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SUMMARY
The Unfolded Protein Response (UPR) is composed by homeostatic signaling pathways that are
activated by excessive protein misfolding in the endoplasmic reticulum (ER). Ire1 signaling is an
important mediator of the UPR, leading to the activation of the transcription factor Xbp1. Here,
we show that Drosophila Ire1 mutant photoreceptors have defects in the delivery of Rhodopsin-1
to the rhabdomere and in the secretion of Spacemaker/Eyes shut into the inter-rhabdomeral space.
However, these defects are not observed in Xbp1 mutant photoreceptors. Ire1 mutant retinas have
higher mRNA levels for targets of regulated Ire1-dependent decay (RIDD), including for the fatty
acid transport protein (fatp). Importantly, downregulation of fatp by RNA interference rescues the
Rhodopsin-1 delivery defects observed in Ire1 mutant photoreceptors. Our results show that the
role of Ire1 during photoreceptor differentiation is independent of Xbp1 function and demonstrate
the physiological relevance of the RIDD mechanism in this specific paradigm.

INTRODUCTION
The endoplasmic reticulum (ER) is the cell organelle where secretory and membrane
proteins are synthesized and folded. When the folding capacity of the ER is impaired, the
presence of incorrectly folded (misfolded) proteins in the ER causes ER stress and activates
the Unfolded Protein Response (UPR), which helps to restore homeostasis in the ER (Ron
and Walter, 2007; Walter and Ron, 2011). In higher eukaryotes, the activation of the UPR is
accomplished via three signaling pathways induced by ER-resident molecular ER stress
sensors: Protein kinase (PKR)-like ER kinase (PERK), Activating transcription factor 6
(ATF6) and Inositol-requiring enzyme 1 (Ire1).

Being conserved in all eukaryotes, Ire1 contains an ER luminal domain, which is involved in
the recognition of misfolded proteins (Credle et al., 2005; Gardner and Walter, 2011), and
cytoplasmic endoribonuclease and kinase domains, which are involved in the activation of
downstream pathways. Activated Ire1 mediates the non-conventional splicing of an intron
from X-box binding protein 1 (Xbp1) mRNA (or HAC1 mRNA, the yeast Xbp1 ortholog),
causing a frame-shift during translation, thereby introducing a new carboxyl domain in the
Xbp1 protein (Cox and Walter, 1996; Mori et al., 1996; Yoshida et al., 2001; Calfon et al.,
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2002; Shen et al., 2001). Xbp1spliced is an effective transcription factor that regulates the
expression of ER chaperones and other target genes (Acosta-Alvear et al., 2007).

In addition to mediating Xbp1 mRNA splicing, cell culture studies demonstrated that Ire1
promotes the degradation of mRNAs encoding ER-targeted proteins, a processed called
RIDD (regulated Ire1-dependent decay), to reduce the load of ER client proteins during ER
stress (Hollien and Weissman, 2006; Han et al., 2009; Hollien et al., 2009). The cytosolic
domain of mammalian IRE1 binds Traf2 (tumour necrosis factor receptor-associated factor
2, Urano, 2000), an upstream activator of the c-Jun N-terminal Kinase (JNK) signaling
pathway. This IRE1/Traf2 interaction is also independent of Xbp1 splicing and may lead to
the activation of apoptosis after prolonged ER stress (Yoneda et al., 2001).

In the Drosophila photoreceptor cells, the rhabdomere is the light sensing organelle, a stack
of photosensitive apical microvilli that is formed during the second half of pupal
development (Cagan and Ready, 1989; Tepass and Harris, 2007). The rhabdomere is formed
in the apical domain of each photoreceptor cell, which after a 90° rotation extends its apical
domain along the proximal-distal axis of the retina. The growth of the rhabdomere requires
the delivery of large amounts of membrane and proteins into this structure, imposing a
considerable demand to the cellular mechanisms controlling protein folding and membrane
production in the ER.

Among the proteins targeted to the developing rhabdomeres are the rhodopsins, the light
sensitive proteins, and other proteins involved in the transduction of the light stimuli.
Rhodopsin-1 (Rh1) is a seven transmembrane domain protein that starts to be expressed by
78% of pupal life (Kumar and Ready, 1995), and is delivered to the rhabdomeres of the
outer photoreceptors (R1–R6), in a trafficking process that requires the activity of Rab11,
MyosinV and dRip11 (Li et al., 2007; Satoh et al., 2005). The delivery of Rh1 to the
rhabdomere is required for rhabdomere morphogenesis, since in Rh1 null mutants the
rhabdomere does not form, causing degeneration of the photoreceptors (Kumar et al., 1997;
Kumar and Ready, 1995).

In mammalians, the microRNA mir-708 is up-regulated by CHOP to control Rhodopsin
expression levels and prevent an excessive Rhodopsin load into the ER (Behrman et al.,
2011). In Drosophila, Ire1 signaling is activated in the photoreceptors upon expression of
Rh1 folding mutants (Ryoo et al., 2007; Griciuc et al., 2010; Kang and Ryoo, 2009) or in
ninaA mutations that cause the accumulation of misfolded Rh1 in the ER (Mendes et al.,
2009). However, the role of Ire1 signaling during normal photoreceptor differentiation
remains unknown. In this study, we show that Ire1 signaling is activated in the
photoreceptors during pupal stages of Drosophila development. Ire1 mutant photoreceptors
have defects in the delivery of Rh1 to the rhabdomere and the secretion of Spacemaker/Eyes
shut (Spam/Eys) into the inter-rhabdomeral space. Surprisingly, Xbp1 null mutant
photoreceptors have a milder phenotype with no defects in Rh1 delivery into the rhabdomere
or spam/eys secretion. Targets of regulated Ire1-dependent decay (RIDD) are up-regulated
in Ire1 mutant retinas, including the fatty acid transport protein (fatp), a known regulator of
Rh1 protein levels (Dourlen et al., 2012). Finally, we show that the regulation of fatp levels
by RIDD is critical for normal Rh1 delivery into the rhabdomere.

