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Abstract
Localization of sound sources is a considerable computational challenge for the human brain.
Whereas the visual system can process basic spatial information in parallel, the auditory system
lacks a straightforward correspondence between external spatial locations and sensory receptive
fields. Consequently, the question how different acoustic features supporting spatial hearing are
represented in the central nervous system is still open. Functional neuroimaging studies in humans
have provided evidence for a posterior auditory “where” pathway that encompasses non-primary
auditory cortex areas, including the planum temporale (PT) and posterior superior temporal gyrus
(STG), which are strongly activated by horizontal sound direction changes, distance changes, and
movement. However, these areas are also activated by a wide variety of other stimulus features,
posing a challenge for the interpretation that the underlying areas are purely spatial. This review
discusses behavioral and neuroimaging studies on sound localization, and some of the competing
models of representation of auditory space in humans.

1. Introduction
Determining the location of perceptual objects in extrapersonal space is essential in many
everyday situations. For objects outside the field of vision, hearing is the only sense that
provides such information. Thus, spatial hearing is a fundamental prerequisite for our
efficient functioning in complex communication environments. For example, consider a
person reaching for a ringing phone or a listener using audiospatial information to help focus
on one talker in a chattering crowd (Brungart et al., 2002; Gilkey et al., 1997; Middlebrooks
et al., 1991; Shinn-Cunningham et al., 2001). Spatial hearing has two main functions: it
enables the listener to localize sound sources and to separate sounds based on their spatial
locations (Blauert, 1997). While the spatial resolution is higher in vision (Adler, 1959;
Recanzone, 2009; Recanzone et al., 1998), the auditory modality allows us to monitor
objects located anywhere around us. The ability to separate sounds based on their location
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makes spatial auditory processing an important factor in auditory scene analysis (Bregman,
1990), a process of creating individual auditory objects, or streams, and separating from
background noise (Moore, 1997). Auditory localization mechanisms can be different in
humans compared to other species utilized in animal neurophysiological studies. For
example, in contrast to cats, we cannot move our ears towards the sound sources. Further,
unlike in barn owls, our ears are at symmetrical locations on our heads, and sound elevation
needs to be determined based on pinna-related spectral cues, which is less accurate than
comparing the sounds received at the two asymmetric ears (Knudsen, 1979; Rakerd et al.,
1999). In the following, we will review key findings that have elucidated the psychophysics
and neural basis of audiospatial processing in humans.

2. Psychophysics of auditory spatial perception
2.1. Sound localization cues in different spatial dimensions

Spatial hearing is based on “binaural” and “monaural” cues (Yost et al., 1987). The two
main binaural cues are differences in the time of arrival (the interaural time difference, ITD,
or interaural phase difference, IPD) and differences in the received intensity (the interaural
level difference, ILD) (Middlebrooks et al., 1991). The most important monaural
localization cue is the change in the magnitude spectrum of the sound caused by the
interaction of the sound with the head, body, and pinna before entering the ear (Blauert,
1997; Macpherson et al., 2007; Middlebrooks et al., 1991; Shaw, 1966; Wightman et al.,
1989). Another monaural cue is the direct-to-reverberant energy ratio (DRR), which
expresses the amount of sound energy that reaches our ears directly from the source vs. the
amount that is reflected off the walls in enclosed spaces (Larsen et al., 2008). In general,
monaural cues are more ambiguous spatial cues than binaural cues because the auditory
system must make a priori assumptions about the acoustic features of the original sound in
order to estimate the filtering effects corresponding to the monaural spatial cues.

Positions of objects in three dimensional (3D) space are usually described using either
Cartesian (x, y, z) or spherical (azimuth, elevation, distance) coordinates. For studies of
spatial hearing, the most natural coordinate system uses bipolar spherical coordinates
(similar to the coordinate system used to describe a position on the globe) with the two poles
at the two ears and the origin at the middle point between the ears (Duda, 1997). In this
coordinate system the azimuth (or horizontal location) of an object is defined by the angle
between the source and the interaural axis, the elevation (or vertical location) is defined as
the angle around the interaural axis, and distance is measured from the center of the
listener’s head. Using this coordinate system is natural when discussing spatial hearing
because different auditory localization cues map onto these coordinate dimensions in a
natural, monotonic manner. However, note that, if the examination is restricted to certain
sub-regions of space, the Cartesian and spherical representations can be equivalent. For
example, for sources directly ahead of the listener the two representations are very similar.

Binaural cues are the primary cues for perception in the azimuthal dimension. The perceived
azimuth of low-frequency sounds (below 1–2 kHz) is dominated by the ITD. For high-
frequency stimuli (above 1–2 kHz), the auditory system weights the ILD more when
determining the azimuth. This simple dichotomy (ITD for low frequencies, ILD for high
frequencies) is referred to as the duplex theory (Strutt, 1907). It can be explained by
considering physical and physiological aspects of how these cues change with azimuth and
how they are neuronally extracted. However, there are limitations to the applicability of this
theory. For example, for nearby sources, the ILD is available even at low frequencies
(Shinn-Cunningham, 2000). Similarly, the ITD cue in the envelope of the stimulus, as
opposed to the ITD in the fine structure, can be extracted by the auditory system even from
high-frequency sounds (van de Par et al., 1997). Finally, in theory, the azimuth of a sound
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source can be determined also monaurally, because the high-frequency components of the
sound are attenuated more compared to low-frequency components as the sound source
moves contralaterally (Shub et al., 2008).

The main cue the human auditory system uses to determine the elevation of a sound source
is the monaural spectrum determined by the interaction of the sound with the pinnae
(Wightman et al., 1997). Specifically, there is a spectral notch that moves in frequency from
approximately 5 kHz to 10 kHz as the source moves from 0° (directly ahead of listener) to
90° (above the listener’s head), considered to be the main elevation cue (Musicant et al.,
1985). However, small head asymmetries may provide a weak binaural elevation cue.

