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Abstract
Obstructive sleep apnoea (OSA) is a highly prevalent condition with proven neurocognitive and
cardiovascular consequences. OSA patients experience repetitive narrowing or collapse of the
pharyngeal airway during sleep. Multiple factors likely underlie the pathophysiology of this
condition with considerable inter-individual variation. Important risk factors for OSA include
obesity, male gender, and ageing. However, the mechanisms underlying these major risk factors
are not well understood. We briefly review the state-of-the-art knowledge regarding OSA
pathogenesis in adults and highlight the potential role of genetics in influencing key OSA
pathophysiological traits.
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The obesity pandemic is affecting global health in a variety of ways. One of the major
respiratory manifestations of obesity is in the form of obstructive sleep apnoea (OSA). Sleep
apnoea is defined by recurrent reductions (hypopnoeas) or stoppages (apnoeas) in breathing
during sleep as result of pharyngeal airway narrowing or collapse1. OSA is defined by
reduction in airfow in the presence of ongoing respiratory efforts2–4. In contrast, central
sleep apnoea is characterized by the absence of respiratory effort during airfow attenuation5.
Obstructive apnoea is considerably more common than central apnoea and is the focus of the
present manuscript. In OSA, hypoxemia and hypercapnia result from these breathing
disruptions with the ultimate result being catecholamine surges and associated
hemodynamic consequences6,7. Loud snoring, caused by vibration of pharyngeal tissues, is a
classic symptom of OSA8. In most but not all cases the termination of respiratory events is
associated with electrocortical arousal from sleep9,10. These repetitive events result in a
cyclical breathing pattern and sleep fragmentation as the patient fluctuates between wake
and sleep11,12. Severe sleep apnoea patients can experience respiratory events in excess of
100 times per hour with each event, by definition, lasting at least 10 sec.

Symptomatic OSA affects at least 2–4 per cent of the US population13. Prevalence estimates
from around the world support similar values14, and numbers are likely to increase with the
obesity pandemic15. Sensitive indices of airflow (nasal pressure)16 and the realization that
asymptomatic patients may have complications of OSA17 have both contributed to higher
estimated prevalence. While non obese individuals may suffer from OSA, obesity is the
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main epidemiological risk factor. Indeed, increases in body mass index, central
accumulation of adipose tissue, and neck circumference are strong predictors of this
disease18. Although obesity is a major risk factor for OSA, roughly 30 per cent of patients
with obstructive sleep apnoea syndrome are not obese, emphasizing the need for a high
index of suspicion in clinical practice. Further, the prevalence of OSA is 2–3 times greater in
men than in women and in older compared to middle aged individuals19. Menopause is a
well established risk factor for OSA in women20.

OSA can yield major neurocognitive manifestations including excessive daytime sleepiness/
fatigue, impaired cognition, reduced quality of life, and an up to seven fold increased risk of
road traffic accidents21–24. Treatment of OSA leads to improvements in many of these
outcome measures23,25. There is evolving evidence to support the role of OSA as an
independent risk factor for adverse cardiovascular sequelae. Although some argue that OSA
was simply a marker of an unfit patient group26, rigorous recent studies have shown that
OSA is causally linked to a number of important sequelae. OSA is now a well established
risk factor for hypertension (both incident and prevalent), stroke and probably myocardial
infarction, congestive heart failure and death27–31. OSA has been causally linked to the
development of hypertension based on large rigorous cross-sectional and longitudinal
epidemiological studies, mechanistic animal studies and most recently interventional
trials32–37.

The underlying causes of OSA vary considerably between afflicted individuals. Important
components likely include pharyngeal anatomy38,39, pharyngeal dilator muscle
responsiveness to respiratory challenges during sleep40–43, the arousal threshold (propensity
to wake up from sleep)44,45, the instability of the negative feedback control system
regulating ventilation (loop gain)46–48, and upper airway tethering via caudal traction from
changes in end-expiratory lung volume (EELV)49–52. These various physiological traits and
the potential for each to influence OSA have been described in detail elsewhere53. The focus
of the current article will be to review the key pathophysiological factors and their
interactions, to highlight recent innovations in our understanding of OSA pathogenesis, and
to summarize the existing literature regarding the genetics of sleep apnoea3.