RESULTS
Ire1 signaling is activated in the photoreceptors during pupal stages

To detect Ire1 signaling activity in the photoreceptors during development, we used the
Xbp1-EGFP reporter (Ryoo et al., 2007), in which EGFP becomes in frame with Xbp1 only
upon Ire1-dependent mRNA splicing. We expressed Xbp1-EGFP in the developing eye
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under the control of the GMR-Gal4 driver, which is active during larval stages in the eye
imaginal disc posterior to the morphogenetic furrow and in all cells of the eye during pupal
and adult stages. During larval stages, endogenous Xbp1-EGFP was not observed in the
photoreceptors (Figure 1A), but it could be induced upon culture of the imaginal discs in 2
mM dithiotheitol (DTT) for 4 hours (Figure 1B), a condition that interferes with oxidative
protein folding in the ER and activates Ire1. During pupal stages, Xbp1-EGFP was not
observed in the photoreceptors at 24 hours of pupal life (Figure 1C), but it became evident
during the second half of pupal development (Figures 1D, 48 hours and 1E, 72 hours). In the
adult, Xbp1-EGFP was observed overlapping with some Homothorax positive lattice cells
(Wildonger et al., 2005), but not in the photoreceptors (Elav marker). These results show
that Ire1 signaling is transiently activated in the photoreceptors during mid and late stages of
pupal development.

Activation of Xbp1-EGFP in the photoreceptors requires Ire1
To test if the Xbp1-EGFP reporter expression observed in the photoreceptors corresponds to
bona fide Ire1 activity, we did experiments where we tested Xbp1-EGFP expression in
mosaic eyes containing Ire1 mutant clones. The homozygous lethal line
PBac{WH}Ire1f02170 contains a piggyBac transposon insertion in the open reading frame of
Ire1 (Figure 2A). We recombined PBac{WH}Ire1f02170 into FRT82B to make mosaic clones
with the Flipase/FRT technique (Golic, 1991). Mosaic eyes were induced with eyeless-
Flipase and Xbp1-EGFP was expressed under GMR-Gal4 control in order to be analyzed
both in the 3rd larval instar (Figures 2B–2E) and pupal stages (Figures 2F–2I). Xbp1-EGFP
was not observed in clones homozygous for PBac{WH}Ire1f02170 either in larval eye discs
treated with 2 mM DTT (Figure 2B) or in the pupa (Figure 2F). Xbp1-EGFP expression was
observed in clones of a precise excision of PBac{WH}Ire1f02170 that reverts the Ire1
genomic region to wild-type (Figures 2C and 2G). Expression of UAS-Ire1 under the control
of GMR-Gal4 (Figures 2D and 2H) or a genomic construct covering the Ire1 region
(Pacman CH322-07H05, Figures 2E and 2I) rescued Xbp1-EGFP expression in the
background of PBac{WH}Ire1f02170 clones. Ire1 kinase (Ire1K576A) or RNase (Ire1H890A)
mutants failed to rescue Xbp1-EGFP expression (Figure S1). These results demonstrate that
the PBac{WH}Ire1f02170 insertion is a strong mutant allele of Ire1 and that Xbp1-EGFP
activation in the photoreceptors requires Ire1 activity.

Ire1 is not required for photoreceptor specification or for the establishment and
maintenance of apical/basal polarity in the photoreceptors

The expression of Xbp1-EGFP in the photoreceptors during the second half of pupal life
suggests that Ire1 signaling might be required for photoreceptor differentiation during these
stages. However, it is also possible that the Xbp1-EGFP reporter is not sensitive enough to
detect low levels of Ire1 activity that could have a role during earlier stages of photoreceptor
development. To test this possibility, we analyzed the expression of photoreceptor
specification markers in the 3rd larval instar stage in Ire1 mutant clones. Expression of Elav
(pan-neural marker) and Runt (marker of R7 and R8, Kaminker et al., 2002) was normal in
Ire1 homozygous mutant clones (Figure 3A). We also analyzed markers of apical/basal
polarity, since rhabdomere morphogenesis in the pupa requires proper establishment and
maintenance of apical/basal polarity in the photoreceptors (Pellikka et al., 2002; Izaddoost et
al., 2002; Knust, 2007; Walther and Pichaud, 2010). In the 40h–50h pupa, Ire1 mutant
clones exhibited normal localization of Armadillo (Figure 3B), DaPKC (Figure 3B), Crumbs
(Figure 3C) and Cadherin (Figure S2) in the photoreceptors, indicating no defect in apical/
basal polarity at these stages.
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Ire1 is required for Spacemaker/Eyes shut secretion and formation of the inter-
rhabdomeral space

The inter-rhabdomeral space (IRS) is an extracellular lumen between the rhabdomeres
enclosed by the 4 cone cells that surround each ommatidial cluster. The formation of the IRS
requires the secretion by the photoreceptors of the agrin/perclan-related protein Spacemaker/
Eyes shut (Spam/Eys) (Husain et al., 2006; Zelhof et al., 2006). By 62 h pupation, Spam/Eys
was observed in IRS of wild-type ommatidia. In contrast, Ire1 mutant ommatidia had low
levels of Spam/Eys in the IRS, with Spam/Eys retained in the photoreceptor cell body
(Figure 3D). As consequence of this defect in Spam/Eys secretion, Ire1 mutant ommatidia
showed an IRS with reduced size, which we quantified by measuring the IRS area of
adjacent wild-type and Ire1 mutant ommadia (Figure 3H). This defect in Spam/Eys secretion
and IRS formation was not observed in clones of a precise excision of PBac{WH}Ire1f02170

(Figure 3E) and could be rescued by GMR-Gal4>UAS-Ire1 (Figure 3F) or the
CH322-07H05 genomic construct covering the Ire1 region (Figure 3G).

