astrocyte reaction in the spinal cord is more general and
evident after painful injuries [69]. Robust astrocyte reaction is induced not only by nerve
trauma and spinal cord injury [75,76,173,316], but also by chronic opioid exposure [214],
intraplantar or intra-articular CFA injection[70,83,198,222], bone [98] and skin cancer [67],
chemotherapy, and human immunodeficiency virus (HIV)-induced neuropathy[297]. In
addition, it appears that astrocytic reaction is more persistent than microglial reaction. It has
been shown that GFAP and CD11b upregulation peaks at 150 and 14 days after nerve injury,
respectively, although CD11b upregulation remains after 150 days[298]. GFAP upregulation
is also prominent 9 months after spinal cord injury [85,173]. Although most studies have
focused on glial reaction in the spinal cord and brainstem, astrocyte reaction has also been
found in the forebrain, such as the anterior cingulate cortex, which contributes to affective
pain [28]. One caveat is that immunohistochemistry of some GFAP antibodies may detect
conformational or solubility changes or post-translational modifications of the protein but
not actual changes in protein expression, because of different fixation conditions [15,56].
Thus, it is ideal to validate the results of GFAP immunohistochemistry with different
antibodies and different methods such as Western blot and quantitative polymerase chain
reaction (PCR).

Less is known about SGC reaction (GFAP upregulation) after painful injuries. SGC reaction
is induced not only by nerve injury[150,295] but also by inflammation [235,236] in DRGs
and TGs. Nerve injury further results in SGC proliferation [107]. SGCs reaction after nerve
injury and DRG compression is very rapid, becoming evident within 4 hours. This reaction
peaks at 1 week but declines after 3 weeks. This time course of SGC reaction suggests a
possible role of SCGs in the induction and early maintenance of neuropathic pain [150,295].
Administration of glial toxin to DRGs has been shown to reduce neuropathic pain [150].
Also, there is increased coupling between SGCs after nerve injury [185,295] and
inflammation [54]. Interestingly, even acute opioid treatment after a subcutaneous injection
results in marked SGC reaction in DRGs at 2 hours when morphine analgesia declines [18]
(Table 1).

2.2. Phosphorylation of MAPKs and Src in glia

The MAPK family includes 3 major members: extracellular signal-regulated kinase 1 and 2
(ERK1 and ERKZ2, respectively), p38, and c-Jun N-terminal kinases (JNK)). ERKS5 is a new
family member and was shown to be activated in spinal microglia after nerve injury [177].
MAPK pathways play an important role in intracellular signaling in neurons and glia, and
both are required for the genesis of persistent pain [109,178]. Interestingly, different
MAPKSs exhibit distinct activation (phosphorylation) patterns in glial cells after painful
injuries [109] (Table 2).

Numerous studies have shown increased phosphorylation (activation) of p38 (P-p38) in
spinal cord microglia after nerve injury[118,136,251] (Fig. 2), spinal cord injury [46,86],
formalin-induced acute inflammatory pain [229], surgery-evoked postoperative
pain[192,275], and chronic opioid exposure [47]. Nerve injury also activates microglial p38
in the trigeminal nucleus [194]. It has been shown that the b isoform of p38 (p38b) is
expressed in microglia[228]. In addition, P-p38 is induced in neurons and SGCs of DRGs
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following nerve injury [118,179] and also in SGCs of TGs after inflammation in the
temporomandibular joint [65].

P-JNK is induced in spinal astrocytes after nerve injury [316], CFA-induced persistent
inflammatory pain [70], bone cancer[267], and melanoma-induced skin cancer [67].
Consistently, nerve injury also activates the upstream activator of JNK, the transforming
growth factor-activated kinase-1 (TAK1), and the downstream effector of JINK, c-Jun in
spinal astrocytes [125,316]. Among several JNK isoforms (JNK 1,2,3), JINK1 was shown to
be expressed in spinal astrocytes [70].

P-ERK induction in glia after injury is highly dynamic: induction in spinal microglia
corresponds to the early-phase (first week), and gradually transitions to astrocytes in the late
phase after nerve injury and bone cancer [268,314]. CFA also induces P-ERK in spinal
astrocytes in the late phase [279]. Furthermore, nerve injury evokes P-ERK in SGCs of
DRGs [314], and temporomandibular joint inflammation elicits P-ERK in SGCs of TGs
[65].

MAPKSs are activated by proinflammatory mediators [109] and inactivated by phosphatases,
such as MAPK phosphatase (MKP1,2,3). For example, P-p38 expression in spinal microglia
after nerve injury can be suppressed by MKP3 [171]. Activation of CB2 in microglia was
shown to upregulate MKP1 and MKP3, leading to a reduction of P-ERK in microglia [202].
Inflammation induces rapid upregulation of MKP1, MKP2, and MKP3 in SGCs of TGs
[65], which may regulate the resolution of inflammatory pain.

Mounting evidence indicates that activation of MAPKSs in spinal cord glial cells is essential
for the development of persistent pain[109]. Thus, intrathecal injection(s) of selective
inhibitors of MEK (ERK kinase), p38, and JNK, as well as antisense knockdown of ERKS5,
attenuated inflammatory, neuropathic, and cancer pain in rats and mice [109]. Systemic
injection of p38 inhibitor also reduced spinal nerve ligation-induced mechanical allodynia in
mice[113]. Upregulation of spinal MKP-3 via gene therapy attenuates neuropathic pain by
suppressing P-p38 [171].

The importance of MAPK pathways for neuropathic pain has also been demonstrated in
human beings. In HIV patients with neuropathic pain, P-ERK, P-p38, and P-JNK levels in
the dorsal horns are significantly increased, compared to those in HIV patients without
neuropathic pain [211]. In a double-blind, placebo-controlled clinical trial, oral delivery of a
selective p38 inhibitor, dilmapimod (SB-681323) attenuated neuropathic pain in patients
with nerve trauma, radiculopathy, or carpal tunnel syndrome [6].

Nerve injury also induces phosphorylation of Src family kinases (Src, Lyn, Fyn) in spinal
microglia [126,250]. Intrathecal infusion of a Src inhibitor (PP2) reduced nerve ligation-
elicited neuropathic pain. Of interest, PP2 suppressed the activation of ERK but not p38 in
spinal microglia [126].

2.3. Regulation of receptors, channels, and transporters in glia

As shown in Table 3, multiple receptors, channels, and transporters are expressed in glial
cells and are regulated in different pain conditions. Although these molecules are not
secreted, they play active roles in glial intracellular signaling by activating the MAPK
pathways and inducing the synthesis, release, and uptake of the secreted molecules (Table
4).

ATP modulates glial activation via activating P2X (ion channels) and P2Y receptors
(GPCR-coupled), and these ATP receptors gate microglial signaling for neuropathic pain
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[244,253]. Peripheral nerve injury upregulates P2X4, P2X7, P2Y6, and P2Y12 in spinal
microglia; and, furthermore, neuropathic pain is reduced after pharmacological inhibition,
antisense knockdown, or genetic deletion of P2X4, P2X7, P2Y6, or P2Y12
[135-137,215,243,244,252,253]. Mice lacking the P2x4 gene display diminished
inflammatory pain and blunted neuropathic pain [249]. P2Y12 is also induced in SGCs of
TG after nerve injury, and injection of a P2Y12R antagonist into TG reduces trigeminal
neuropathic pain [124]. Moreover, chronicopioid treatment upregulates P2X4 and P2X7 in
spinal microglia, and opioid tolerance is prevented after spinal knockdown of P2X4 or P2X7
[99,108,310]. However, a recent study demonstrated that opioid-induced hyperalgesia but
not tolerance is mediated by opioid receptor-dependent expression of P2X4 in microglia
[60].