The least understood dimension is distance (Zahorik et al., 2005). The basic monaural
distance cue is the overall received sound level (Warren, 1999). However, to extract this
cue, the listener needs a priori knowledge of the emitted level, which can be difficult since
the level at which sounds are produced often varies. For nearby, lateral sources the ILD
changes with source distance and provides a distance cue (Shinn-Cunningham, 2000). In
reverberant rooms, the auditory system uses some aspect of reverberation to determine the
source distance (Bronkhorst et al., 1999). This cue is assumed to be related to the DRR
(Kopco et al., 2011). Finally, other factors like vocal effort for speech (Brungart et al., 2001)
can also be used.

To determine which acoustic localization cues are available in the sound produced by a
target at a given location in a given environment, the Head-related transfer functions
(HRTFs) and Binaural room impulse responses (BRIRs) can be measured and analyzed
(Shinn-Cunningham et al., 2005). These functions/responses provide complete acoustic
characterization of the spatial information available to the listener for a given target and
environment, they vary slightly from listener to listener, and they also can be used to
simulate the target in a virtual acoustic environment.

2.2. Natural environments: Localization in rooms and complex scenes
While the basic cues and mechanisms of spatial hearing in simple scenarios are well
understood, much less is known about natural environments, in which multiple acoustic
objects are present in the scene and where room reverberation distorts the cues. When the
listener is in a room or other reverberant environment the direct sound received at the ears is
combined with multiple copies of the sound reflected off the walls before arriving at the
ears. Reverberation alters the monaural spectrum of the sound as well as the ILDs and IPDs
of the signals reaching the listener (Shinn-Cunningham et al., 2005). These effects depend
on the source position relative to the listener as well as on the listener position in the room.
On the other hand, reverberation itself can provide a spatial cue (DRR). Most studies of
sound localization were performed in an anechoic chamber (Brungart, 1999; Hofman et al.,
1998; Makous et al., 1990; Wenzel et al., 1993; Wightman et al., 1997). There are also
several early studies of localization in reverberant environments (Hartmann, 1983; Rakerd et
al., 1985; Rakerd et al., 1986). They show that reverberation causes small degradations in
directional localization accuracy. However, performance can improve with practice (Irving
et al., 2011; Shinn-Cunningham, 2000). In addition, several recent studies measured the
perceived source distance (Bronkhorst et al., 1999; Kolarik et al., 2013; Kopco et al., 2011;
Ronsse et al., 2012; Zahorik et al., 2005). These studies show that in reverberant space,
distance perception is more accurate, due to additional information provided by the DRR
cue.

Processing of spectral and binaural spatial cues becomes particularly critical when multiple
sources are presented concurrently. Under such conditions, the auditory system’s ability to
correctly process spatial information about the auditory scene becomes critical both for
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speech processing (Best et al., 2008; Brungart et al., 2007) and target localization (Drullman
et al., 2000; Hawley et al., 1999; Simpson et al., 2006). However, the strategies and cues the
listeners use in complex environments are not well understood. It is clear that factors like the
ability to direct selective spatial attention (Sach et al., 2000; Shinn-Cunningham, 2008;
Spence et al., 1994) or the ability to take advantage of a priori information about the
distribution of targets in the scene (Kopco et al., 2010) can improve performance. On the
other hand, the localization accuracy can be adversely influenced by preceding stimuli
(Kashino et al., 1998) or even by the context of other targets that are clearly spatio-
temporally separated from the target of interest (Kopco et al., 2007; Maier et al., 2010).

2.3. Implications for non-invasive imaging studies of spatial processing
Psychophysical studies provide hypotheses and methodology for non-invasive studies of
spatial brain processing. It is critical to understand differences between these two
approaches when linking psychophysical and neuronal data. An example of this in the
spatial hearing research can be the examination of ILD. For any signal, whenever its ILD is
changed, by definition the monaural level of the signal at one of the ears (or at both) has to
change. Therefore, when examining the ILD cue behaviorally or neuronally, one has to
make sure that the observed effects of changing ILD are not actually caused by the
accompanying change in the monaural levels. Behaviorally, the usefulness of the monaural
level cues can be easily eliminated by randomly roving the signal level at both ears from
presentation to presentation, while the ILD is kept constant or varied systematically to
isolate its usefulness (Green, 1988). However, the same approach results in monaural level
variations at both ears, which, although not useful behaviorally, will result in additional
broad neuroimaging activations of various feature detectors. Several methods were used to
mitigate this issue, for example, comparing the activation resulting from varying ILD to
activation when varying only the monaural levels (Stecker et al., 2013). Since none of the
alternative methods completely eliminates monaural level cues, the available neuroimaging
studies of ILD processing all have monaural cues as a potential confound (Lehmann et al.,
2007; Zimmer et al., 2006).

One of the largest challenges for neuroimaging of spatial auditory processing is the necessity
to use virtual acoustics techniques to simulate sources arriving from various locations
(Carlile, 1996). These techniques, based on simulating the sources using HRTFs or BRIRs,
require individual measurements of these responses for veridical simulation of sources in
virtual space. While this issue can be relatively minor in simple acoustic scenarios, the
human ability to correctly interpret the distorted virtual spatial cues might be particularly
limited in a complex auditory scene, in which the cognitive load associated with the tasks is
much higher. Therefore, it is important that the psychophysical validation accompanies
neuroimaging studies of spatial hearing in virtual environments (Schechtman et al., 2012).

The following sections provide an overview of the neuroimaging studies of auditory spatial
processing. The overview focuses on processing of basic auditory cues and on spatial
processing in simple auditory conditions, as very little attention has been paid in the
neuroimaging literature to the mechanisms and strategies used by the listeners in natural,
complex multi-target environments.

3. Non-invasive studies of spatial processing in human auditory cortex
Non-human primate models (Thompson et al., 1983) and studies with neurological patients
(Zatorre et al., 2001) show that accurate localization of sound sources is not possible without
intact auditory cortex (AC), although reflexive orienting toward sound sources may be
partially preserved in, for example, AC-ablated cats (Thompson et al., 1978) or monkeys
(Heffner et al., 1975). In comparison to the other sensory systems, the functional
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organization of human ACs is still elusive. Nonhuman primate studies (Kaas et al., 2000;
Kosaki et al., 1997; Merzenich et al., 1973; Rauschecker et al., 1995) suggest several
distinct AC subregions processing different sound attributes. The subregion boundaries have
been identified based on reversals of tonotopic (or cochleotopic) gradients (Kosaki et al.,
1997; Rauschecker et al., 1995). This cochleotopic organization is analogous to the
hierarchical retinotopic representation of visual fields, that is, the different locations of the
basilar membrane are represented in a topographic fashion up to the higher-order belt areas
of non-human primate AC. In humans, the corresponding area boundaries have been studied
using non-invasive measures such as functional MRI (fMRI) (Formisano et al., 2003;
Langers et al., 2012; Seifritz et al., 2006; Talavage et al., 2004). However, the results across
the different studies have not been fully consistent and the exact layout of human AC fields
is still unknown.