Pathophysiology
Anatomical and biomechanical factors

The evolution of speech in man, which demanded considerable laryngeal motility, yielded
the human upper airway vulnerable to collapse based on its reliance on muscles and soft
tissues to maintain pharyngeal patency. The anatomy and neural control of the upper airway
has evolved to facilitate multiple functions including speech, swallowing and ventilation.
Most notably, the upper airway is vulnerable to collapse throughout its length from the hard
palate to the larynx54.

People with sleep apnoea have a smaller pharyngeal airway than do matched controls55–57.
Multiple imaging and physiological studies have shown compromise of the pharyngeal
luminal cross-sectional area in OSA as compared with controls39,57,58. Further, the soft
tissue and bony structure surrounding the lumen appears to be altered in OSA patients which
may place it at risk for collapse. Imaging studies during wakefulness, however, are
complicated to interpret since ongoing pharyngeal dilator muscle activity (greater in OSA
than controls59) may lead to observed differences between groups based on non anatomical
(i.e., neuromuscular) factors. The critical closing pressure (Pcrit) is commonly used to
quantify pharyngeal collapsibility60, with very negative values suggesting a stable upper
airway and very positive values suggesting an unstable pharynx. The Pcrit can be measured
both passively (as an index of anatomy) or actively (indicative of both anatomical and
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neuromuscular control)61,62. Passive Pcrit studies support increased propensity of the OSA
airway to collapse on a purely biomechanical basis63. Perhaps the most persuasive data
come from a study by Isono et al63 who observed increased closing pressure (more
collapsible) in OSA as compared to controls under conditions of general anesthesia and
muscle paralysis. Thus, in aggregate, multiple methodologies have shown that OSA patients
have anatomical compromise leaving these individuals vulnerable to pharyngeal collapse
during periods of susceptibility such as sleep and anaesthesia64.

Upper airway dilator muscle activity and recruitability
Patients with OSA have increased pharyngeal dilator muscle activity (as a percentage of
maximum) versus matched controls59 that has been interpreted as evidence for
neuromuscular protective compensatory reflexes in response to anatomical compromise in
OSA. Through these protective reflexes, the increased muscle activity protects pharyngeal
patency during wakefulness42,65. Although some data have suggested that increased
pharyngeal dilator muscle activity is a result of denervation, these data are controversial. For
example, if denervation was the critical factor underlying increased muscle activity, the
mechanisms important in maintaining pharyngeal patency during wakefulness in OSA
would remain unknown. One important pathophysiological mechanism relates to the ability
of the upper airway dilator muscles to maintain a patent airway during sleep. In support of
this concept, standard multi-unit genioglossal electromyogram activity is reduced at sleep
onset in healthy individuals and OSA patients66. Thus, while healthy individuals experience
a loss of upper airway muscle tone at sleep onset (alpha-theta transition in the
electroencephalogram) and experience some degree of breathing instability, an individual
reliant on muscle tone due to an anatomical vulnerability will be particularly susceptible to
apnoea. As one might predict, hypopnoeas and apnoeas frequently occur at the transition
from wakefulness to sleep in OSA12,67. Each respiratory event is typically associated with
an electro-encephalographic arousal such that the OSA patient cycles between wakefulness
and sleep leading to minimal deep sleep. Unlike the transition to sleep, slow wave sleep is
associated with increased, not decreased, upper airway dilator muscle activity in the
majority of studies68,69. Some have argued that deep sleep is a state of intrinsic stability with
associated increases in upper airway dilator muscle activity being one important factor
contributing to the improvement in apnoea severity68,69. The high arousal threshold (low
propensity to wake up) and neurochemical milieu seen in slow wave sleep may also be
important factors stabilizing breathing. On the other hand, slow wave sleep could simply be
a marker of breathing stability such that delta sleep (N3) may only occur when respiratory
arousals are not occurring68,69. This controversy is difficult to resolve since the direction of
causation is unclear. That is, whether deep sleep stabilizes breathing or breathing stability
permits deep sleep to occur is uncertain. However, pharmacological studies using agents to
promote slow wave sleep may be one method to test this hypothesis.