Toll-like receptors (TLRs) are known to regulate innate immunity and have been strongly
implicated in glial activation[152,174]. Lipopolysaccride (LPS), an agonist of TLR4, is
highly potent in activating microglia. It also activates TLR4 in astrocytes[152]. Of note,
spinal microglial reaction and neuropathic pain after nerve injury are reduced in TIr2
knockout mice [130] and Tlr4 mutant mice [238]. Arthritic pain in the late phase is also
reduced in TIr4 knockout mice [33]. Strikingly, male but not female mice with Tir4
mutation exhibit reduced neuropathic pain [168], suggesting sex differences in TLR4 and
microglial signaling. Chronic morphine was shown to induce glial responses via activation
of TLR4 [271]. Of note, opioid-inactive isomers were shown to induce spinal
proinflammatory responses via activation of TLR4[104]. Pharmacological blockade of
TLR4 signaling in vivo attenuated development of analgesic tolerance, hyperalgesia, and
opioid withdrawal behaviors in rats [105]. In contrast, Ferrini et al. showed that chronic
morphine-induced hyperalgesia is intact in TIr4 mutant mice [60].

Microarray analysis reveals that the complement components (eg, C1q, C3, C4, C5) are
among the most regulated transcripts in the spinal cord following nerve injury. In particular,
these compliment components are upregulated in spinal microglia. Induction of C5aR in
spinal microglia has been implicated in neuropathic pain sensitization [82].

Increasing evidence suggests that chemokine receptors contribute to the pathogenesis of
chronic pain via modulating glial activation and neural plasticity [1,35,68,280]. CX3CL1
(fractalkine) and CCL2 (MCP-1) are 2 of the most well-studied chemokines for pain
modulation. Although a chemokine normally activates multiple receptors, CX3CR1 appears
to be the only known receptor for CX3CL1 and is exclusively expressed in microglia. Thus,
Cx3cr-1GFP mice have been used for studying the localization and activation of microglia
[175]. Nerve injury and joint inflammation induce a robust upregulation of CX3CR1 in
spinal microglia, and spinal blockade of CX3CR1 with a neutralizing antibody inhibited
inflammatory and neuropathic pain [165,222,257,315]. Consistently, mice lacking Cx3crl
exhibited reduced inflammatory and neuropathic pain [219]. Compared to selective
microglial expression of CX3CR1, CCR2, a major receptor for CCL2, is expressed in both
neurons and microglia [2,72,81,84,121,305]. Nerve injury-induced spinal microglial reaction
is abolished in Ccr2 knockout mice[300], whereas intrathecal CCL2 causes microgliosis in
the spinal cord [239,300]. Neuropathic pain is impaired in Ccr2 knockout mice or after
spinal injection of CCR2 antagonist [2,300,305]. Activation of CCR2 by CCL2 also rapidly
modulates DRG neuronal sensitivity and spinal cord synaptic plasticity [72,81,315].

Like LPS, interferon-y (IFN-v) is a strong activator of microglia, by means of inducing
microglial reaction, P2X4 upregulation, and Lyn phosphorylation [250]. Nerve injury
upregulates INF-y receptors in spinal microglia, and nerve injury-induced microglial
reaction and mechanical allodynia are abrogated in Ifny receptor knockout mice [250].
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Astrocytes and SGCs are characterized by forming gap junction-coupled networks, leading
to the transmission of Ca2*signaling through networks [7,54]. Connexins are the major
structural components of gap junctions, and Cx30 and Cx43 are known to be expressed by
astrocytes [27]. Cx43 is upregulated in astrocytes after nerve lesion, spinal cord injury, and
inflammation[27,62,77,83,145]. Inhibition of gap junction function by carbenoxolone
(CBX), a nonselective gap junction inhibitor, reduces inflammatory and neuropathic pain
[140,218]. In addition to modulating gap junction communication, recent studies also
proposed a paracrine signaling of Cx43 to release key astrocytic mediators such as ATP and
glutamate [123,148,240,262]. Unopposed Cx43 hemichannels are ideal for modulating ATP
release pathways, as the biophysical properties of these hemichannels enable them to
conduct high levels of ATP efflux [17,42,190]. Of note, SCl-induced ATP release in the
spinal cord is diminished after Cx43 blockade [45]. In double knockout mice lacking Cx30/
Cx43, the development of neuropathic pain (heat hyperalgesia and mechanical allodynia) is
prevented, and spinal astroglial reaction is reduced [27]. Nerve injury was shown to
upregulate Cx43 in SGCs of TGs. Of interest, reducing Cx43 expression in SGCs via RNAI
reduced neuropathic pain in nerve-injured rats but induced pain-like behaviors in normal
rats, suggesting different roles of SGCs-Cx43 in pain modulation in non-injured vs injured
animals [183]. Notably, the gap junction blocker CBX also inhibits pannexin-1 (PNX1),
which is expressed in astrocytes and modulates ATP release [74]. The role of PNX1 in pain
control needs further investigation.

The following ion channels have also been implicated for glial signaling in pain. The
K*channel subunit Kir 4.1 is expressed in SGCs, and silencing this K*subunit with RANi
leads to pain hypersensitivity [261]. The water channel aquaporin-4 (AQP4) is induced in
spinal cord astrocytes after spinal cord injury [173], and mice lacking Aqp4 display
decreased pain sensitivity (hypoalgesia) [9]. TRPMZ2 is expressed in microglia and
contributes to spinal cord microglial activation. Inflammatory and neuropathic pain are
impaired in Trpm2 knockout mice [95].

The glutamate transporters such as GLT-1 and GLAST are expressed in astrocytes (Table 3)
and regulate the clearance of glutamate from synaptic clefts and extracellular space, leading
to altered glutamatergic transmission and neuronal plasticity[203,204]. Nerve injury and
chronic morphine elicit a sustained down-regulation, after an initial upregulation, of
glutamate transporter-1 (GLT1) and glutamate and aspartic acid transporter (GLAST) in the
spinal cord [158,224,288]. Inhibition of glutamate transporters results in an elevation in
spinal extracellular glutamate and spontaneous pain [147,278]. Consistently, GLT-1 gene
delivery to the spinal cord attenuates inflammatory and neuropathic pain [157], supporting a
role of astroglial glutamate transporters in the resolution of chronic pain.

Several enzymes are also actively involved in glial signaling in pain. Cyclooxygenase-1 and
-2 (COX-1 and COX-2, respectively) are induced in microglia after surgical incision and
nerve injury to facilitate postoperative and neuropathic pain [306,312,313]. NADPH oxidase
2 (Nox2) expression is induced in dorsal horn microglia after L5 spinal nerve transection,
and Nox2-deficient mice showed decreases in oxidative stress, microglial reaction, and
proinflammatory cytokine expression in the spinal cord, as well as neuropathic pain[131].
Of interest, G-protein-coupled receptor kinase (GRK2) in microglia was implicated in the
transition from acute to chronic inflammatory pain. Spinal microglia/macrophage GRK2
expression is reduced after inflammation, leading to the activation of microglia and
persistent pain via p38 and interleukin-1p (IL-1p) signaling [283].