Characterizing cortical networks contributing to spatial auditory processing requires
methods allowing whole-brain sampling with high spatial and temporal resolution. For
example, although single-unit recordings in animals provide a very high spatiotemporal
resolution, multisite recordings are still challenging and limited in the number of regions
that can be measured simultaneously (Miller et al., 2005). There are also essential
differences in how different species process auditory spatial information. Meanwhile,
although single-unit recordings of AC have been reported in humans (Bitterman et al.,
2008), intracranial recordings are not possible except in rare circumstances where they are
required as part of a presurgical preparation process. Non-invasive neuroimaging techniques
are, thus, clearly needed. However, neuroimaging of human AC has been challenging for a
number of methodological reasons. The electromagnetic methods EEG and
magnetoencephalography (MEG) provide temporally accurate information, but their spatial
localization accuracy is limited due to the ill-posed inverse problem (any extracranial
electromagnetic field pattern can be explained by an infinite number of different source
configurations) (Helmholtz, 1853). fMRI provides spatially accurate information, but its
temporal accuracy is limited and further reduced when sparse sampling paradigms are used
to eliminate the effects of acoustical scanner noise. These challenges are further complicated
by the relatively small size of the adjacent subregions in ACs. Consequently, although the
amount of information from neuroimaging studies is accumulating, there is still no widely
accepted model of human AC, which has contributed to disagreements on how sounds are
processed in the brain.

Although results comparable to the detailed mapping achieved in human visual cortices are
not yet available, evidence for broader divisions between the anterior “what” vs. posterior
“where” pathways of non-primary ACs is accumulating from non-human primates and
human neuroimaging studies (Ahveninen et al., 2006; Barrett et al., 2006; Rauschecker,
1998; Rauschecker et al., 2000; Rauschecker et al., 1995; Tian et al., 2001). In humans, the
putative posterior auditory “where” pathway, encompassing the planum temporale (PT) and
posterior superior temporal gyrus (STG), is strongly activated by horizontal sound direction
changes (Ahveninen et al., 2006; Brunetti et al., 2005; Deouell et al., 2007; Tata et al.,
2005), movement (Baumgart et al., 1999; Formisano et al., 2003; Krumbholz et al., 2005;
Warren et al., 2002), intensity-independent distance cues (Kopco et al., 2012), and under
conditions where separation of multiple sound sources is required (Zündorf et al., 2013).
However, it is still unclear how the human AC encodes the acoustic space: Is there an
orderly topographic organization of neurons representing different spatial origins of sounds,
or are sound locations, even at the level of non-primary cortices, computed by neurons that
are broadly tuned to more basic cues such as ITD and ILD, using a “two-channel” rate code
(McAlpine, 2005; Middlebrooks et al., 1994; Middlebrooks et al., 1998; Stecker et al., 2003;
Werner-Reiss et al., 2008)? At the most fundamental level, it is thus still debatable whether
sound information is represented based on the same hierarchical and parallel processing
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principles found in the other sensory systems, or whether AC process information in a more
distributed fashion.

In the following, we will review human studies of spatial processing of sound information,
obtained by non-invasive measurements of brain activity. Notably, spatial cues are
extensively processed in the subcortical auditory pathways, and the functionally segregated
pathways for spectral cues, ITD, and ILD have been thoroughly investigated in animal
models (Grothe et al., 2010). In particular, the subcortical mechanisms of ITD processing
are a topic of a debate, as the applicability of long-prevailing theories of interaural
coindicence detection (Jeffress, 1948) to mammals has been recently challenged (McAlpine,
2005). Here, we will, however, concentrate on cortical mechanisms of sound localization
that have intensively studied using human neuroimaging, in contrast to the relatively limited
number of fMRI (Thompson et al., 2006) or EEG (Junius et al., 2007; Ozmen et al., 2009)
studies on subcotrical activations to auditory spatial cues. On the same note, human
neuropsychological (Adriani et al., 2003; Clarke et al., 2000; Clarke et al., 2002) and
neuroimaging (Alain et al., 2001; Arnott et al., 2004; Bushara et al., 1999; De Santis et al.,
2006; Huang et al., 2012; Kaiser et al., 2001; Maeder et al., 2001; Rämä et al., 2004; Weeks
et al., 1999) studies have produced detailed information on networks contributing to higher-
order cognitive control of auditory spatial processing beyond ACs, including posterior
parietal (e.g., intraparietal sulcus) and frontal regions (e.g., premotor cortex/frontal eye
fields, lateral prefrontal cortex). In this review, we will, however, specifically concentrate on
studies focusing on auditory areas of the superior temporal cortex.