Ire1 is required for Rh1 delivery into the rhabdomere
By 72h pupa, we observed that Ire1 mutant photoreceptors have defective delivery of Rh1
into the rhabdomeres, with retention of Rh1 in the photoreceptors cell body (Figure 4A). We
observed this phenotype in later pupal stages and in the adult, with concomitant
degeneration of the rhabdomeres (Figure S3). This defect in Rh1 delivery into the
rhabdomere was not observed in clones of a precise excision of PBac{WH}Ire1f02170 (Figure
4B) and could be rescued by GMR-Gal4>UAS-Ire1 (Figure 4C) and CH322-07H05
genomic construct (Figure 4D). Ire1 kinase (Ire1K576A) or RNase (Ire1H890A) mutants failed
to rescue Rh1 localization defect (Figure S1). We also observed that Ire1 mutant
photoreceptors have reduced levels of ER markers, such as the ER chaperone BiP/GRP78
(Figures 4E, S4A and S4B) and the Rh1 specific chaperone ninaA (Figure 4F and S4A). The
levels of the ER chaperone Calnexin (Cnx), however, were unchanged between wild-type
and Ire1 mutant cells (Figure 4G).

The cytoplasmic retention of Rh1 and the lower levels of the ER chaperones BiP/GRP78
and ninaA, suggested that Rh1 could be accumulating as misfolded protein in Ire1 mutant
photoreceptors. In ninaA mutations, Rh1 accumulates as an immature, glycosylated form,
while the levels of mature Rh1 are reduced (Colley et al., 1991; Ondek et al., 1992; Baker et
al., 1994). We performed Western Blot on protein extracts from Ire1 mutant eyes and
although Rh1 mature form levels were reduced, no immature Rh1 form was observed
(Figure 4H). This result indicates that, although ninaA levels are reduced in Ire1 mutant
photoreceptors, residual ninaA activity could be sufficient to process Rh1 to the mature
form.

Xbp1 is not required for Spacemaker/Eyes shut secretion or Rh1 delivery into the
rhabdomere

Next, we investigated if Xbp1 mutants also exhibit the same defects in Spam/Eys secretion
and Rh1 delivery into the rhabdomere as observed in Ire1 mutant photoreceptors. We
previously used a lethal P element insertion upstream of Xbp1 open reading frame,
P{lacW}Xbp1K13803, which accelerates retinal degeneration induced by ninaE dominant
mutations (Ryoo et al., 2007). Clones of P{lacW}Xbp1K13803 did not present the defects in
Spam/Eys secretion and Rh1 delivery into the rhabdomere observed in the Ire1 mutation
(data not shown). However, P{lacW}Xbp1K13803 still has residual expression of Xbp1
mRNA (Ryoo et al., 2007), that could be sufficient to rescue potential defects in the
photoreceptors. For this reason, we decided to generate Xbp1 protein null deletion mutants
with no residual function of the Xbp1 protein. Using Δ23 transposase, we induced imprecise
excisions of 2 P elements (P[PTT-GB]Xbp1CB02061and P[SUPor-P]CG9418KG05183)
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neighboring Xbp1, which resulted in the identification of 3 different deletion mutations
(Excisions 79, 81 and 250, Figure 5A). We recombined each deletion mutant into FRT42D
chromosome to generate mosaic clones in the eye. We observed identical phenotypes with
these 3 Xbp1 deletion mutants.

In contrast to Ire1 mutants, Xbp1 mutant ommatidia presented normal levels of Spam/Eys
secretion into the inter-rhabdomeral space with no retention of Spam/Eys in the cell body of
the photoreceptors (Figure 5B). Likewise, Rh1 was delivered to the rhabdomere (Figures 5C
and 5D), although at 72 h. pupa we observed lower levels of Rh1 in the rhabdomeres of
Xbp1 mutant photoreceptors than in wild type (quantification in Figure 5E). In contrast, at
82 h. pupa, Xbp1 mutant rhabdomeres presented higher levels of Rh1 in the rhabdomere
than wild-type (Figures 5D and 5E). Furthermore, at this stage, while wild-type showed the
typical crescent-shaped gradient of concentration with higher levels at the rhabdomere base,
Xbp1 mutant photoreceptors showed an even distribution of Rh1 in the rhabdomere
(magnifications in Figure 5D). Our interpretation of these results is that in Xbp1 mutant
ommatidia, Rh1 is delivered into the rhabdomere, although there is a developmental delay in
this process. As in Ire1 mutant photoreceptors, Xbp1 mutants had reduced levels of the ER
markers BiP/GRP78 (Figures 5F, S4A and S4B) and Protein disulphide isomerase (Pdi,
Figure 5G). Cnx was unchanged between Xbp1 mutant and wild-type cells (Figure 5H).

The branches of the UPR are interconnected and loss of one pathway may lead to increased
activation of parallel pathways during ER stress. Upregulation of ATF4 is induced by
activation of the PERK pathway and we observed upregulation of ATF4 in Ire1 mutant
clones but not in Xbp1 mutants (Figures S4C and S4D). Overall, these results demonstrate
that Ire1 mutants have a more severe rhabdomere morphogenesis phenotype than Xbp1
mutants, indicating that Ire1 function in this context should be mediated by Xbp1-
independent mechanisms.