Furthermore, nerve injury upregulates the transcriptional factors in spinal cord glia,
including c-Jun in astrocytes [316], signal transducers and activators of transcription 3
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(STAT3) in microglia [53] and astrocytes [248], and nuclear factor-xB (NF-xB) in microglia
[227] and astrocytes [167], to enhance and maintain neuropathic pain.

Finally, painful injuries also induce upregulation of anti-inflammatory receptors in glia for
the resolution of acute pain. Inflammation increases lipoxin receptor ALX expression in
spinal cord astrocytes, and lipoxin A4 reduces inflammatory pain via inhibiting JNK
phosphorylation in astrocytes [231]. Lipoxin A4 also attenuates morphine tolerance via
modulating glial activation and cytokine expression [117]. Nerve injury increased
cannabinnoidreceptor CB2 expression in spinal microglia [299], and CB2 agonists
suppressed microglial reaction and neuropathic pain [282]. Of interest Cb2 knockout mice
displayed increased microglial and astrocytic reactivity in the spinal cord and enhanced
neuropathic pain, whereas transgenic mice overexpressing Ch2 showed attenuated glial
reactivity and neuropathic pain [196].

2.4. Regulation of cytokines, chemokines, growth factors, and proteases in glia

A key issue regarding glial control of pain is to understand how glial mediators are produced
and released. As shown in Table 4, glia produce both large molecules (cytokines,
chemokines, growth factors, and proteases) and small molecules (glutamate, ATP, D-serine,
and prostaglandin E>(PGE;). These glial mediators can modulate neuronal and synaptic
activity and pain sensitivity.

Proinflammatory cytokines such as tumor necrosis factor-a (TNF-a), IL-1p, and IL-6 are
among the most well-studied glial mediators. They are upregulated in spinal cord glia after
nerve in-jury, inflammation, bone cancer, and chronic opioid exposure, and they contribute
to the development of and maintenance of inflammatory, neuropathic, and caner pain and
morphine tolerance[52,213,230,273]. TNF-a is primarily produced by microglia and plays
an essential role in the generation of central sensitization and persistent pain
[92,289,301,308], in addition to its well-documented role in modulating peripheral
sensitization [119,207,216]. IL-1p is induced in astrocytes after bone cancer, inflammation,
and nerve injury [83,274,279,303]. IL-1p can also be produced by microglia and neurons in
the spinal cord [36,51,92]. Inhibition of spinal and brain IL-1f signaling reduces
inflammatory, neuropathic, and cancer pain [83,163,232,274,303] and enhances morphine
analgesia [120,270]. IL-18 is highly related to IL-1p, and both require caspase-1 and
inflammasomes for active cleavage[146]. Nerve injury induces IL-18 expression in spinal
microglia[34,167]. Furthermore, painful injuries induce cytokine expression in peripheral
glia. For example, nerve injury and CFA inflammation increase IL-13 expression in SGCs of
DRGs and TGs [127,234]. Of note, acute morphine upregulates IL-1f only in peripheral glia
(SGCs) in DRGs but not in central glia (microglia and astrocytes) in the spinal cord [18].

Chemokines are expressed in glial cells, particularly in astrocytes in the CNS [68], as well as
in neurons [84]. In primary cultures of astrocytes, TNF-a induced rapid expression of
CCL2, CXCL10, and CXCL1 [72]. Spinal injection of TNF-a-activated astrocytes results in
persistent mechanical allodynia via releasing CCL2 [71]. Spinal nerve ligation also induces
CCL2 in spinal astrocytes, and intrathecal administration of an MCP-1 neutralizing antibody
reduces neuropathic pain [72]. CCL2 expression is further increased in astrocytes of the
medullary dorsal horn and contributes to trigeminal neuropathic pain [305]. Consistently,
mice with CCL2 overexpression in astrocytes display pain hypersensitivity [162].

Growth factors are known to be induced in spinal glia by nerve injury. In particular, nerve
ligation upregulates brain-derived neurotrophic factor (BDNF) in spinal microglia, via
activation of P2X4 and p38 [244,254]. Spinal injection of ATP-activated microglia is
sufficient to induce mechanical allodynia via releasing BDNF, and, conversely, neuropathic
pain is suppressed by spinal blockade of the BDNF receptor TrkB [43]. Furthermore,
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treatment of microglial cultures with morphine increases BDNF release, which does not
require p-opioid receptor and TLR [60]. BDNF is also induced in DRG neurons after nerve
injury and can be released from primary afferents in the spinal cord [66,143]. Unlike BDNF,
basic fibroblast growth factor (bFGF or FGF-2) is induced in reactive astrocytes of the
spinal cord in the late phase (3 weeks) of nerve injury [110]. Intrathecal infusion of bFGF
produces persistent activation of spinal astrocytes (upregulation of P-JNK and GFAP) and
sustained mechanical allodynia [110]. By contrast, intrathecal administration of a bFGF-
neutralizing antibody attenuates established neuropathic pain [156]. Therefore, bFGF
maintains chronic pain via activation of astrocytes.

Proteases are also upregulated in spinal glia after nerve injury. Notably, spinal nerve ligation
induces matrix metalloprotease-2 (MMP-2) in spinal cord astrocytes and DRG SGCs in the
late phase of neuropathic pain to maintain neuropathic pain, via activation of IL-1f3 and ERK
[127]. Nerve injury further induces cathepsin S in spinal microglia [37] and tissue type
plasminogen activator (tPA) in spinal astrocytes [138] to enhance neuropathic pain.

A recent study showed that nerve injury increases the expression of thrombospondin-4
(TSP4), an extracellular matrix glycoprotein, in spinal cord astrocytes. This increase is not
only correlated but also required for the development neuropathic pain [132]. TSP4 release
from astrocytes can promote synaptogenesis. Of great interest, the a28-1 calcium channel
subunit, a possible target of gabapentin, was shown to be a neuronal receptor of TSP4. Thus,
gabapentin may inhibit neuropathic pain via modulating synaptogenesis [58]. Astrocytes
also produce small molecule mediators such as D-serine, ATP, and glutamate to enhance
pain states [69]. Interestingly, inhibition of glycinergic transmission, which is known to
occur in chronic pain, results in D-serine release from astrocytes to generate tactile allodynia
[166]. D-serine is known as an agonist of glycine site of N-methyl-D-aspartate (NMDA)
receptors [176].

In addition to the pro-inflammatory and pronociceptive mediators, glial cells may also
produce anti-inflammatory and antinociceptive mediators, such as IL-4, IL-10, and TGF-p3
[92] for the recovery and resolution of pain [41,92,94,114,164]. Enhancement of
endogenous production of interleukin-10 via gene therapy has been shown to produce long-
term relief in neuropathic pain[212]. Of interest, a possible off-target effect of high doses of
siR-NAs is to induce IFN-a in spinal astrocytes for eliciting antinociceptive effects [237].