Multiple factors can influence output from the hypoglossal motor nucleus to the major upper
airway dilator muscle (the genioglossus)70–76. Respiratory drive from the central pattern
generator in the brainstem is a major determinant of genioglossus activity77,78. In addition,
local upper airway mechanoreceptors respond to subatmospheric (negative or suction)
pressure and modulate genioglossus activity79–82. The negative pressure reflex describes the
phenomenon whereby the genioglossus (and other upper airway dilator muscles such as the
tensor palatini) is activated in response to negative pressure (i.e., suction pressures which
promote pharyngeal collapse)83,84. Thus, pharyngeal patency can be protected by a robust
activation of the dilator muscles in the face of a collapsing perturbation. This negative
pressure reflex has been shown to be attenuated during stable non rapid eye movement
(NREM) sleep in healthy individuals83,84. That is, the ability of the upper airway to maintain
patency in the face of a collapsing stimulus is impaired during sleep. However, recent data
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have shown a maintained reflex during NREM sleep, particularly in the supine posture when
the upper airway is most vulnerable to collapse40,85–88. Indeed, our understanding of the
neuroanatomy of the genioglossus negative pressure reflex and hypoglossal motor nucleus
inputs from rat studies has recently evolved89. Although pharyngeal dilator muscle
responsiveness is likely impaired during NREM and REM sleep90, the genioglossus can
respond to both sustained mechanoreceptive (negative pressure) and chemoreceptive stimuli,
particularly when combined stimuli are present91. The implication of this finding is that,
given sufficient time and magnitude of stimuli, the upper airway dilator muscles will
eventually respond to respiratory stimuli, e.g., CO2 plus negative pressure92–95. Thus, in the
setting of pharyngeal collapse, airway patency may be restored if upper airway muscles
respond sufficiently before arousal occurs. Because intrathoracic pressure appears to be both
the stimulus for arousal from sleep and closely related to the stimulus for genioglossal
activation96–98, ventilatory drive can yield two competing mechanisms (i.e., arousal vs.
restoration of airway patency)9,99. Not surprisingly, there is considerable inter-individual
variability in the effectiveness of these compensatory mechanisms to restore airflow during
sleep92, which may in part be due to high variablily in the respiratory arousal threshold.

Although traditional electromyogram (EMG) studies have been informative, such studies
have relied on multiunit recordings which obscure the activity of individual motor units
contributing to overall activity. High frequency sampling techniques have recently been
used to define single motor units (SMUs) within the genioglossus with illuminating
results100–103. These SMU techniques allow sorting of individual motor units within the
muscle of interest to gain insight into muscle characteristics and regulation using
electrophysiology. These SMU techniques have been used extensively in muscle
physiology, but have only recently been rigorously applied to human upper airway muscles
with a view towards understanding sleep apnoea pathogenesis. These SMU techniques when
applied to the genioglossus electromyogram allow insights into cellular activity within the
hypoglossal motor nucleus. Although research is ongoing, studies have already shown
considerable complexity within the genioglossus muscle100. By combining neuroanatomical
and neurochemical experiments in rodents with sensitive neurophysiological techniques in
humans, major insights into motor control are likely to occur yielding the possibility of
novel therapeutic targets for some OSA patients3. While, such targeted approaches may lead
to improvements in OSA, given the heterogeneity of OSA pathogenesis, such an approach is
unlikely to resolve respiratory events for all patients.

Arousal from sleep
Arousal from sleep at the termination of a respiratory event is an important protective
mechanism to restore pharyngeal patency9. In fact, most, but not all, respiratory events are
associated with cortical arousal104. However, Younes9 has emphasized the notion that
arousal is not essential for restoration of airflow. By applying intermittent continuous
positive airway pressure (CPAP) reductions in OSA patients, Younes observed that
inspiratory flow increased in 22 per cent of instances prior to arousal and was restored in 17
per cent of trials in the absence of EEG arousal. Subsequently, findings of a study by Jordan
and colleagues92 suggest that these restorations in airflow without arousal may be mediated
by genioglossus activation. In this study, challenges to pharyngeal patency (through CPAP
drops) for up to 5 min resulted in genioglossus activation and changes in respiratory duty
cycle (i.e., inspiratory time prolonged relative to expiratory time). These compensatory
responses were similar between OSA patients and healthy individuals, although OSA
patients were less able to restore ventilation without cortical arousal than controls. During a
subsequent study (unpublished observations), physiological variables were recorded during
periods of spontaneously occurring stable and unstable breathing. Jordan et al92 observed
that genioglossus activity was likely responsible for these stable breathing periods. That is,
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during periods of stable breathing, genioglossal activity was high relative to unstable
periods, whereas tensor palatini activity and end-expiratory lung volume were essentially
unchanged. However, the therapeutic implications of this observation are unclear. Questions
remain as to how these stable breathing periods can be induced e.g., by giving a hypnotic
agent to raise the arousal threshold in patients with recruitable upper airway muscles105,106.
For example, a hypnotic agent provided to OSA patients with a low arousal threshold but
recruitable upper airway muscles may allow enough time for CO2 and negative pressure to
accumulate sufficiently to augment dilator muscle activity yielding improvements in
pharyngeal patency. On the other hand, a hypnotic agent may be deleterious if prolonged
apnoeas occur with marked hypoxemia and insufficient muscle recruitment to restore
pharyngeal patency (Figs 1 and 2). Further work is clearly needed in this area to define the
subgroup of OSA patients who may or may not respond to manipulations in the arousal
threshold.