3.1. Cortical processing of ITD and ILD cues: separate channels or joint representations?
Exactly how the human brain represents binaural cues is currently a hot topic. According to
the classic “place code model” of subcortical processing (Jeffress, 1948), delay lines from
each ear form a coincidence detector that activates topographically organized ITD-sensitive
neurons in the nucleus laminaris, the bird analogue of medial superior olive in mammals. As
for cortical processing in humans, several previous EEG and MEG results, demonstrating
change-related auditory responses that increase monotonically as a function of ITD
(McEvoy et al., 1993; McEvoy et al., 1991; Nager et al., 2003; Paavilainen et al., 1989;
Sams et al., 1993; Shestopalova et al., 2012) or ILD (Paavilainen et al., 1989), as well as
fMRI findings of responses that increase as a function of ITD separation between competing
sound streams (Schadwinkel et al., 2010b), could be interpreted in terms of topographical
ITD/ILD representations in AC (McEvoy et al., 1993). However, given the lack of direct
neurophysiological evidence of sharply tuned ITD neurons in mammals, an alternative “two
channel model” has been more recently presented, predicting that neuron populations tuned
relatively loosely to ipsilateral or contralateral hemifields vote for the preferred perception
of horizontal directions (McAlpine, 2005; Stecker et al., 2005). Evidence for the two-
channel model in humans was found, for example, in a recent neuroimaging study showing
that when ITD increases, the laterality of midbrain fMRI responses switches sides, even
though perceived location remains on the same side (Thompson et al., 2006). Subsequent
MEG (Salminen et al., 2010a) and EEG (Magezi et al., 2010) studies have, in turn, provided
support on the two-channel model at the level of human AC. It is, however, important to
note that the two-channel model is generally restricted to ITD, and its behavioral validation
is very limited, compared to a range studies that found a good match between human
psychophysical data and place-code models (Bernstein et al., 1999; Colburn et al., 1997;
Stern et al., 1996; van de Par et al., 2001). Additional mechanisms are needed for explaining
our ability to discriminate between the front and the back, vertical directions, and sound
source distances. Most importantly, higher-level model of auditory spatial processing, which
would describe how the separate cues are integrated into one coherent 3D representation of
auditory space, is still missing.

Ahveninen et al. Page 6

Hear Res. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



A related open question, therefore, is whether ITD, ILD, and other spatial features are
processed separately at the level of non-primary AC “where” areas, or whether higher-order
ACs include “complex” neurons representing feature combinations of acoustic space. The
former hypothesis of separate subpopulations is supported by early event-related potential
(ERP) studies comparing responses elicited by unexpected changes in ITD or ILD
(Schröger, 1996). Similarly, differences in early (i.e., less than 200 ms after sound onset)
cortical response patterns to ITDs vs. ILDs were observed in recent MEG (Johnson et al.,
2010) and EEG (Tardif et al., 2006) studies, interpreted to suggest separate processing of
different binaural cues in AC. These studies also suggested that a joint representation of ILD
and ITD could be formed at the earliest 250 ms after sound onset, reportedly (Tardif et al.,
2006) dominated by structures beyond the AC itself. However, when interpreting the results
of EEG/ERP and MEG studies, it should be noted that separating the exact neuronal
structures contributing to the reported effects is complicated (particularly with EEG).
Moreover, few previous studies reporting response differences to ITD and ILD have
considered the fact that, for a fixed target azimuth, ILD changes as a function of sound
frequency (Shinn-Cunningham et al., 2000). Particularly if broadband stimuli are presented,
using a fixed ILD should activate neurons representing different directions at different
frequency channels, leading to an inconsistency between the respective ITD and ILD
representations and in an inherent difference in the response profiles.

A different conclusion could be reached from a recent MEG study (Palomäki et al., 2005),
involving a comprehensive comparison of different auditory spatial cues, which showed that
ITD or ILD alone are not sufficient for producing direction-specific modulations in non-
primary ACs. A combination of ITD and ILD was reportedly the “minimum requirement” to
achieve genuinely spatially selective responses at this processing level, and including all 3D
cues available in individualized HRTF measurements resulted in the clearest direction
specific results. These results are in line with earlier observations, suggesting sharper
mismatch responses to free-field direction changes than to the corresponding ILD/ITD
differences (Paavilainen et al., 1989), as well as with recent fMRI studies comparing
responses to sounds with all available (i.e., “externalized”) vs. impoverished spatial cues
(Callan et al., 2012). Meanwhile, a recent EEG study (Junius et al., 2007) on BAEP (peaking
<10 ms from sound onset) and middle-latency auditory evoked potentials (MAEP, peaking
<50 ms of sound onset) suggest that ITD and ILD are processed separately at the level of the
brainstem and primary AC. Similar conclusions could be reached based on 80-Hz steady-
state response (SSR) studies (Zhang et al., 2008) and BAEP measurements of the so-called
cochlear latency effect (Ozmen et al., 2009). Interestingly, the study of Junius and
colleagues also showed that, unlike the responses reflecting non-primary AC function
(Callan et al., 2012; Palomäki et al., 2005), the BAEP and MAEP components were not
larger for individualized 3D simulations containing all direction cues than for ITD/ILD. This
could be speculated to suggest that processing of spectral direction cues occurs in non-
primary ACs, and that joint representations of auditory space do not exist before this stage.
Taken together, the existing human results suggest that ILD and ITD are processed
separately at least at the level of brain stem (Ozmen et al., 2009), consistent with predictions
of numerous previous animal neurophysiological studies (Grothe et al., 2010). Further, it
seems that the combination of individual cues to cognitive representations does not occur
before non-primary AC areas (Junius et al., 2007; Zhang et al., 2008), and that the latency
window of the formation of a joint representation of acoustic space is somewhere between
50–250 ms (Johnson et al., 2010; Palomäki et al., 2005; Tardif et al., 2006). The
interpretation that AC processes feature combinations of acoustic space, in contrast to the
processing of simpler cues that occurs in subcortical structures, is also consistent with non-
human primate evidence that ablation of AC is particularly detrimental to functions that
require the combination of auditory spatial features to a complete spatial representation
(Heffner et al., 1975; Heffner et al., 1990).
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3.2. Motion sensitivity or selectivity of non-primary auditory cortex
Given the existing evidence for separate processing pathways for stationary and moving
visual stimuli, the neuronal processes underlying motion perception have also been
intensively studied in the auditory system. Early EEG studies suggested that auditory
apparent motion following from ITD manipulations results in an auditory ERP shift that
differs from responses to stationary sounds (Halliday et al., 1978). Evidence for direction-
specific motion sensitive neurons in human AC was also found in an early MEG study
(Mäkelä et al., 1996), which manipulated the ILD and binaural intensity of auditory stimuli
to simulate an auditory object moving along the azimuth, or moving towards or away from
the subject. An analogous direction-specific phenomenon was observed in a more recent
ERP study (Altman et al., 2005).