3. Neuronal—glial and glial—glial interactions in persistent pain

Because pain is conveyed only by neurotransmission in the neural circuits, glia must interact
with neurons to modulate pain sensitivity. Here we focus on neuronal-glial (neuronal—glial)
(Section 3.1) and glial-glial (Section 3.2) interactions in the CNS under persistent pain
conditions (Fig. 3). We also discuss neuroglial interactions in the PNS after painful injuries
and acute morphine treatment (Section 3.3) (Fig. 4).

3.1. Neuronal—glial interactions: Signals from neurons to glia

It is generally believed that injury-induced spontaneous discharge from primary afferents
drives neuropathic pain[149,155,286]. Several lines of evidence suggest that nerve injury-
released signaling molecules from primary afferent central terminals trigger microglial
activation (Fig. 3). A brief, lowfrequency electrical stimulation of the peripheral C-fibers
was shown to induce spinal microglial reaction without causing noticeable nerve injury [97].
Sustained nerve blockade via bupivacaine microspheres prevented nerve injury-induced
microglial responses (CD11b expression and P-p38 induction) [276,287]. However,
inhibition of C-fiber activity alone in the sciatic nerve with resininferatoxin may not be
sufficient to prevent spared nerve injury-induced microglial activation [226], suggesting
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possible contribution of large A-fibers. Consistently, deletion of vesicular glutamate
transporter-2 (vGIluT2) in Nav1.8-expressing nociceptors did not prevent nerve injury-
induced spinal microglial reaction, suggesting that glutamate release from nociceptors may
not be sufficient to drive microglial reaction [208]. Although spontaneous activity is
important for the initiation of microglial activation, it is not so critical for the maintenance
of microglial activation [276].

Chemokines, such as CCL2, CCL21, and CX3CL1, are ideal for mediating neuronal—
microglial interactions, given the distinct expression of their ligands and receptors. Nerve
injury induces CCL2 and CCL21 expression in DRG neurons [19,281,298]. Stimulation of
the dorsal root results in activity-dependent CCL2 release in the spinal cord [239,255].
Chemokines may activate microglia via P2X4 signaling: CCL2 induces the surface
trafficking of P2X4[242], and CCL21 increases the expression of P2X4 [19]. Activation of
P2X4 resulted in BDNF expression and release from microglia via p38 activation [245].

Proteases have also been implicated in microglial activation. Nerve injury induces rapid and
transient upregulation of MMP-9 in DRG neurons, which is essential for the early-phase
development of neuropathic pain [115]. Activity-dependent release of MMP-9 from primary
sensory neurons was implicated in microglial activation, in part through IL-1b cleavage
[127]. Cathepsin S is also involved in microglial-neuronal-microglial signaling. Nerve
injury-evoked release of cathepsin S from microglia results in further activation of
microglia, through the cleavage and release of CX3CL1 from primary sensory neurons
[35,37].

The growth factor neuregulin-1 (NRG1) plays an active role in microglial activation.
Although NRGL1 is expressed in DRG neurons, its receptor, erbB2, is expressed in microglia.
NRG1 was shown tostimulate microglial proliferation, chemotaxis, and IL-1b release via
erbB2 [26]. Blockade of the erbB2 receptor or sequestration of endogenous NRG1 reduces
nerve injury-induced microglial proliferation, p38 activation, and neuropathic pain [26].
NRG1 also induces microglial proliferation via phosphorylation of ERK and AKT [23]. In
addition, release of the neuropeptide CGRP from primary sensory neurons is not only
involved in neurotransmission but also contributes to microglial activation after chronic
morphine exposure [269].

p38 MAPK serves as a key signaling molecule in microglia by integrating various input to
microglia [112]. Microglia p38 is activated by ATP [79], TNF-a [230], and IL-1b [225].
After nerve injury, p38 is phosphorylated following the activation of multiple receptors,
such as ATP receptors (P2X4 and P2Y12) [136,245] and chemokine receptors (CCR2 and
CX3CR1) [2,315]. Microglial p38 is also activated by CGRP in chronic morphine-induced
tolerance [269]. Notably, minocycline inhibits microglial activation by inhibiting spinal
microglial p38 activation after inflammation and chronic morphine treatment [48,100].
Upon activation, p38 induces the synthesis and release of microglial mediators TNF-a,
IL-1B, and BDNF [277]. Although p38 is critical for the synthesis and release of
inflammatory mediators, it has a limited role in morphological changes (microgliosis) and
proliferation of microglia, which could be mediated by another MAPK family member,
ERK [25].

Neuronal signals are also important for the activation of astroytes. For example, neuronal
activity appears to drive astrocyte activation after nerve injury [287] and inflammation
[264]. Basic fibroblast growth factor (bFGF or FGF-2) is induced in primary sensory
neurons after nerve injury and has an active role in neuronastrocyte signaling. As a well-
known activator of astrocytes, bFGF elicits mitosis, growth, differentiation, and gliosis of

Pain. Author manuscript; available in PMC 2014 December 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Page 12

astrocytes[110]. Nerve injury not only induces bFGF in DRG neurons [116] but also
produces a delayed bFGF upregulation in astrocytes for maintaining neuropathic pain [110].

3.2. Glial—-glial interactions

Astrocytic reaction is often preceded by microglial reaction, and microglial activation is
known to drive astrocyte activation [197]. TNF-a, a key signal molecule produced by
microglia, causes rapid JNK activation in astrocytes [72]. Of interest, nerve injury elicits
IL-18 and IL-18R expression in spinal microglia and astrocytes, respectively, and IL-18
released from microglia was shown to activate IL-18R in astrocytes to upregulate NF-xB
and facilitate neuropathic pain [167].

On the other hand, astrocytes can also release signaling molecules to activate microglia.
After spinal cord injury, Cx43 is upregulated and gains a new function of paracrine
signaling, leading to the release of ATP and glutamate [123,148,240,262]. Increases
inextracellular ATP have been documented in a wide range of peripheral and central nervous
system injuries, such as sciatic nerve entrapment [159], traumatic brain injury [50,64], and
spinal cord injury [191,265]. ATP is critical for nerve injury-evoked microglial activation
via activation of P2X4, P2X7, P2Y6, and P2Y 12 receptors[244,253]. Of note, CCL2 is
induced not only in primary sensory neurons but also in astrocytes [72,281]. Although DRG-
CCL2 induces microglial activation, astrocytic-CCL2 may maintain microglial activation.
IFN-v, a strong microglial activator and neuropathic pain inducer [250], is also produced by
astrocytes [196].

Finally, microglia and astrocytes could be self-activated via autocrine or paracrine signals.
For example, bFGF is upregulated in spinal astrocytes after nerve injury to maintain
astrocyte activation [110]. Nerve injury-induced astrocytic MMP-2 upregulation in the late
phase can maintain astrocytic activation and neuropathic pain through IL-1p cleavage
(activation) and phosphorylation of ERK in astrocytes [127].