Most of the available evidence suggests that the level of intrapleural pressure, generated by
respiratory effort is a major stimulus triggering arousal from sleep (Fig. 3)44,96.
Experimentally, the respiratory arousal threshold is measured as the nadir oesophageal
pressure (or minimum epiglottic pressure which is similar to oesophageal during airway
occlusion) generated on the breath preceding arousal from a respiratory event or
perturbation106. Although the arousal threshold values are highly variable between
individuals, patients with OSA tend to have an impaired arousal response to airway
occlusion (more negative pressure required for respiratory arousal) than controls99.
However, the question remains as to whether the higher arousal threshold observed in OSA
is a cause or a consequence of the disease. Studies examining the impact on arousal
threshold in OSA with nasal CPAP therapy suggest some improvement (lowering) of
arousal threshold as compared with untreated OSA44,107,108. These data suggest that an
elevated arousal threshold in OSA may be at least in part acquired from the disease.

Following arousal from sleep, augmented pharyngeal dilator muscle activity and a robust
ventilatory response to arousal generally occur (Fig. 3)109. While these events are beneficial
in restoring airflow and improving gas exchange, these changes can also be destabilizing
and may perpetuate apnoea. That is, the ventilatory response to arousal can drive down
carbon dioxide levels below the apnoea threshold such that apnoea can occur during
subsequent sleep5,110–112.

Loop gain (ventilatory control stability/instability)
Another characteristic feature of OSA is the cyclical breathing pattern that develops
whereby the patient oscillates between obstructive breathing events (sleep) and arousal
(wakefulness). Further, obstructive events tend to occur during periods of low respiratory
drive. Thus, instability in ventilatory control is likely a critical contributor to OSA.

Loop gain is an engineering term that is used to describe stability or instability in a negative
feedback control system113–115. The regulation of room temperature provides a useful
analogy whereby temperature will be prone to oscillation when there is a sensitive
thermostat and an overly powerful heater (i.e., high loop gain). The room temperature
analogy can be used to understand the impact of sensors and effectors on temperature
stability12. In the context of ventilatory control, loop gain refers to the stability of the
ventilatory control system and how responsive the system is to a perturbation to
breathing47,95,116–120. That is, loop gain is the propensity for the ventilatory control system
to develop fluctuations in ventilatory output (as seen in periodic breathing). There are three
major components to loop gain: controller gain, plant gain and mixing gain12. In control of
breathing, controller gain refers to the chemoresponsiveness of the system [i.e.,
chemosensitivity (hypoxic and hypercapnic ventilatory responses) plus responsiveness]121.

Campana et al. Page 5

Indian J Med Res. Author manuscript; available in PMC 2013 December 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Plant gain primarily reflects the efficiency of CO2 excretion (i.e., the ability of a given level
of ventilation to excrete CO2). Mixing gain appears to be less crucial, but is a function of
circulatory delay as well as hemoglobin binding of O2 and CO2. Mixing gain tends to be
fairly constant, although circulatory delays may make mixing gain more clinically relevant
in patients with congestive heart failure122,123. A high loop gain system is present if periodic
breathing develops in the setting of minimal perturbation whereas a low loop gain system
remains stable despite major perturbation. Younes has developed techniques to measure
loop gain, including one using proportional assist ventilation (PAV)116,124,125. PAV studies
have shown that OSA patients have an elevated loop gain compared to controls and suggest
that ventilatory instability is an important mechanism underlying OSA. However, the PAV
technique uses expiratory positive airway pressure (EPAP) which stabilizes the upper airway
and relies on stable sleep without arousals119. Thus, transient events which may be
important in perpetuating cyclical breathing may be neglected by this technique.