Regulation of Fatp by RIDD is critical for rhabdomere morphogenesis
Studies using cell culture approaches showed that, during ER stress, Ire1 promotes the
degradation of mRNAs encoding proteins that are translated in the ER (Hollien and
Weissman, 2006; Han et al., 2009; Hollien et al., 2009). This Xbp1-independent function of
Ire1 was denominated as Regulated Ire1-Dependent Decay (RIDD). To investigate if RIDD
occurs in the Drosophila eye, we determined by quantitative RT-PCR the mRNA levels of
specific RIDD targets in wild-type and Ire1 mutant eyes (Figure 6A). The mRNAs of genes
such as Indy, Sparc and Fatp were 1,5 to 2,5 fold up-regulated in Ire1 mutant eyes, in
comparison with controls. To confirm the quantitative RT-PCR results, we performed
immuno-fluorescent staining in eyes with Ire1 mutant clones, using antibodies against Fatp
and Sparc. We found that Fatp (Figure 6B) and Sparc (Figure S5A) protein levels were
upregulated in Ire1 mutant clones. Furthermore, purified human Ire1 cleaved Drosophila
Xbp1 and Fatp mRNAs in vitro (Figure S5B). We found two Ire1 cleavage sites in the
mRNA of Fatp and mutagenesis of these sites abrogated cleavage of Fatp mRNA by human
Ire1 (Figure S5B).

Fatp is a regulator of Rh1 protein levels, since in Fatp loss-of-function mutants Rh1 levels
are up-regulated, causing photoreceptor degeneration (Dourlen et al., 2012). Furthermore,
fatty acids are precursors in the biosynthesis of phosphatidic acid and an increase in Fatp
levels could lead to higher levels of phosphatidic acid, due to an increased import of fatty
acids into the cell. High levels of phosphatidic acid cause downregulation of Rh1 protein
levels and rhabdomere defects (Raghu et al., 2009), similar to the phenotypes observed in
Ire1 mutant photoreceptors. Thus, we investigated if Fatp over-expression could lead to
phenotypes similar to the ones observed in Ire1 mutant photoreceptors. In fact,
photoreceptors where UAS-Fatp was expressed under the control of GMR-Gal4 showed
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defective delivery of Rh1 to the rhabdomere (Figure 6D). Furthermore, downregulation of
Fatp levels by expression of Fatp RNAi in Ire1 mutant photoreceptors rescued the defective
delivery of Rh1 to the rhabdomere (Figure 6E). Finally, we detected higher levels of
phosphatidic acid in Ire1 mutant retinas than in controls (Figure S5C) and the defect of Rh1
delivery to the rhabdomere in Ire1 mutant photoreceptors was also rescued by
overexpression of lipid phosphate phosphohydrolase (UAS-LPP (lazaro), Figure 6F), an
enzyme that converts phosphatidic acid to diacylglycerol and is able to rescue the
rhabdomere defects caused by excessive levels of phosphatidic acid (Raghu et al., 2009).
We conclude that RIDD regulation of Fatp levels is an important part of Ire1 role during
photoreceptor differentiation in the Drosophila eye.

DISCUSSION
Studies in mammalian systems revealed that the Ire1/Xbp1 signaling pathway is important
during development for the differentiation of secretory cells. For example, Xbp1 “knock-
out” mice have defects in the differentiation of antibody-secreting plasma cells (Reimold et
al., 2001) and secretory cells of the exocrine glands of the pancreas (Lee et al., 2005).
Presumably in these cases, activation of Ire1/Xbp1 signaling is required to increase the
capacity of the ER to fold and process the high load of secreted proteins.

Our present results demonstrate that Ire1 signaling is required for photoreceptor
differentiation and rhabdomere morphogenesis, a process that also imposes a high demand
to the capacity of the ER to fold proteins such as Spam/Eys and Rh1. As shown, Ire1 mutant
photoreceptors have defects in the secretion of Spam/Eys to the IRS and in the delivery of
Rh1 to the rhabdomere. However, we see activation of the Xbp1-EGFP reporter starting at
48h of pupal development, well before when the Spam/Eys secretion and Rh1 delivery
defects are observed. Presumably, the folding of other unidentified proteins during these
earlier stages might also require Ire1 signaling. It is noteworthy though, that in mutant B
lymphocytes modified to lack antibody production, Ire1 is still activated (and Xbp1 spliced)
upon lymphocyte differentiation to plasma cells (Hu et al., 2009). Activation of Ire1/Xbp1
signaling in this context seems to be part of the process of plasma cell differentiation,
independently of the accumulation of misfolded proteins in the ER lumen (van Anken et al.,
2003; Hu et al., 2009).

Ire1 function is also required for the regulation of the membrane lipids. In mammalians,
Ire1/Xbp1 signaling regulates the biosynthesis of phospholipids and other lipids (Sriburi et
al., 2007; Lee et al., 2008). A study in yeast demonstrated that Ire1 is activated by
“membrane aberrancy”, a condition of stress caused by the experimental depletion of
inositol (Promlek et al., 2011). Activation of Ire1 in this case occurs by a mechanism that is
distinct from the one involving the recognition of misfolded proteins by the luminal domain
of Ire1 (Promlek et al., 2011). Furthermore, Ire1 can be activated by direct binding of
flavonoids, such as quercetin, to a pocket present in the cytoplasmic domain of Ire1, in a
mechanism that is also independent of the binding of misfolded proteins to Ire1 (Wiseman et
al., 2010). Our present results do not clarify if Ire1 activation in the photoreceptors during
pupal stages results from the accumulation of misfolded proteins in the ER lumen or an
imbalance in the membrane lipids.