3.3. Neuronal—glial interactions in dorsal root and trigeminal ganglia in the PNS

SGCs in DRGs and TGs are tightly associated with sensory neurons via gap junction; and
gap junction communication between SGCs and SGC and neurons is greatly enhanced in
persistent pain conditions [54,90,91]. Nerve injury-induced SGC activation requires
neuronal activity and local inflammation [144,287]. Purinergic signaling is critically
involved in neuronal—glial communication in DRGs [29,304]. For example, activity-
dependent ATP release from neuronal soma activates P2X7 in SGCs [304], leading to TNF-
a release from SGCs, which can in turn act on surrounding neurons to increase their
excitability [119,216] (Fig. 4). ATP can also be released from SGCs to activate P2X3
receptor, which is expressed in primary sensory neurons and plays an important role in
peripheral sensitization [40,217].

Of note, MMP-9 mediates neuron-SGC interaction in DRGs after acute morphine treatment,
which can mask morphine analgesia[153] (Fig. 5). Systemic morphine administration was
shown to elicit rapid MMP-9 upregulation in DRG neurons in the recovery phase of
morphine analgesia (2 hours), which requires activation of pi-opioid receptors[153]. Notably,
morphine analgesia is enhanced and prolonged in Mmp9 knockout mice [153]. Acute
morphine also upregulates GFAP and IL-18 in SGCs of DRGs, and both require MMP-9
[18]. MMP-9 release from neurons results in IL-1f3 cleavage and release, which in turn
activates IL-1f receptors in sensory neurons to elicit action potentials [20]. IL-1B is known
to increase the excitability of sensory neurons via enhancing sodium currents and
suppressing potassium currents [20,233,236]. Of interest, IL-1f has also been shown to
mask morphine-induced analgesia [103,120]. Thus, targeting peripheral neuronal—glial
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interactions, in addition to previously recognized central neuronal—glial interactions, can
also enhance opioid analgesia.

4. Glial mediators modulate excitatory and inhibitory synaptic transmission

A key issue regarding glial control of pain is how glial mediators regulate synaptic
transmission. Strikingly, glial mediators can modulate spinal cord synaptic transmission at
very low concentrations. Although neurotransmitters (eg, glutamate, GABA, glycine, and
substance P) normally regulate neuronal and synaptic activity at micromolar concentrations,
glial mediators (cytokines, chemokines, and growth factors) can change synaptic activity at
nanomolar concentrations in vitro [43,72,128]. In particular, glial mediators can modulate
both excitatory and inhibitory synaptic transmission (Fig. 5). Although most studies used
young (3- to 5-week-old) and adult animals (rats and mice) for recording spinal neuronal
activities [43,72,128,189,296], some studies used neonatal animals [73,81,259]. It is well
known that the gene expression profiles of primary sensory and spinal cord neurons, glial
responses, as well as spinal cord pain circuits undergo dramatic changes in the first 2 weeks
after birth [16,61,172]. Thus, caution must be taken to interpret the data from neonatal
animals.

4.1. Modulation of excitatory synaptic transmission

Glial mediators can modulate excitatory synaptic transmission via pre-, post-, and
extrasynaptic mechanisms (Fig. 5). The effects of proinflammatory cytokines and
chemokines on excitatory postsynaptic currents (EPSCs) have been examined in lamina Il
neurons using ex vivo spinal cord slice preparations [293]. Although the EPSC frequency
change may result from presynaptic mechanisms (due to glutamate release from presynaptic
terminals), the EPSC amplitude increase is caused by enhanced signaling of glutamate
receptors (AMPA subtype) in post-synaptic sites.

Incubation of spinal cord slices with TNF-a, IL-1f, and CCL2 very rapidly (within minutes)
increased spontaneous EPSC (SEPSC) frequency [72,128,296]. Chronic exposure of cultured
dorsal horn neurons to IFN-vy also increased SEPSC frequency [260] (Fig. 5A), supporting a
possible presynaptic modulation. TNF-a increases SEPSC frequency via activation of
TRPV1 in presynaptic terminals, as this SEPSC increase is abolished in Trpvl knockout
mice. Single-cell PCR analysis indicates that TNF-a-responding lamina Il interneurons are
exclusively excitatory ones, because they all express vesicular glutamate transporter-2
(vGIuT2). These lamina Il neurons also receive input from TRPV1-expressing C-fibers and
make synapses to lamina-I projection neurons [241], forming aspinal circuit to mediate
TNF-a-induced pain. A recent study also demonstrated that TSP4, produced by astrocytes,
increased sEPSC frequency [132].

Glial mediators such as IL-1f3 and CCL2 also increase the amplitudes of SEPSCs, via
AMPA-mediated postsynaptic mechanisms (Fig. 5A). TNF-a is known to induce the
trafficking and surface expression of AMPA receptors in hippocampal neurons [12,220].
After spinal cord injury, TNF-a induces rapid trafficking of GluR2-lacking AMPARS to the
plasma membrane in spinal cord motor neurons [59]. Of note, inflammation induces a TNF-
a-dependent surface trafficking of GIluR1-AMPARSs in the dorsal horn [32]. Although
TNFR1 is the predominant receptor mediating the effects of TNF-a, both TNFR1 and
TNFR?2 are required for the induction of central sensitization [301,309].

Pro-inflammatory cytokines and chemokines further induce central sensitization via
extrasynaptic mechanisms (Fig. 5A). NMDA currents in lamina Il neurons, induced by bath
application of NMDA to spinal cord slices, are enhanced by IL-15, TNF-a, or CCL2
[72,128]. TNF-a increases NMDA receptor (NMDAR) activity through phosphorylation of
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ERK in dorsal horn neurons [292]. IL-1p induces phosphorylation of the NR1 subunit in
spinal cord neurons [302]. Astrocytic D-serine enhances NMDA currents via binding the
glycine site of NMDA receptors [201]. Interestingly, astrocytic glutamate release can be
detected as slow inward currents, via patch-clamp recordings in nearby neurons. Slow
inward currents are mediated by extrasynaptic NR2B receptors and induced in spinal dorsal
horn neurons after inflammation [10].

4.2. Modulation of inhibitory synaptic transmission

Reduction or loss of inhibitory synaptic transmission (disinhibition) in the spinal cord pain
circuit has been strongly implicated in the genesis of central sensitization and chronic
pain[8,44,169,294]. Disinhibition after peripheral nerve injury involves a trans-synaptic
reduction in the expression of the potassium-chloride co-transporter KCC2 and subsequent
disruption of anion homeostasis (chloride homeostasis) in spinal lamina I neurons. In some
cases, the shift in the transmembrane anion gradient can convert normally inhibitory anionic
synaptic currents to be excitatory [44].

Glial mediators such as BDNF, cytokines, chemokines, and PGE, can also modulate
inhibitory synaptic transmission via pre-, post-, and extrasynaptic mechanisms (Fig. 5B).
Presynaptically, IL-1p and IL-6 were shown to inhibit the frequency of spontaneous
postsynaptic currents (SIPSCs) in spinal lamina Il neurons [128]. Postsynaptically, IL-153
reduces the sIPSC amplitude [128]. PGE> inhibits glycinergic neurotransmission in the
dorsal horn via post-synaptic GIyR3 and the CAMP/PKA pathway [5,96].