Why high loop gain leads to sleep apnoea is unclear. There are two major possibilities. First,
elevated loop gain may increase oscillations from the brain stem pattern generator. In theory,
pharyngeal patency should be maintained during high output to the phrenic and hypoglossal
nerves117. On the other hand, pharyngeal obstruction may occur when central motor output
to the upper airway is at its nadir. Second, elevated loop gain may also augment the
ventilatory response to arousal126,127, which would drive PaCO2 (partial pressure of CO2 in
arterial blood) below the apnoea threshold. Obstructive or central apnoea would then occur
depending on the prevailing upper airway mechanics. Thus, further work is clearly required
in this area.

Functional residual capacity (End-expiratory lung volume)
Lung volume effects on pharyngeal patency are likely to be important in OSA pathogenesis.
Clearly, upper airway mechanics can be affected by alterations in end-expiratory lung
volume during wakefulness and sleep in healthy individuals. Hoffstein and colleagues128,129

demonstrated that pharyngeal cross-sectional area changes from residual volume (RV) to
total lung capacity (TLC). This lung volume dependence on the upper airway appears to be
more pronounced in OSA patients versus controls. However, studies during wakefulness are
confounded by behavioural influences since a maximal inhalation to TLC is likely to
activate upper airway muscles volitionally. During sleep, upper airway resistance increases
as lung volume falls. Increasing end expiratory lung volume decreases airway collapsibility
in healthy controls and improves respiratory mechanics in OSA patients49,52,130–132.

While studies have demonstrated that changes in lung volume may modulate upper airway
patency in OSA, the underlying mechanisms are poorly defined130–132. A loss of caudal
traction on upper airway structures may occur with reduced lung volume. When lung
volume falls, the diaphragm migrates upward (cephalad), potentially resulting in a loss of
caudal traction forces on the upper airway, and yielding a more collapsible upper airway.
Conversely, elevated end-expiratory lung volume may lead to increased caudal traction and
a more stable upper airway. Whether lung volume per se can be targeted therapeutically
remains unclear, although part of the benefit of CPAP may be from augmentation of end-
expiratory lung volume.

Influence of genetics on key OSA pathophysiological traits
A familial predisposition for OSA has been recognized for nearly 40 years since Strohl et
al133 described a family with multiple affected relatives. Since that time, multiple studies
have demonstrated that individuals who have a family member with OSA are at increased
risk of having apnoea themselves134,135. Redline et al136 reported a dose-response curve
such that compared to an individual with no affected relatives, having 1, 2, or 3 or more
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relatives with OSA increases one’s own risk by 1.5,2, and 3-fold respectively. Studies in
both Caucasians and African-Americans as well as in the elderly have consistently found
that approximately 1/3 of the total variance in apnoea / hypoapnoea index (AHI) can be
explained by familial factors137–139.

Since obesity has a strong genetic basis with 60–80 per cent of the variance in BMI
explained by familial factors140,141, some have postulated that perhaps the genetic basis for
OSA is simply secondary to genes influencing levels of adiposity. Several lines of work
suggest that this is not the case. Mathur & Douglas135 found that relatives of lean OSA
patients were at increased risk of sleep apnoea themselves. Bivariate modeling in the
Cleveland Family Study has found that approximately 40 per cent of the genetic basis
defining AHI is explained by obesity leaving the majority of genetic variance in AHI
mediated through obesityindependent mechanisms142.

Upper airway anatomy represents one potential obesity-independent genetic pathway. Bony
facial features relevant to OSA such as length of the cranial base and the nasion-sella-basion
angle demonstrate substantial heritability143. Relatives of people with OSA are more likely
to have retro-positioned maxillae and mandibles135. In addition, the cephalic index (ratio of
head width to head length) is almost completely genetically determined144. MRI studies
demonstrate that soft tissue structures such as tongue and lateral pharyngeal wall volume
also have a genetic basis with over a third of the variability in these structures explained by
familial factors145.