Our results demonstrate that Ire1 signaling is required for photoreceptor differentiation and
rhabdomere morphogenesis in an Xbp1-independent manner. Studies using cell culture
paradigms demonstrated that, in addition to mediating Xbp1 mRNA splicing, Ire1 also
promotes RIDD (Regulated Ire1-Dependent Decay), the degradation of mRNAs encoding
ER-targeted proteins (Hollien and Weissman, 2006); (Han et al., 2009) (Hollien et al.,
2009), but the physiological significance of the RIDD mechanism is unknown. Our
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quantitative RT-PCR results show that RIDD targets are up-regulated in Ire1 mutant eyes,
including fatty acid transport protein (fatp), a regulator of Rh1 protein levels (Dourlen et al.,
2012). Our results show that regulation of fatp mRNA by RIDD is critical for rhabdomere
morphogenesis, since the experimental downregulation of fatp mRNA by RNAi rescues the
Rh1 rhabdomere delivery defect observed in Ire1 mutants.

Rh1 protein levels and Rh1 delivery to the rhabdomere is very sensitive to the levels of
sphingolipids (Yonamine et al., 2011) and phosphatidic acid (Raghu et al., 2009). Increased
Fatp levels may lead to an increase in the levels of fatty acids and subsequently,
phosphatidic acid, which is known to downregulate Rh1 protein levels and cause
rhabdomere morphogenesis defects (Raghu et al., 2009). High levels of phosphatidic acid
disrupt the Arf1-dependent transport of membrane to the developing rhabdomere (Raghu et
al., 2009). Our results show that phosphatidic acid levels are elevated in Ire1 mutant retinas
and lowering phosphatidic acid levels by expression of LPP rescues the defects observed in
Ire1 mutants, demonstrating that Ire1/Fatp dependent regulation of fatty and phosphatidic
acids levels is important for rhabdomere morphogenesis in Drosophila. In addition, it is
possible that the increase in phosphatidic acid levels in Ire1 mutant photoreceptors is also
caused by the activation of PERK, since we observed upregulation of the PERK pathway
mediator ATF4 in Ire1 mutant photoreceptors (Figure S4C) and in cell culture models it was
shown that PERK is able to phosphorylate diacylglycerol and generate phosphatidic acid
(Bobrovnikova-Marjon et al., 2012).

In conclusion, our results, using well-characterized genetic tools (Ire1 and Xbp1 null
mutations) and a developmental paradigm (photoreceptor differentiation in the Drosophila
pupa), demonstrate the physiological relevance of Xbp1-independent mechanisms
downstream of Ire1 signaling.

EXPERIMENTAL PROCEDURES
Drosophila stocks and molecular biology

All Drosophila stocks were raised with standard cornmeal medium, at 25°C, in a 12 hour
light/dark cycle. Clones of mutant eye tissue were generated by the Flp/FRT technique
(Golic, 1991), with Flipase expression under the control of the eyeless promoter (Newsome
et al., 2000). The open reading frame of Ire1 was amplified from larval cDNA with the
forward primer 5’ggaagatctatgggcagtcttaagaagttacc and reverse primer 5’
cggggtacctcaatcctgcgttgaaggtgg and cloned into pUAST using BglII and Acc65I restriction
sites. The injection of DNA into embryos to establish Drosophila transgenic lines was
performed by BestGene. The CH322-07H05 (Pacman) genomic construct is a 22Kb
fragment covering Ire1 and the neighbouring genes CG4662, CG11447, CG4572 and
CG4686. The CH322-07H05 transgenic line was generated by using φC31 integrase-
mediated transgenesis (BestGene Strain #9752, attP acceptor site in 22A3). The Xbp1
deletion mutants were created by crossing flies with the P elements P[PTT-
GB]Xbp1CB02061or P{SUPor-P}CG9418KG05183 with Δ23 transposase flies and were
characterized by PCR and sequencing. The precise excision of PBac{WH}Ire1f02170 was
generated by crossing to PBac transposase and confirmed by sequencing. UAS-Fatp and
UAS-Fatp RNAi were a gift from B. Mollereau and were described in (Dourlen et al., 2012).
UAS-Lpp was a gift from P. Raghu and was described in (Raghu et al., 2009).

Quantitative RT-PCR
For quantitative reverse transcription-PCR (RT-PCR) analysis, total RNA was extracted
from adult heads with Trizol and Direct-zol RNA mini-prep (Zymo Research). 0,5 μg of
total RNA was retro-transcribed using RevertAid First Strand (Thermo/Fermentas). Each
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PCR reaction was performed on 1/40 of the cDNA obtained using SSoFast EvaGreen
Supermix (Bio-Rad) according to the manufacturer’s instructions and using a Bio-Rad
Cfx-96 detection system. All samples were analyzed in triplicates and from 3 independent
RNA extractions. For each sample, the levels of mRNAs were normalized using rp49 as a
loading control. PCR primers were: sparc (F: AGCTCCATCTGCATGTAGTGCTCG, R:
ATCTGCCAGATGCACGACGAGAAG), indy
(F:GCTTGCGGGTGAAGTACATCACAACC,
R:TACCTTCAAGGGCATCTACGAGGC), lamp1 (F:
CTTATTGGCTTGCCGAGAGTCGGT, R: TGGATGGTTGCGGATATGGTTGCG, fatp
(F: CCTTGGAAGTCTGGTAGTACAGCG, R: AGAATGTTTCCACCAGCGAGGTGG),
CG5888 (F: ACTCGGTTGGCACATTATCACCGC, R:
GGAAGCAGTGATTTGCCCGGTAAC), mys (F:
AGCAGGTGAGCTTCACAGCTCAGA, R: TCGATGTTAGATCCGTTGCCGAGC),
CG11562 (F: TGAGACTGCACGATGGTGTCCTGA, R:
CCATCGTGATTAGTCGTTCCACCC), CG6805 (F:
ACCACTTGTCCGGATAACCAGCTG, R: GCGAAAGTCGAATGCTTACGGCAC),
GRP78 (F: TGTCACCGATCTGGTTCTTCAGGC, R:
GTCCCATGACCAAGGACAACCATC), ninaA (F: CGTGGCCAGTCTTCAC, R:
CTCCACCGCCATCCTC), Pld (F: ACGGACTCAGCTTTCGGATCACGT, R:
GTCTCAGTAGCTGTTAGACGGTGC), dgk (F: CTTCTGTTGCTGCTCGAACTGGAG,
R: ATCACTAGCTGTCGAGGAAGCTGC), Lpp (lazaro) (F:
CTCGTTGTCGTCCTCATTCTCTGC, R: TACGTGGAGCAGTTCCACTGCACT), cds
(F:GAAGTTCCTGGTGACCTATCACCG, R: GTCTTCTTGGGGCTGAGCTTGATG)
and rp49 (F: AGATCGTGAAGAAGCGCACCAAGC, R:
GCACCAGGAACTTCTTGAATCCGG).