After the initial ERP studies, auditory motion perception has been intensively studied using
metabolic/hemodynamic imaging measures. A combined fMRI and positron emission
tomography (PET) study by Griffiths and colleagues (1998) showed motion-specific
activations in right posterior parietal areas, consistent with preceding neuropsychological
evidence (Griffiths et al., 1996). However, in the three subjects measured using fMRI, there
seemed to be an additional activation cluster near the boundary between parietal lobe and
posterior superior temporal plane. The first study that reported motion-related activations in
AC itself was conducted by Baumgart and colleagues (1999), who showed significantly
increased activations for amplitude modulated (AM) sounds containing motion-inducing
IPD vs. stationary AM sounds in the right PT. Indications of roughly similar effects, with the
strongest activations in the right posterior AC, were found in the context of a fMRI study
comparing visual, somatosensory, and auditory motion processing (Bremmer et al., 2001). A
combined PET and fMRI study by Warren and colleagues (2002), in turn, showed a more
bilateral pattern of PT activations in a variety of well-controlled comparisons between
moving and stationary auditory stimuli, simulated using both IPD manipulations and generic
HRTF simulations. Posterior non-primary AC activations to acoustic motion, with more
right-lateralized and posterior-medial focus than those related to frequency modulations
(FM), were also found in a subsequent factorial fMRI study (Hart et al., 2004). The role of
PT and posterior STG in motion processing has been also supported by fMRI studies
comparing acoustic motion simulated by ITD cues to spectrally matched stationary sounds
(Krumbholz et al., 2007; Krumbholz et al., 2005), and by recent hypothesis-free fMRI
analyses (Alink et al., 2012). It has been also shown that posterior non-primary AC areas are
similarly activated to horizontal and vertical motion, simulated by using individualized
spatial simulations during fMRI measurements (Pavani et al., 2002) or generated by using
free-field loudspeaker arrays during EEG measurements (Getzmann et al., 2010).

Previous fMRI studies have also compared neuronal circuits activated during “looming” vs.
receding sound sources (Hall et al., 2003; Seifritz et al., 2002; Tyll et al., 2013). The initial
fMRI studies in humans would seem to suggest that increasing and decreasing sound
intensity, utilized to simulate motion, activates similar posterior non-primary AC structures
as horizontal or vertical acoustic motion (Seifritz et al., 2002). However, it is still an open
question whether looming vs. receding sound sources are differentially processed in AC, as
suggested by non-human primate models (Maier et al., 2007) and some recent human fMRI
studies (Tyll et al., 2013), or whether the perceptual saliency associated with looming
emerges in higher-level polymodal association areas (Hall et al., 2003; Seifritz et al., 2002).

Taken together, there is evidence from studies comparing auditory motion to “stationary”
sounds that a motion-sensitive area may exist in posterior non-primary ACs, including PT
and posterior STG. However, it is not yet entirely sure if the underlying activations reflect
genuinely motion selective neurons, or whether auditory motion is inferred from an analysis
of position changes of discretely sampled loci in space. More specifically, AC neurons are
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known to be “change detectors”. Activation to a constant stimulus repeated at a high rate
gets adapted, i.e., suppressed in amplitude, while a change in any physical dimension,
including the direction of origin, results in a release from adaptation (Butler, 1972;
Jääskeläinen et al., 2007; Jääskeläinen et al., 2011; Näätänen et al., 1988; Ulanovsky et al.,
2003) (for a brief introduction, see Fig. 1a; Fig. 2a). Evidence for direction-specific
auditory-cortex adaptation effects has been found in numerous previous ERP studies
(Altman et al., 2010; Butler, 1972; Nager et al., 2003; Paavilainen et al., 1989; Shestopalova
et al., 2012). One might, thus, hypothesize that increased fMRI activations to moving sounds
reflect release from adaptation in populations representing discrete spatial directions, as a
function of increased angular distance that the moving sound “travels” in relation to the
stationary source. Evidence supporting this speculation was found in an fMRI study (Smith
et al., 2004) suggesting similar PT activations to “moving” noise bursts, with smoothly
changing ILD, and “stationary” noise bursts with eight randomly-picked discrete ILD values
from the corresponding range. This result, interpreted to disprove the existence of motion-
selective neurons, was supported by a subsequent event-related adaptation fMRI study by
the same authors (Smith et al., 2007) that showed no differences in adaptation to paired
motion patterns vs. paired stationary locations in the same direction ranges. Analogous
results were also found in a subsequent ERP study (Getzmann et al., 2011), which compared
suppression of responses to moving sounds (to left or right from 0 degrees) that followed
either stationary (0 degrees, or 32 degrees to the right or left) or “scattered” adaptor sounds
(scattered directions 0–32 degrees right or left, or from 32 left to 32 right). EEG responses
were adapted most pronouncedly by a scattered adaptor that was spatially congruent with the
motion probe. However, it is also noteworthy that, particularly in the fMRI studies that
purportedly refuted the existence of motion selective neurons (Smith et al., 2007; Smith et
al., 2004), the differences in directions occurred at larger angular distance steps in the
stationary than in the motion sounds. Noting that release from adaptation should increase as
a function of the angular distance between the subsequently activated representations, one
might have expected larger responses during the stationary than moving sounds
(Shestopalova et al., 2012). The lack of such increases leaves room for an interpretation that
an additional motion specific population could have contributed to the cumulative responses
of moving sounds at least in the fMRI experiments (Smith et al., 2007; Smith et al., 2004).

3.3. Adaptation evidence for differential populations sensitive to sound identity and
location

Recent studies have provided accumulating evidence that adaptation designs may help
examine feature tuning of adjacent areas of AC (Figs. 1, 2). Specifically, in line with the
predictions of the dual pathway model (Rauschecker et al., 2000), our cortically constrained
MEG/fMRI study (Ahveninen et al., 2006) suggested that neuron populations in posterior
non-primary AC (PT, posterior STG) demonstrate a larger release from adaptation due to
spatial than phonetic changes, while the areas anterior to HG demonstrated larger release
from adaptation due to phonetic than spatial changes (Fig. 1b). The activation of the
presumptive posterior “where” pathway preceded the anterior pathway by about 10–30 ms
in the MEG/fMRI source estimates of the N1 peak latency, in line with our earlier MEG/
fMRI study suggesting that the putative anterior and posterior N1 components may reflect
parallel processing of features relevant for sound-object identity vs. location processing
(Jääskeläinen et al., 2004).