Ventilatory drive may represent another mechanism by which genes influence OSA
susceptibility. Ventilatory responses to hypoxia and to inspiratory resistive loading have
been found to have a familial basis and be impaired in relatives of OSA patients compared
to relatives of controls146–148. Also supporting a role for ventilatory control genes in
defining OSA risk has been the finding that cases of OSA and sudden infant death syndrome
(SIDS) co-segregate within families149–151. Other potentially important pathways in OSA
pathogenesis such as airway dilator muscle tone and responsiveness, upper airway neural
reflexes, and arousal threshold may also have genetic underpinnings; however, no studies
have yet been performed to assess the familial basis for these traits directly. Thus, the
definition of phenotypic traits may facilitate genetic investigations of complex diseases by
allowing more precision i.e., there is unlikely to be a single gene for sleep apnoea but there
may well be a predominant gene defining variability in arousal threshold, for example.

In terms of identifying causal genes, several whole genome linkage analyses have been
performed with identification of possible candidate regions but in general these results have
not been consistent137,138,152. Many candidate gene association studies have been performed
with a growing number of positive results reported153–156. However, similar to work on the
genetics of other complex diseases, for the most part these studies have been underpowered
and difficult to replicate suggesting a high likelihood of the positive results representing
false positive findings. The most consistently demonstrated association has been between
OSA and the ε4 allele of the apolipoprotein E (APOE) gene. This allele, known to
predispose to Alzheimer’s dementia, has been found to predict a greater AHI in the
Wisconsin Sleep Study and Framingham Study157,158. However, these findings have not
been replicated in other large cohorts159,160. The success of large scale genome wide
association studies recruiting tens of thousands of patients to identify novel risk genes in
diseases such as asthma, diabetes, and Crohn’s disease has raised interest in using such a
study design for OSA. Efforts are underway to begin such large scale collaborative studies
in the sleep-disordered breathing field.
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Fig. 1.
The role of UADM (upper airway dilator muscles) in stabilizing breathing. Negative
intrathoracic pressure plus CO2 can activate UADM, but negative pressure can also trigger
arousal. A hypnotic could potentially change the arousal threshold to stabilize breathing and
potentially prevent the consequences of repetitive arousal.
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Fig. 2.
The double edged sword of arousal leading to both airway opening and possible
cardiovascular consequences. Airway opening can be achieved without arousal by activating
genioglossus (EMGGG) through negative pressure plus CO2.
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Fig. 3.
Example polysomnographic tracings of an obstructive sleep apnoea event induced by
reducing continuous positive airway pressure (from therapeutic to 2cmH2O) in a 52 yr old
male patient with severe OSA (apnoea/hypopnea index= 34.5 events per hour). EMGgg=
Electromyogram of the genioglossus muscle (intramuscular), EEG= electroencephalogram
(C3-A2), Pepi= pressure at the level of the epiglottis, Pmask= pressure measured via nasal
mask, Vt = tidal volume and flow measured via nasal mask and pneumotachograph. There
was increased EMGgg activity during the apnoeic event, though it was not significant
enough to restore flow without arousal. The arousal threshold is characterized using Pepi,
and after arousal there is a large ventilatory response.
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Table

Summary of OSA pathophysiological traits. The mechanisms that may contribute to these traits are
highlighted as well as potential targeted treatments approaches. Possible genetic links to these traits are also
included

OSA pathophysiology Possible mechanism Possible targeted treatment option Genetic link

Compromised upper airway
anatomy

Anatomically smaller airway,
altered soft tissue

Surgery in selected cases Bony facial features, postion
of maxillae and madible are
heritable

Decreased dilator muscle
activity during sleep

Neurochemical alterations at sleep
onset; UA trauma/oedema leading
to neuoropathy/myopathy

Hypoglossal activation/
stimulation; pharmacotherapy in
the future

Unknown

Decreased arousal threshold Cannot recruit dilator muscle to
open airway before arousal occurs

Hypnotic agents to subjects
with low arousal thresholds and
recruitable muscles

Unknown

Unstable ventilatory control
(increased loop gain)

Increases oscillations from brain
stem pattern generator, augment
ventilatory response to arousal
driving PaCO2 below apnoea
threshold

Oxygen; acetazolamide Similar response to hypoxia and
inspiratory resistance among
relatives. SIDS and OSA co-
segregate in families

Decreased lung volume Increasing EELV improves
respiratory mechanics possibly by
increasing caudal traction on upper
airway

Lung volume Augmentation;
Cuirass; Negative extrathoracic
pressure

Indirectly, obesity may cause
decreased lung volume

EELV, End-expiratory lung volume; SIDS, sudden infant death syndrome; UA, upper airway
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