In vitro Ire1 mRNA cleavage assay
The in vitro Ire1 mRNA cleavage assay was performed as in (Cross et al., 2012). dXbp1
mRNA was produced in vitro with T7 RNA polymerase (Promega Ribomax Express RNA)
from pOT2-dXbp1 after linearization with NotI. dFatp mRNA was produced from a PCR
product obtained with F:TAATACGACTCACTATAGGGAGACCGG and R:
CGGTGTGGTACAAAGGCAAGG. Fatp Mut1 was done by changing
GTGGCCAATGTGctgcagGCTCAGGGCTAC into
GTGGCCAATGTGctccacGCTCAGGGCTAC and Fatp Mut. 2 by changing
TCCCTCCCTGctgcacAGCATCAC into TCCCTCCCTGctccaaAGCATCAC. The mRNAs
(1μM) were incubated at 29°C with or without purified human Ire 1 (5 μM) and the Ire1
inhibitor 4μ8C (10 μM), kind gifts from Heather Harding. Cleavage products were resolved
by electrophoresis on a 1% denaturing agarose gel stained with ethidium bromide.

Analysis of retinal phosphatidic acid
The analysis of retinal phosphatidic acid by LC-MS was performed following the protocol
described in (Raghu et al., 2009). For each genotype 150 retinas were separated from the
head after being frozen in liquid nitrogen and dehydrated in acetone. The retinas were
homogenized using a glass piston in 1 mL methanol containing 500 ng of a 12:0/12:0 PA
standard (Avanti Polar Lipids). The lipids were extracted with addition of 2 mL of
chloroform and 1ml of 0.88% (w/v) KCl to split the phases. The lower organic phase was
dried in a speedvac during 30 min and stored at −20°C until further analysis.

Phospholipids extracts were profiled using the LC-MS in order to identify and quantify the
PA species present. The analysis was performed using a Surveyor HPLC system (Thermo
Scientific) interfaced to an externally calibrated LTQ-Ion trap mass spectrometer (Thermo
Scientific) with an electrospray ionization (ESI) source in negative mode. The capillary was
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operated at 5kV and source temperature was set to 300°C, the sheath gas and auxiliary gas
setting was 20 (arbitrary units). For normal-phase chromatographic analysis, a 10 μL aliquot
of phospholipid extract dissolved in 30 μL of chloroform was injected into a Luna,
Phenomenex silica column (150 mm × 1.0 mm, 3um particle size). PA phospholipids
species originating from fly extracts were separated using chloroform/methanol/water
(90:9.5:0.5) containing 7.5 mM ethylamine changing to acetonitrile/chloroform/methanol/
water (30:30:35:5) containing 10 mM ethylamine at flow rate of 50 μL/min. The column
temperature was maintained at 25°C. The relative amount of each PA species was
determined dividing the area of the corresponding m/z peak by that of the internal standard.

Immunohistochemistry and Electron microscopy
For pupal dissections, white pre-pupae (0h) were collected and maintained at 25°C until the
required stage. For late pupal and adult eye dissections, pWIZ (a white gene RNAi line) was
used to reduce the fluorescence background from the red eye pigment as in (Xie et al.,
2007). Larval, pupal and adult eyes were dissected in 1xPBS, fixed in 1xPBS + 4%
Formaldehyde for 40 minutes at room temperature and washed 3 times with 1xPBS + 0.3%
Triton X-100. Primary antibodies were incubated in 1xPBS, 1% BSA, 0.1% Tween 20, 250
mM NaCl overnight at 4°C. Primary antibodies were as follows: rat anti-ELAV (7E8A10,
DSHB), guinea pig anti-homothorax (Wildonger et al., 2005), guinea pig anti-Runt (Duffy et
al., 1991), rat anti-cadherin (DCAD2, DSHB), mouse anti-armadillo (N2 7A1, DSHB),
rabbit anti-aPKC (Santa Cruz, sc-216), mouse anti-Crumbs (Cq4, DSHB), mouse anti-spam
(21A6, DSHB), mouse anti-Rh1 (4C5, DSHB), mouse anti-tubulin (12G10, DSHB), guinea
pig anti-Bip/GRP78 (Hsc-3) (Ryoo et al., 2007), rabbit anti-Bip/GRP78 (StressMarq
Biosciences, SPC-180), guinea pig anti-ATF4 (Kang et al., 2012), rabbit anti-calnexin
(Rosenbaum et al., 2006), rabbit anti-ninaA (Baker et al., 1994), rabbit anti-Pdi (Abcam,
ab2792), rabbit anti-fatp (Dourlen et al., 2012) and mouse anti-Sparc (Portela et al., 2010).
Samples were washed 3 times with 1xPBS + 0.3% Triton X-100 and incubated with
appropriate secondary antibodies (from Jackson Immuno-Research Laboratories) for 2 hours
at room temperature. To stain actin in the rhabdomeres we used Phalloidin-TRITC or
Phalloidin-FITC (Sigma). Samples were mounted in 80% glycerol in a bridge formed by
two cover slips to prevent the samples from being crushed while analyzed on a Zeiss LSM
710 confocal microscope. Cryostat horizontal frozen sections of OCT embedded adult and
pupal heads were performed as in (Mollereau et al., 2001). Measurement of the IRS area and
quantification of the mean Rh1 fluorescence were performed using ImageJ. A ratio for each
pair of adjacent wild-type and Ire1 mutant ommadia was obtained and expressed as a mean
value.