Similar results, which could be interpreted in terms of neuronal adaptation, have emerged in
fMRI studies comparing activations to sound pitch and locations. Warren and Griffiths
(2003) showed strongest activations (i.e., release from adaptation) to varying vs. constant
pitch sequences in anterior non-primary ACs, while the activations to varying vs. fixed
sound locations peaked in a more posterior AC areas. A subsequent fMRI study by Barret
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and Hall (2006) manipulated the level of pitch (no pitch, fixed pitch, varying pitch) and
spatial information (“diffuse” sound source, compact source at fixed location, compact
source at varying location) in a full factorial design: The varying vs. fixed pitch comparison
resulted in strongest release from adaptation in anterior non-primary AC, while the varying
vs. fixed location contrast activated the bilateral PT. Evidence for very similar distribution of
“what” vs. “where” activations was provided in a subsequent study comparing fMRI and
EEG activations during location and pattern changes in natural sounds (Altmann et al.,
2007), as well as in a fMRI study that compared activations to temporal pitch and acoustic
motion stimuli (Krumbholz et al., 2007). Interestingly, an adaptation fMRI study by Deouell
and colleagues (2007) showed bilateral posterior non-primary AC activations to spatially
changing vs. constant sounds while the subjects’ attention was actively directed to a visual
task. The adaptation fMRI study of Deouell et al. (2007) also provided support for the dual
pathway model, as one of the supporting experiments contained a pitch- deviant oddball
condition, which suggested strongest release from adaptation as a function of pitch changes
in anterior non-primary AC areas.

3.4. Contralateral vs. bilateral representation of acoustic space
Human studies have shown that monaural stimuli (i.e., infinite ILD) generate a stronger
response in the hemisphere contralateral to the stimulated ear (e.g., Virtanen et al., 1998).
However, recent fMRI studies comparing monaural and binaural stimuli suggest that the
hard-wired lateralization is stronger in primary than non-primary AC (Langers et al., 2007;
Woods et al., 2009b), which is in line with previous observations showing stronger contra-
laterality effects in more primary than posterior non-primary AC activations to 3D sounds
(Pavani et al., 2002). Meanwhile, although certain animal lesion studies suggest contra-
lateralized localization deficits after unilateral AC lesions (Jenkins et al., 1982), human AC
lesion data seem to support right hemispheric dominance of auditory spatial processing
(Zatorre et al., 2001). A pattern where the right AC responds to ITDs lateralized to both
hemifields but the left AC responds only to right-hemifield ITDs has been replicated in
several MEG studies (Kaiser et al., 2000; Salminen et al., 2010b) and fMRI studies using
motion stimuli (Krumbholz et al., 2005). Indirect evidence for such division has been
provided by right-hemisphere dominance of motion-induced fMRI activations (Baumgart et
al., 1999; Griffiths et al., 1998; Hart et al., 2004) or MEG activations to directional stimuli
(Palomäki et al., 2005; Tiitinen et al., 2006).

3.5. New directions in imaging studies on auditory spatial processing
3.5.1. Neuronal representations of distance cues—Indices of distinct auditory
circuits processing auditory distance were originally found in studies of looming, sound
sources approaching vs. receding from the listener (Seifritz et al., 2002). In these studies, the
essential distance cue has been sound intensity. In the AC, the greatest activations for
sounds with changing vs. constant level were specifically observed in the right temporal
plane. However, humans have the capability to discriminate the distance of sound sources
even without sound intensity cues. Therefore, we recently applied the adaptation fMRI
design, analogous to Deouell et al. (2007), to investigate neuronal bases of auditory distance
perception in humans. The results suggested that posterior superior temporal gyrus (STG)
and PT may include neurons sensitive to intensity-independent cues of sound-source
distance (Kopco et al., 2012) (Fig. 2).

3.5.2. Spatial frames of reference—Previous neuroimaging studies have almost
exclusively concentrated on auditory spatial cues that are craniocentric, i.e., presented
relative to the subject’s head coordinate system. However, the human brain can preserve a
constant perception of auditory space although our head moves relative to the acoustic
environment, such as when one turns the head to focus on one of many competing sound
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sources. Neuronal basis of such allocentric auditory space perception is difficult to study
using methods such as fMRI, PET, or MEG. In contrast, EEG allows for head movements
because the electrodes are attached to the subject’s scalp, while the other neuroimaging
methods are based on fixed sensor arrays. However, head movements may lead to large
physiological and other artefacts in EEG. Despite the expected technical complications,
recent auditory oddball EEG studies conducted using HRTFs (Altmann et al., 2009) or in the
free field (Altmann et al., 2012) have reported differences in change-related responses to
craniocentric deviants (subjects head turned but sound stimulation kept constant) vs.
allocentric deviants (subjects’ head turned, sound direction moved relative to the
environment but not relative to the head). The results suggested that craniocentric
differences are processed in the AC, and that allocentric differences could involve parietal
structures. More detailed examination of the underlying neuronal process in humans is
clearly warranted.

Similar questions about the reference frames have been posed with respect to audiovisual
perception since the visual spatial representation is primarily eye-centered (retinotopic
representation relative to the direction of gaze) while the auditory perception is primarily
craniocentric (Porter et al., 2006). Ventriloquism effect and aftereffect are illusions that
make it possible to study how the spatial information from the two sensory modalities is
aligned, what transformations do unimodal representations undergo in this process, and the
short-term plasticity that can result from the perceptual alignment process (Bruns et al.,
2011; Recanzone, 1998; Wozny et al., 2011). Using the Ventriloquism aftereffect illusion in
humans and non-human primates, we recently showed that the coordinate frame in which
vision calibrates auditory spatial representation is a mixture between eye-centered and
craniocentric, suggesting that perhaps both representations get transformed in a way that is
most consistent with the motor commands of the response to stimulation in either modality
(Kopco et al., 2009).