At extrasynaptic sites, GABA and glycine currents, induced by bath application of GABA
and glycine, can be suppressed by IL-1a and 1L-6 [128]. BDNF acts on spinal lamina |
neurons to reverse GABA inhibition by altering chloride reverse potential [43]. Furthermore,
ATP or morphine-stimulated microglia result in a depolarizing shift in the anion reversal
potential by releasing BDNF[43,60]. Like nerve injury, administration of ATP-stimulated
microglia or pharmacological disruption of chloride transport in vivo alter the phenotype of
spinal lamina | output neurons, leading to neuropathic pain phenotypes [129]. TNF-a was
also shown to suppress action potentials in GAD67+ inhibitory neurons in spinal cord slices
[296]. Moreover, CCL2 and IFN-y inhibit GABA-induced responses in spinal cord neurons
[81,259].

It remains to be investigated how anti-inflammatory cytokines (eg, IL-4, IL-10, TGF-B)
regulate synaptic plasticity. It appears that IL-10 can suppress TNF-a-induced synaptic
plasticity (unpublished observations). In particular, the anti-inflammatory lipid mediators
such as resolvin E1 (RvEL) and neuroprotectin (NPD1) blocked TNF-a-induced synaptic
plasticity (SEPSC frequency increase)[292]. NPD1 and RvD2 further reversed
inflammation-induced synaptic plasticity and tetanic stimulation-induced spinal long-term
potentiation (LTP) [189].

Finally, the proinflammatory cytokines TNF-a, IL-10, and IL-6 also elicit long-term
neuronal plasticity in the pain circuit by inducing the phosphorylation of the transcription
factor cAMP response element-binding protein (CREB), leading to the transcription of
CREB-mediated pronociceptive genes (eg, cyclooxygenase-2 [COX-2], neurokinin-1
[NK-1]) in spinal cord neurons[111,128,206]. Of note, TNF-a is sufficient to induce spinal
LTP after nerve injury [154], and tetanic stimulation-induced spinal LTP is abolished in
TNFR1 or TNFR2 knockout mice [188].

4.3. Concluding remarks

In the past decade great progress has been made to demonstrate critical roles of glial cells,
such as microglia, astrocytes, and SGCs in the genesis of persistent pain. As evidence

Pain. Author manuscript; available in PMC 2014 December 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Jietal

Page 15

emerges, the list of glial-derived signaling molecules and mediators continues to grow
(Tables 1-4). Glia can communicate with neurons by “listening” and “talking” to neurons. It
is increasingly appreciated that chronic pain can manifest not only by neural plasticity but
also by dysfunction of glial cells. Under the normal physiological conditions, astrocytes and
SGCs provide trophic support to neurons and maintain the homeostasis of K*, glutamate,
and H,0 in CNS and PNS [258]. Astrocytes and SGCs could also “insulate” the neural
circuit of pain by forming a structural barrier and keep the circuit silent by releasing
inhibitory mediators [172]. Nerve injury-induced chronic pain is associated not only with
neuropathy but also with “gliopathy.” Astrocytes lose their ability to maintain the
homeostasis of K*and glutamate, leading to neuronal heperexcitability, as a result of higher
extracellular levels of glutamate and K*. Dysfunction of astrocytic water channel (AQP4)
will also result in edema in the CNS and PNS [258]. As a result of gliopathy, glia can no
longer insulate the pain circuit; instead they serve as an amplifier of pain, by producing
proinflammatory and pronociceptive mediators.

Painful injuries evoke rapid reaction of SGCs in the PNS, followed by microglial and
astrocytic reaction in the CNS. Most studies on glia and pain focus on microglia and
astrocytes in the spinal cord. Upon activation, presumably initiated by neuronal signals, glia
synthesize and release proinflammatory and pronociceptive mediators (eg, proinflammatory
cytokines and chemokines and growth factors) to enhance pain states, via activation of key
signaling pathways, such as the MAP kinase pathways. Activation of hemichannels (eg,
Cx43 and PNX1) and P2X7 results in the release of ATP and glutamate from astrocytes.
Importantly, glial mediators (eg, TNF-a, IL-1f, IL-6, CCL2, BDNF) can powerfully
modulate excitatory and inhibitory synaptic transmission at comparably lower
concentrations. Glial mediators (ATP, CCL2, IFN-y , bFGF, MMP-2) also result in further
activation of glial cells via paracrine or autocrine regulation. Last but not the least, glia may
also produce antiinflammatory and antinociceptive mediators for the resolution of acute
pain. Further inquiry is needed to determine whether failure in the production of these
resolution mediators leads to the transition from acute pain to chronic pain.

5. Remaining questions and future directions

5.1. Is glial activation associated with pain?

Despite the growing importance of glial cells in pain regulation, “glial activation” is not well
defined. Most studies in the field use glial reaction (upregulation of the glial markers IBAL,
CD11b, andGFAP to define the activation of microglia (IBA1/CD11b), astrocytes (GFAP),
and SGCs (GFAP) (Table 1). Although the upregulation of these markers is associated with
pain behaviors, especially in the induction phase, there are several caveats related to these
markers. First, dissociation between microglial marker expression and pain behaviors has
been reported by different groups [21,38,307]. Compared to microglial markers (IBA1 and
CD11b), the astrocytic marker GFAP is better correlated with pain behaviors, especially
after inflammation, bone cancer, chemotherapy, and HIV neuropathy[98,211,297,307].
Second, we should not exclude microglial activation if there is no change in IBAl
expression. Glial activation can also manifest as quick responses, such as Ca2*changes and
phosphorylation of signaling molecules (eg, MAPKS) that could occur within minutes after a
stimulation or insult. Indeed, sensory whisker stimulation was shown to evoke rapid
increases, within several seconds, in astrocytic cytosolic Ca2*in the barrel cortex of adult
mice [266]. Third, even under the activation states with upregulation of glial markers and
hypertrophy, microglia could still have different functional states by exhibiting either pro-
inflammatory (neurotoxic, M1) and anti-inflammatory (neuroprotective, M2) phenotypes
[93,284]. Finally, and importantly, glial reactivity and morphological changes do not
directly modulate pain. Neuronal activity and pain sensitivity are controlled by the glial
mediators (cytokines, chemokines, ATP, BDNF, glutamate). Thus, the regulation of glial
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signaling molecules and glial mediators after painful injuries (Tables 2—-4) could be better
associated with pain states than glial reactivity.

5.2. Can we target glia for pain therapy?

How can we design drugs to target glial activity for pain control? Do we really need glia-
selective drugs? Indeed, it is extremely difficult to design drugs that target only glial cells
without affecting neurons. Furthermore, elimination of glial cells with glia-selective toxins
may cause detrimental effects, given the supportive and protective roles of glia. Instead,
there are alternative strategies: (1) to target the MAPK signaling pathways (ERK, p38,
JNK), hemichannels (eg, Cx43 and PNX1), or P2X7 to suppress the release of glial
mediators; (2) to target the upstream activators of glia, such as P2X4, P2Y6/12, MMP-9/2,
and cathepsin S; and (3) to target the downstream mediators released by glia, such as TNF-
a, IL-1B, IL-6, or BDNF.