For electron microscopy, adult eyes were fixed in 2,5% glutheraldehyde in 0,1 M cacodylate
buffer (pH 7.4) and post-fixed with 1% osmium tetroxide. After dehydratation in ethanol
and propylene oxide, the eyes were infiltrated with resin and mounted in silicone molds.
Ultrathin sections (60nm) were cut and examined with electron transmission microscope
(Jeol JEM).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Ire1 is activated in the photoreceptors during Drosophila pupal development.

• Ire1 mutant photoreceptors have defects in rhabdomere morphogenesis.

• The role of Ire1 in rhabdomere morphogenesis is independent of Xbp1 function.

• Regulation of Fatp by RIDD is critical for rhabdomere morphogenesis.
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Figure 1.
The Xbp1-EGFP Ire1 signaling reporter is activated in the photoreceptors during pupal
stages. In all panels UAS-Xbp1-EGFP (green) is expressed under the control of GMR-Gal4
and Elav (blue) is a neuronal marker expressed in the photoreceptors. (A and B) Third instar
larval stage eye/antenna imaginal disc (posterior is to the right). (A) Endogenous GFP
expression is not observed in GMR-Gal4>UAS-Xbp1-EGFP. (B) Culture of GMR-
Gal4>UAS-Xbp1-EGFP imaginal discs in 2 mM DTT for 4 hours activates Xbp1-EGFP. (C)
Xbp1-EGFP is not observed at 24 h pupa. (D) Xbp1-EGFP is observed in the photoreceptors
at 48 hours and (E) 72 hours of pupal development. (F) In the adult, Xbp1-EGFP is observed
in some Homothorax (red) positive lattice cells, but not in the photoreceptors. (C and D) are
tangential views of whole-mount pupal eyes and (E and F) are horizontal sections of the eye
oriented with distal to the top. Scale bars, 10 μm.
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Figure 2.
Ire1 is required for Xbp1-EGFP activation in the Drosophila eye (A) Schematic of Ire1
genomic region with the PBac{WH}Ire1f02170 piggyBac transposon insertion in the open
reading frame of Ire1. (B–E) Third instar stage larval eyes (posterior to the right) with
eyeless-Flipase induced clones of PBac{WH}Ire1f02170 homozygous cells, labeled by the
absence of UAS-DsRed, were treated with 2 mM DTT for 4 hours to activate Xbp1-EGFP
(green). (B) Xbp1-EGFP is not observed in cells homozygous for PBac{WH}Ire1f02170. (C)
Xbp1-EGFP is observed in clones of a precise excision of PBac{WH}Ire1f02170 that restores
the genomic region. (D) Expression of UAS-Ire1 under the control of GMR-Gal4 or from
(E) CH322-07H05 (Pacman) genomic construct covering Ire1 region rescues Xbp1-EGFP
activation in PBac{WH}Ire1f02170 homozygous cells. (F–I) Pupal eyes (48 h.) with eyeless-
Flipase induced clones of PBac{WH}Ire1f02170 homozygous cells, labeled by the absence of
UAS-DsRed. (F) Endogenous Xbp1-EGFP in the photoreceptors is not observed in cells
homozygous for PBac{WH}Ire1f02170. (G) Xbp1-EGFP is observed in clones of a precise
excision of PBac{WH}Ire1f02170. (H) Expression of UAS-Ire1 under the control of GMR-
Gal4 or from (I) CH322-07H05 (Pacman) genomic construct rescues Xbp1-EGFP activation
in PBac{WH}Ire1f02170 homozygous cells. Elav is in blue. Scale bars, 10 μm.

Coelho et al. Page 15

Cell Rep. Author manuscript; available in PMC 2013 December 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Ire1 is required for spam/eys secretion and formation of the inter-rhabdomeral space. (A)
Third instar stage larval eyes (posterior to the right) with eyeless-Flipase induced clones of
PBac{WH}Ire1f02170 homozygous cells, labeled by the absence of ubiGFP (green), show
normal expression of the photoreceptor specification markers Elav (blue) and Runt (Red)
(arrows). (B) 40 h pupal eye with PBac{WH}Ire1f02170 homozygous cells, labeled by the
absence of myrGFP (green), show normal localization of arm (blue) and DaPKC (Red). (C)
50 h pupa with PBac{WH}Ire1f02170 homozygous cells, labeled by the absence of myrGFP
(green), show normal localization of crumbs (blue). (D) By 62 h pupation,
PBac{WH}Ire1f02170 homozygous ommatidia (absence of myrGFP, green) have low levels
of Spam/Eys (blue) in the inter-rhabdomeral space (IRS) and present retention of Spam/Eys
in the photoreceptors cell body. The rhabdomeres are stained with actin (red). The magnified
mutant and control ommatidia are indicated with white squares in the figure. (E) Clones of a
precise excision of PBac{WH}Ire1f02170 (absence of myrGFP, green) have normal
localization of Spam/Eys (blue) in the IRS. (F) GMR-Gal4>UAS-Ire1 rescues Spam/Eys
(blue) localization in PBac{WH}Ire1f02170 homozygous ommatidia (absence of DsRed). (G)
CH322-07H05 genomic construct rescues Spam/Eys (blue) localization in
PBac{WH}Ire1f02170 homozygous ommatidia (absence myrGFP, green). (H) Quantification
of IRS size; average of the ratio of the IRS areas of adjacent homozygous mutant and wild-
type ommatidia. Around 40 pairs of mutant/wild type ommatidia were quantified for each
experimental condition indicated in the figure. Scale bars, 10 μm.
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Figure 4.
Ire1 is required for Rh1 delivery into the rhabdomere. (A) 72 h pupal eye with eyeless-
Flipase induced clones of PBac{WH}Ire1f02170 homozygous cells, labeled by the absence of
myrGFP (green), show defective delivery of Rh1 (blue) into the rhabdomeres (actin, red).
The magnified mutant and control ommatidia are indicated with white squares. (B) Rh1
(blue) delivery into the rhabdomeres is normal in clones of a precise excision of
PBac{WH}Ire1f02170 (labeled by the absence of myrGFP, green). (C) GMR-Gal4>UAS-Ire1
expression rescues Rh1 (blue) delivery into the rhabdomeres of PBac{WH}Ire1f02170