3.5.3. Top-down modulation of auditory cortex spatial representations—In
contrast to the accurate spatial tuning curves found in certain animals such as the barn owl,
few previous studies in mammals have managed to identify neurons representing specific
locations of space (Recanzone et al., 2011). Recent neurophysiological studies in the cat,
however, suggest that the specificity of primary AC neurons is sharpened by attention, that
is, when the animal is engaged in an active spatial auditory task (Lee et al., 2011). Indices of
similar effects in humans were observed in our MEG/fMRI study (Ahveninen et al., 2006),
suggesting that the stimulus-specificity of neuronal adaptation to location changes is
enhanced in posterior non-primary AC areas, while recent fMRI evidence suggests stronger
activations to spatial vs. pitch features in the same stimuli in posterior non-primary AC areas
(Krumbholz et al., 2007) (however, see also Altman et al., 2008, and Rinne et al., 2012).
Very recent evidence suggests that the spatial selectivity of human AC neurons is also
modulated by visual attention (Salminen et al., 2013). However, the vast majority of
previous selective auditory spatial attention studies have used dichotic paradigms, which has
been highly useful for investigating many fundamental aspects of selective attention, but
perhaps suboptimal for determining how the processing of different 3D features, per se, is
top-down modulated. Further studies are therefore needed to examine how attention
modulates auditory spatial processing.

3.6. Confounding and conflicting neuroimaging findings
Taken together, a large proportion of existing studies support a notion that posterior aspects
of non-primary AC are particularly sensitive to spatial information. However, the presumed
spatial processing areas PT and pSTG have been reported to respond to a great variety of
other kinds sounds, including phonemes (Griffiths et al., 2002; Zatorre et al., 1992),
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harmonic complexes and frequency modulated sounds (Hall et al., 2002), amplitude
modulated sounds (Giraud et al., 2000), sounds involving “spectral motion” (Thivard et al.,
2000), environmental sounds (Engelien et al., 1995), or pitch (Schadwinkel et al., 2010a).
These conflicting findings have led to alternative hypotheses, suggesting that, instead of
purely spatial processing, PT and adjacent AC areas constitute a more general
spectrotemporal processing center (Belin et al., 2000; Griffiths et al., 2002). A recent fMRI
study (Smith et al., 2010), which compared the number of talkers occurring in one or several
locations and either moving around or being stationary at one location, suggested that PT is
not a spatial processing area, but merely sensitive to “source separation” of auditory objects.

It is however noteworthy that, in contrast to visual objects, sounds are dynamic signals that
contain the information about the activity that generated them (Scott, 2005). Many
biologically relevant “action sounds” may activate vivid multisensory representations that
involve a lot of motion. It is also possible that sounds very relevant to our behavior and
functioning lead to an automatic activation in the spatial processing stream: visual motion
has been shown to activate posterior non-primary AC areas (Howard et al., 1996). Evidence
supporting this speculation can also be found in fMRI studies, which have showed that PT
responds significantly more strongly to speech sounds that are presented from an “outside
the head” vs. “inside the head” location (Hunter et al., 2003).

One answer to some of the inconsistencies in imaging evidence may be found in
connectivity of the posterior aspect of the superior temporal lobe. In addition to auditory
inputs that arrive both from auditory subcortical structures and from primary AC, there are
inputs from the adjacent visual motion areas as well as inputs from the speech motor areas
(Rauschecker, 2011; Rauschecker et al., 2009). Posterior aspects of PT near the boundary to
the parietal lobe are activated during covert production (Hickok et al., 2003). This area
could, thus, be speculated to be involved with an audiomotor “how” pathway, analogously
to the modification of the visual dual pathway model (Goodale et al., 1992) derived from the
known role of the dorsal pathway in visuomotor functions and visuospatial construction
(Fogassi et al., 2005; Leiguarda, 2003). Thus, for example, in the case of learning of speech
perception during early development, one might hypothesize that the visual (spatial and
movement) information from lip-reading would be merged with both the information/
knowledge of the speech motor schemes via a mirroring type of process and with the
associated speech sounds (Jääskeläinen, 2010). In terms of spatial processing, it is crucial
for the learning infant to be able to co-localize his/her own articulations with the speech
sounds that he/she generates, and, on the other hand, with the lip movements of others
producing the same sounds. All this requires spatial overlay of the auditory inputs with
visual and motor cues and coordinate transformations, which might again be supported by
close proximity of the putative visual spatial processing stream in parietal cortex and the
auditory one in posterior temporal (or temporo-parietal) cortex.

3.7. How to improve non-invasive measurements of human auditory spatial processing?
Many inconsistencies considering the specific roles of different AC areas could be addressed
by improving the resolution and accuracy of functional imaging estimates. Given the
relatively small size of human AC subregions (Woods et al., 2009a; Woods et al., 2009b),
one might need smaller voxels, which is feasible at ultra-high magnetic fields (De Martino et
al., 2012), and more precise anatomical coregistration approaches than the volume-based
methods that have been used in the majority of previous audiospatial fMRI studies. At the
same time, anatomical definitions of areas such as PT may vary across different atlases, such
as in those used by Fischl et al. (2004) vs. Westbury et al. (1999). With sufficiently accurate
methods, more pronounced differences might emerge within posterior non-primary ACs, for
example, among more anterolateral areas activated to pitch cues (Hall et al., 2009) and
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frequency modulations (Hart et al., 2004), slightly more caudomedial spatial activations
(Hart et al., 2004), and the most posterior aspects of PT, bordering parietal regions,
demonstrating auditory-motor response properties during covert speech production (Hickok
et al., 2003). This speculation is supported by the meta-analytical comparisons in Figure 3,
which show clear anterior-posterior differences between spatial and non-spatial effects, even
though many of the original findings have been interpreted as originating in the same
“planum temporale” regions (e.g., the so-called “spectral motion”). Promising new results
have been found by using approaches that combine different data analysis methods and
imaging techniques. For example, a recent study separated subregions of PT using a
combination of fMRI and diffusion-tensor imaging (DTI), which were selectively associated
with audiospatial perception and sensorimotor functions (Isenberg et al., 2012). In our own
studies, we have strongly advocated the combination of temporally accurate MEG/EEG and
spatially precise fMRI techniques, to help discriminate between activations originating in
anatomically very close-by areas (Ahveninen et al., 2011; Ahveninen et al., 2006;
Jääskeläinen et al., 2004). A combination of these techniques also allows for analyses in the
frequency domain (e.g., Ahveninen et al., 2012; Ahveninen et al., 2013), which might help
non-invasively discriminate and categorize neuronal processes despite the fact that pooled
activation estimates, such as those provided by fMRI or PET alone, reveal no differences in
the overall activation pattern. Finally, methods such as transcranial magnetic stimulation
might also offer possibilities for causally testing the role of the posterior AC in auditory
spatial processing.