We should learn lessons from recent failures in 2 clinical trials: 1 trial with a glial
modulator, propentofylline, which showed no efficacy in reducing neuropathic pain in
patients with post-herpetic neuralgia [141]; another trial with a CCR2 antagonist AZD2423,
which showed no significant effects, compared to placebo, in post-traumatic neuralgia
patients [122]. The failures may result from multiple reasons, including lack of translation
from rodents to human beings, different ways of pain measurement in rodents and human
beings (evoked pain vs spontaneous pain), and different pain conditions tested in rodents
and human beings (nerve trauma-induced pain hypersensitivity in several weeks vs post-
herpetic/traumatic neuralgia after many years). Of note, propentofylline is a well-known
inhibitor of phosphodiesterase, and therefore could alter cAMP levels in glial and non-glial
cells [63]. Propentofylline is also an adenosine uptake inhibitor [63]. Compared to the
complete lack of effect of propentofylline, AZD2423 (150 mg) showed some trends toward
reduction in paroxysmal pain and paresthesia/dysesthesia, indicating that a CCR2 antagonist
may have some possible effects for some sensory components of pain [122]. Notably, the
variability between and within individuals was very high, in part because of the nature of a
multicenter trial. It is also a concern that inhibition of glial responses in the CNS cannot be
validated in this trial, because of the lack of effective imaging technique for detecting glial
responses (see Section 6.3).

Theoretically, it should be more effective for a drug to target both neurons and glia for pain
relief. For example, p38 is activated both in spinal cord microglia and DRG neurons, and
systemic p38 inhibitor has been shown to alleviate neuropathic pain in a clinical trial [6].
Recent studies have demonstrated that the anti-inflammatory and pro-resolution lipid
mediators such as resolvins (RvD1, RvD2, RvEL), protectins/neuroprotectins (PD1/NPD1),
and lipoxins (LXA4) could potently reduce inflammatory and postoperative pain, at very
low doses [101,114,231]. Peri-surgical application of PD1/NPD1 effectively protects nerve
trauma-induced neuropathic pain and spinal cord glial activation in mice [291]. RvE1 and
PD1 further inhibit glial activation in cultures [290,291]. The receptors of these mediators,
such as ChemR23 (RVE1) and ALX (RvD1 and LXAA4) are widely expressed in neurons,
glia, and immune cells[39,114,210,231]. Thus, these lipid mediators not only inhibit glial
activation and inflammation but also inhibit TRP channels (eg, TRPA1/V1) and reverse
synaptic plasticity in neurons[114,188,189]. Given the potency and safety, these endogenous
lipid mediators, or their analogs, or small-molecule agonists of theirreceptors, could be
developed for preventing and treating chronic pain, via targeting both neuronal and non-
neuronal (immune and glial) mechanisms.
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5.3. How much do we know about human glia?

Little is known about the role of human glia in pain control. Indeed, astrocytes from mice,
monkeys, and human beings are quite different in their sizes [180,182] (Fig. 6). The human
brain appears to contain subtypes of GFAP-positive astrocytes that are not represented in
rodents. In human cortex, astrocytes are more than 2-fold larger in diameter and extend 10-
fold more GFAP-positive primary processes than their rodent counterparts (Fig. 6). The
domain of a single human astrocyte has been estimated to contact up to 2 million synapses
[133,180]. Remarkably, human glial progenitor cells (GPCs), after being implanted into
neonatal immunodeficient mice, are gap junction-coupled to host astroglia, propagate
Ca?*signals 3-fold faster than their hosts, and exhibit enhanced LTP and learning capability
[88]. Hence, human astrocytes could play a more sophisticated role in chronic pain than
rodent astrocytes. Importantly, astrocyte reaction, but not microglial reaction, is associated
with chronic pain in HIV-infected patients [211]. Activation of the MAPK pathways is also
correlated with neuropathic pain in these patients [211]. Future research should focus on the
following: studying the responses of human glia in cultures and human glia transplantation
in mice; investigating the changes in human glia in painful disease conditions in post
mortem tissues; and imaging real-time glial activation in patients with chronic pain.
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1: | Glial reaction: changes of glial markers and morphology |
2. | Regulation of receptors, channels, and transporters in glia |
Tl
3. | Phosphorylation of MAP kinase signaling pathways in glia |
!
4. | Production of cytokines, chemokines, growth factors in glia |

i

| Release of glial mediators |

l

| Interaction with neurons: central and peripheral sensitization ‘

l

] Persistent pain |

Fig. 1.

Different activation states of glia. Glia exhibit different activation states after painful
injuries. (1) Glial reaction refers to upregulation of glial markers and morphological changes
of glia (gliosis); (2) upregulation of glial receptors such as adenosine triphosphate (ATP)
receptors, chemokine receptors, and Toll-like receptors, which will lead to the third
activation state: (3) activation of intracellular signaling pathways, such as mitogen-activated
protein kinase (MAPK) pathways. Phosphorylation of MAPKs will lead to the next
activation state: (4) upregulation of glial mediators, such as cytokines, chemokines, and
growth factors. Upon release, these glial mediators can interact with neurons to elicit pain
via central and peripheral sensitization. Unlike glial reaction (state 1), the other activation
states (states 2-4) have been shown to induce pain.
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SNl-ipsilateral SNI-contralateral

Fig. 2.

Activation of microglia in the spinal cord dorsal horn 3 days after spared nerve injury (SNI)
in rats. (A) 1B4 staining in the spinal cord dorsal horn ipsilateral and contralateral to the
injury side. Note a loss of 1B4 staining in the dorsal horn region innervated by the injured
nerve branches. (B and C) CD11b (OX-42) and phosphorylated p38 (p-p38) immunostaining
in the dorsal horn ipsilateral and contralateral to the injury side. Note overlapping expression
patterns of OX-42 and p-p38 in the injury side. (D) Double staining of p-p38 (red) and
OX-42 (green) in the ipsilateral dorsal horn. Lower panel presents high-magnification
images of 2 microglial cells (indicated by arrow and arrowhead) from the upper panel. Note
that p-p38 is completely co-localized with OX-42. Scale, 100 Im. Images are modified from
Wen et al. [276], with permission.
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Schematic of neuronal—glial and glial—glial interactions in the spinal cord in persistent pain.
Spontaneous discharge after a painful injury (eg, nerve injury) results in the release of ATP,
chemokines (CCL2, CCL21, CX3CL1), MMP-9, NRG1, and CRGP from primary afferent
central terminals, leading to activation of microglia in the dorsal horn. Spinal microglia
express the receptors for ATP (P2X4, P2X7, P2Y6, P2Y12), and chemokines (CX3CR1,
CCR2), and NRGL1 (ErB2). Activation of these receptors induces phosphorylation of p38
and ERK (early phase) in microglia, leading to the production and release of the
proinflammatory cytokines (TNF-a, IL-1f, IL-18) and the growth factor BDNF, and the
consequent sensitization of dorsal horn neurons. Astrocytes can be activated by microglial
mediators (TNF-a and 1L-18), as well as astrocytic mediators (matrix metalloprotein-2
(MMP-2) and bFGF). Subsequent phosphorylation of JINK and P-ERK in astrocytes results
in the production and release of chemokines (eg, CCL2) and cytokines (eg, interleukin-1
[IL-1B]). Astrocytes also produce adenosine triphosphate (ATP) and glutamate after the
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activation of the hemichannels (Cx43 and PNX1). After nerve injury, downregulation of
astrocytic GLT1 results in decrease in astrocytic uptake of glutamate. Release of astrocytic
mediators (CCL2, interleukin-1f [IL-18], glutamate) can elicit NMDAR-mediated central
sensitization. Release of adenosine triphosphate (ATP) and CCL2 from astrocytes can
further maintain microglial activation.
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Fig. 4.