homozygous cells (labeled by the absence of DsRed). (D) The CH322-07H05 genomic
construct rescues Rh1 (blue) delivery into the rhabdomeres of PBac{WH}Ire1f02170

homozygous cells (absence of myrGFP, green). (E–G) PBac{WH}Ire1f02170 homozygous
cells (absence of myrGFP, green) have reduced levels (arrows) of (E) BiP/GRP78 (blue and
monochrome) and (F) ninaA (blue and monochrome), but not (G) Cnx (blue and
monochrome). (H) Western blot analysis of Rh1 mature (34 kDa) and immature (40 kDa)
forms from adult head protein extracts of yw (WT, positive control),
FRT82BPBac{WH}Ire1f02170/FRT82BCL,GMR-hid (whole eye is composed of
homozygous Ire1 mutant cells as in (Stowers and Schwarz, 1999)), ninaE17 (Rh1 protein
null) and 2 ninaA mutations (ninaA1=ninaAP228 and ninaAE110V). Tubulin is used as
loading control. Scale bars, 10 μm.
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Figure 5.
Xbp1 is not required for Spacemaker/Eyes shut secretion or Rh1 delivery into the
rhabdomere. (A) Schematic of Xbp1 genomic region with the localization of
P[lacW]Xbp1K13803, P[PTT-GB]Xbp1CB02061and P[SUPor-P]CG9418KG05183. Excisions
81 and 79 delete the DNA binding domain of Xbp1 and were generated from jumps of
P[PTT-GB]Xbp1CB02061. In excision 81, the sequence from 4bp to 622bp downstream from
Xbp1 start codon (ATG) is deleted. In excision 79, the sequence between 260bp upstream
and 748bp downstream from Xbp1 start codon (ATG) is deleted. In excision 250, the open
reading frame of Xbp1 is deleted from 5bp after the start codon, together with CG9418 and
CG15657, until 2R:17036107, in the inter-genic region between CG15657 and CG30389.
Excision 250 was generated from a jump of P[SUPor-P]CG9418KG05183. (B) By 62 h
pupation, eyeless-Flipase induced clones of cells homozygous for Excision 79, labeled by
the absence of myrGFP (green), have normal levels of Spam/Eys (blue) in the IRS. The
rhabdomeres are stained with actin (red). (C) At 72 h. pupa, Rh1 (blue) is delivered to the
rhabdomere in photoreceptors homozygous for Excision 79, labeled by the absence of
myrRFP (red), but Xbp1 mutant photoreceptors have lower levels of Rh1 in the rhabdomere
in than wild type (monochrome magnifications with wild type and mutant ommatidia). (D)
At 82 h. pupa, photoreceptors homozygous for Excision 79 present higher levels of Rh1 in
the rhabdomere than wild-type. Excision 79 homozygous photoreceptors show even
distribution of Rh1 in the rhabdomere, while wild-type show the typical crescent-shaped
gradient of concentration with higher levels at the rhabdomere base (monochrome
magnifications). (E) Quantification of Rh1 intensity. Average of the ratio of Rh1
fluorescence intensity divided by respective area between pairs of adjacent Excision 79
homozygous and wild-type ommatidia, at 72 and 82 hours of pupal development (FluoEx79/
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AreaEx79/FluoWT/AreaWT). Around 70 pairs of Excision 79 homozygous and wild-type
ommatidia were quantified at each time point. At 72 h. pupa, Excision 79 homozygous
photoreceptors have reduced levels of (F) BiP/GRP78 (blue and monochrome) and (G)
ninaA (blue and monochrome) but not (H) Cnx (blue and monochrome). Scale bars, 10 μm.
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Figure 6.
Regulation of Fatp by RIDD is critical for rhabdomere morphogenesis (A) Quantitative RT-
PCR comparing the mRNA levels (Y axis) of RIDD targets (X axis) in control (blue bars,
yw) and Ire1 mutant eyes (green bars, eyFlp; FRT82BPBac{WH}Ire1f02170/
FRT82B,CL,GMR-hid). The mRNA levels are presented in arbitrary units (fold change)
relative to control (yw). (B) Clones of PBac{WH}Ire1f02170 homozygous ommatidia
(absence of myrGFP, green, indicated by white dashed line) in the 72 h. pupa have higher
levels of Fatp (blue and monochrome) than surrounding control tissue. (C) Adult control
eyes (GMR-Gal4) have normal localization of Rh1 (blue) in the rhabdomere. (D) Adult
GMR-Gal4>uas-Fatp eyes have defective delivery of Rh1 (blue) to the rhabdomere
(arrows). (E) GMR-Gal4>uas-Fatp RNAi rescues the delivery of Rh1 (blue) to the
rhabdomere (arrows) in clones of PBac{WH}Ire1f02170 homozygous ommatidia (compare
with Figure 4A), as does (F) GMR-Gal4>uas-LPP. The rhabdomeres are stained with actin
in red or green, as indicated. Scale bars, 10 μm.
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