4. Concluding remarks
Taken together, a profusion of neuroimaging studies support the notion that spatial acoustic
features activate the posterior aspects of non-primary AC, including the posterior STG and
PT. These areas are, reportedly, activated by a number of other features as well, such as
pitch and phonetic stimuli. However, studies using factorial designs and/or adaptation
paradigms, specifically contrasting spatial and identity-related features, suggest that sound-
location changes or motion are stronger activators of the most posterior aspects of AC than
identity-related sound features (see, e.g., Figure 3). Based on non-invasive measurements in
humans, one might also speculate that posterior higher-order AC areas contain neurons
sensitive to combinations of different auditory spatial cues, such as ITD, ILD, and spectral
cues. However, further studies are needed to determine how exactly acoustic space is
represented at the different stages of human auditory pathway, as few studies published so
far have provided evidence for a topographic organization of spatial locations in AC,
analogous to, for example, cochleotopic representations. In addition to animal models,
human studies are of critical importance in this quest: As shown by the rare examples of
single-cell recordings conducted in humans (Bitterman et al., 2008), the tuning properties of
human AC neurons may in some cases be fundamentally different from those in other
species. Single-cell studies are, naturally, difficult to accomplish in healthy humans.
Therefore, future studies using tools that combine information from different imaging
modalities, and provide a better spatiotemporal resolution than that allowed by the routine
approaches utilized to date, could help elucidate the neuronal mechanisms of spatial
processing in the human auditory system.
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Abbreviations

3D Three dimensional

AC Auditory cortex

AM Amplitude modulation

BAEP Brainstem auditory evoked potentials

BRIR Binaural room impulse responses

DRR Direct-to-reverberant ratio

DTI Diffusion-tensor imaging

EEG Electroencephalography

ERP Event-related potential

FM Frequency modulation

fMRI Functional magnetic resonance imaging

HRTF Head-related transfer function

ILD Interaural level difference

IPD Interaural phase difference

ITD Interaural time difference

MAEP Middle-latency auditory evoked potentials

MEG Magnetoencephalography

MRI Magnetic resonance imaging

PET Positron emission tomography

PT Planum temporale

SSR Steady-state response

STG Superior temporal gyrus
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Highlights

• Behavioral and neuroimaging studies/theories on sound localization are
discussed.

• Posterior non-primary auditory cortices (AC) are sensitive to spatial sounds.

• Differential neuronal adaptation may reveal subregions of posterior non-primary
AC.

• High-order AC neuron populations may process combinations of acoustic
spatial cues.

• Multimodal imaging/psychophysics on spatial hearing in complex environments
needed.
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Figure 1.
Adaptation studies of auditory spatial processing. (a) Neuronal adaptation refers to
suppression of responses to Probe sounds, as a function of their similarity and temporal
proximity to preceding Adaptor sounds. Differential release from adaptation when Probe vs.
Adaptor differences may reveal populations tuned to the varied feature dimension. (b) Our
previous MEG/fMRI adaptation data (Ahveninen et al., 2006), revealing differential release
from adaptation due to changes in directional vs. phonetic differences between Probe and
Adaptor sounds, which supports the existence of anterior “what” and posterior “where” AC
pathways (i.e., there is specific release from adaptation in posterior AC following sound
location change from adaptor to probe). An fMRI-weighted MEG source estimate is shown
in a representative subject.
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Figure 2.
fMRI studies on intensity-independent auditory distance processing. (a) Our recent fMRI
adaptation paradigm (Kopco et al., 2012), comparing responses to sounds that are
“Constant”, or contain “Varying distance” cues (all possible 3D distance cues 15–100 cm
from the listener) or “Varying intensity” cues (other cues corresponding constantly to 38
cm). This kind of adaptation fMRI design presumably differentiates the tuning properties of
neurons within each voxel (Grill-Spector et al., 2001), analogously to the MEG/EEG
adaptation example above. (Subjects paid attention to unrelated, randomly presented
duration decrements, to control attention effects.) (b) Adaptation fMRI data (Kopco et al.,
2012), demonstrating a comparison between the varying distance and varying intensity
conditions (N=11). Maximal difference is observed in the posterior STG/PT, possibly
reflecting neurons sensitive to intensity-independent distance cues.
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Figure 3.
Adaptation fMRI meta-analysis of release from adaptation due to spatial or pitch/spectral
variation. From each study, the reported voxels showing largest signals during varying
location (a; motion vs. stationary, varying location vs. stationary) or pitch (b; varying vs.
constant pitch) have been coregistered to the nearest cortical vertex in the Freesurfer
standard brain representation. In case separate subregions, such as when PT vs. HG voxels
were reported separately (Hart et al., 2004; Warren et al., 2003), the AC voxel showing the
largest signal was selected. (c) The comparisons of feature effects suggest quite a clear
division between the putative posterior “where” pathway (observations labeled red; orange
in the case of two overlapping voxels) and the anterior areas demonstrating release from
adaptation due to pitch-related variation (blue; possibly with further subregions). (d) Finally,
an additional analysis where the peak voxels have been coregistered to the closest superior
temporal cortex (STC) vertex is presented, to account for possible misalignment along the
vertical axis across the studies. Note that Thivard and colleagues (2000) did not investigate
pitch, per se. The results are shown due to their importance on influential alternative
hypotheses related to “spectral motion” and PT (Belin et al., 2000; Griffiths et al., 2002).
Altogether, this surface-based “adaptation-fMRI meta analysis” demonstrates the
importance of consistent anatomical frameworks in evaluating the distinct AC subareas.
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