Glial mediators modulate excitatory and inhibitory synaptic transmission in the spinal cord.
(A) Modulation of excitatory synaptic transmission at presynaptic, postsynaptic, and
extrasynaptic sites by glial mediators. Presynaptically, tumor necrosis factor-a (TNF-a),
interleukin-1p (IL-1p), CCL2, interferon-y (IFN-y), and TSP4 increase glutamate release to
enhance EPSC frequency. Postsynaptically, IL-1 TNF-a, and CCL2 increase AMPAR
activity. Extrasynaptically, TNF-a, IL-1p, CCL2, and D-serine increase NMDAR-NR2B
activity and enhance NMDA-induced currents. Astrocyte-released glutamate can further
induce NR2B-mediated inward currents in surrounding neurons. (B) Modulation of
inhibitory synaptic transmission at presynaptic, postsynaptic, and extrasynaptic sites.
Presynaptically, IL-18 and IL-6 decrease GABA and glycine release to decrease IPSC
frequency. Postsynaptically, IL-1f3 decreases GABA/GIyR activity and IPSC amplitude.
Prostaglandin E>(PGEy) inhibits evoked glycine current. Extrasynaptically, IL-13, CCL2,
and IFN-y suppress GABA-and/or glycine-induced currents. TNF-a inhibits action
potentials in inhibitory neurons. In lamina I neurons, BDNF produces disinhibition by
altering chloride reverse potential.
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Fig. 5.

Schematic representation of neuronal-glial interactions in dorsal root and trigeminal ganglia
of the peripheral nervous system (PNS). Spontaneous neuronal discharge after painful injury
results in adenosine triphosphate (ATP) release in neuronal somata, leading to the activation
of P2X7 and subsequent release of tumor necrosis factor-a (TNF-a) in satellite glial cells
(SGCs). Persistent nociceptive activity or activation of opioid receptors by morphine also
results in matrix metalloproteinase-9 (MMP-9) release from primary sensory neurons,
causing the cleavage (activation) and release of interleukin-1p (IL-1p) in SGCs. TNF-a and
IL-1P bind respective TNFR and IL-1R on sensory neurons to elicit hyperexcitability. SGCs
can also release ATP via hemichannels (Cx43 and PNX1) or gap junction communication to
activate P2X3 in neurons for triggering peripheral sensitization. In addition, SGCs express
Kir 4.1 to maintain homeostasis of extracellular K*levels of sensory neurons, and injury-
induced downregulation of Kir4.1 in SGCs will disrupt this K*homeostasis and generate
neuronal hyperexcitability.
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Fig. 6.

Glial fibrillary acidic protein (GFAP) immunostaining of mouse, rhesus monkey, and human
astrocytes in cortex. Note striking differences in the sizes of mouse, monkey, and human
astrocytes. Also note differences in the number and lengths of branches of astrocytes from
mouse, monkey, and human being. Sizes of astrocytes increase with increasing complexity
of brain function. Scale, 50 pm. Images are reproduced from Kimelberg and Nedergaard
[133], with permission.
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Table 1

Distinct reaction of microglia, astrocytes, and satellite glial cells (SGCs) in different pain conditions, as
examined by upregulation of the glial markers IBA1, CD11b, and glial fibrillary acidic protein (GFAP).

Pain conditions Microglia Astrocytes SGCs

Nerve injury Va v /
Spinal cord injury /!
Paw incision N Ve
Inflammation ol Va /
Joint arthritis S a /
Bone cancer «l / 7
Skin cancer < Ve
Chemotherapy v a a
Diabetes N Ve
HIV neuropathy — « e
Chronic opioid N N
Acute opioid > > Ve

Detailed, with related references, in Section 2.1.

Symbols: Right-upward diagonal arrow () denotes upregulation; right&left horizontal arrow («+) denotes no regulation; right-downward
diagonal arrow (\,) denotes downregulation.
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Phosphorylation of mitogen-activated protein kinases (MAPKSs; ERK, p38, JNK, ERKS5) in microglia,

Table 2

astrocytes, and satellite glial cells (SGCs) in different pain conditions.

Pain conditions Microglia Astrocytes SGCs

Nerve injury

P-ERK Vs

P-p38 Vs

P-JNK

P-ERK5 W
SCI

P-ERK a

P-p38 Ve
Paw incision

P-p38 Ve
Inflammation

P-ERK

P-p38 Ve

P-JNK

Bone cancer

PERK a
P-p38 Ve
P-JNK
Skin cancer
P-JNK
Diabetes
P-ERK a
P-p38 Ve
Chronic opioid
P-ERK
P-p38 Ve

S

Detailed, with related references, in Section 2.2.

SCI = spinal cord injury.

Symbols: Right-upward diagonal arrow () denotes upregulation; right&left horizontal arrow («+) denotes no regulation; right-downward

diagonal arrow (\,) denotes downregulation.
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Regulation of receptors, channels, transporters, enzymes, and transcriptional factors in microglia, astrocytes,
and satellite glial cells (SGCs) in different pain conditions.

Pain conditions

Microglia Astrocytes SGCs

Nerve injury
P2X4
P2X7
P2Y6
P2Y12
TLR2
TLR3
TLR4
Clq, 3,4,5
CX3CR1
CCR2
IFN-y R
Cx43
Kir4.1
TRPM2
GLT-1
GLAST
COX-1
COX-2
NF-kB
NOX-2
STAT3
c-Jun
CB2

SCI
Cx43

Inflammation
TLR3
TLR4
Cx43
TRPM2
GRK2
ALX

Joint arthritis
CX3CR1

Bone cancer
CX3CR1
HIV

NONN N N T TN N NN

N

T

NN NN

N
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Pain conditions

Microglia Astrocytes SGCs

TLR2

TLR9
Chronic opioid

P2X4

P2X7

TLR2

TLR4

/
/
/

S
N

<~

Detailed, with related references, in Section 2.3.

Symbols: Right-upward diagonal arrow (,*) denotes upregulation; right&left horizontal arrow («+) denotes no regulation; right-downward

diagonal arrow (\,) denotes downregulation.
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Table 4

Regulation of the glial mediators cytokines, chemokines, growth factors, and proteases in microglia,
astrocytes, and satellite glial cells (SGCs).

Pain conditions Microglia Astrocytes SGCs

Nerve injury
TNF-a
IL-1B
IL-6

NN N N

IL-18
CCL2 a
BDNF
bFGF a Va
MMP-2 a
tPA S a
CatS N
TSP4 a

SCI
IL-1B a

Inflammation
TNF-a a
IL-1B e Vs
IL-6 a

Bone cancer
TNF-a a
IL-18 a
IL-6 a

p

N

Chronic opioid
TNF-a a
IL-1p Vs
IL-6 W
Acute morphine
IL-1p Vs

Detailed, with related references, in Section 2.4.

Symbols: Right-upward diagonal arrow (,*) denotes upregulation; right&left horizontal arrow (<) denotes no regulation; right-downward
diagonal arrow (\,) denotes downregulation.
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