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Abstract
Multi-scale modeling plays an important role in understanding the structure and biological
functionalities of large biomolecular complexes. In this paper, we present an efficient
computational framework to construct multi-scale models from atomic resolution data in the
Protein Data Bank (PDB), which is accelerated by multi-core CPU and programmable Graphics
Processing Units (GPU). A multi-level summation of Gaus-sian kernel functions is employed to
generate implicit models for biomolecules. The coefficients in the summation are designed as
functions of the structure indices, which specify the structures at a certain level and enable a local
resolution control on the biomolecular surface. A method called neighboring search is adopted to
locate the grid points close to the expected biomolecular surface, and reduce the number of grids
to be analyzed. For a specific grid point, a KD-tree or bounding volume hierarchy is applied to
search for the atoms contributing to its density computation, and faraway atoms are ignored due to
the decay of Gaussian kernel functions. In addition to density map construction, three modes are
also employed and compared during mesh generation and quality improvement to generate high
quality tetrahedral meshes: CPU sequential, multi-core CPU parallel and GPU parallel. We have
applied our algorithm to several large proteins and obtained good results.
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1. Introduction
Finite Element Analysis has been essentially important for the study of biomolecular
complexes in a wide range of applications such as estimating electrostatic potentials and
diffusion-based calcium signaling [9, 17, 20, 40, 41, 47, 49]. As progressively larger
biomolecular complexes (see Fig. 1) are studied, we need to handle huge amount of
computation, which brings a great challenge for both modeling and simulation. To
efficiently represent complex biomolecules, a multiscale modeling method that controls the
local resolution of the specified hierarchical structure is required, which can significantly
reduce the mesh size and thus lighten the compuational cost for simulations. In addition,
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with the rapid development of parallel computers, multi-core CPU and GPU-based
computation brings in new directions for the acceleration of modeling in various fields. In
this paper we aim to apply these parallel computation techniques to multiscale modeling for
biomolecules. In the following, let us first briefly review previous work on biomolecular
modeling and efficient computation.

There are three important biomolecular surfaces [10, 11]: the Van der Waals surface (VdW),
the Solvent Accessible Surface (SAS), and the Solvent Excluded Surface (SES). For the
VdW, atoms are represented as rigid spheres with Van der Waals radii, and the biomolecular
surface is defined as the envelope of these spherical surfaces. The SAS and SES can be
defined by assuming a probe rolling around the biomolecule and keeping contact with the
atoms. Then the SAS is formed by tracing the trajectory of the probe center. The topological
boundary of the union of all possible probes is called the SES, with no intersection with
atoms. A lot of research has been conducted in approximating the SES, including the the
alpha-shapes [1, 13], the beta-shapes [26, 36], the MSMS [37], the advancing front and
generalized Delaunay approaches [27], NURBS approximation [6], and PDE-based methods
[21, 46, 53]. The biomolecules were also represented as implicit models. The Gaussian
kernel functions were applied in constructing density maps for the biomolecules [8, 19, 28,
48, 52]. In [18], the atomic resolution Gaussian density map was built and then filtered using
an ideal filter to obtain a smooth biomolecular surface.

Fast computing is critical in biomolecular modeling [43, 45]. A variety of algorithms were
developed in improving the modeling efficiency. For example, the Fast Fourier Transform
was used in [21, 53] to get better performance of the PDE transform, and a Non-uniform
Fast Fourier Transform (NFFT) was adopted to improve the polynomial-form summation of
the kernel functions [7]. The programmable GPU has brought in a new direction for vast
data processing in geometric modeling [24, 30, 35, 42, 44].

In this paper, we propose an efficient multi-scale modeling framework for biomolecules
based on the multi-level summation of Gaussian kernel functions. The modeling process
contains three steps: Gaussian density computation, adaptive tetrahedral mesh generation,
and quality improvement. A special method called neighboring search is applied for
efficiency improvement, together with the KD-tree structure and the bounding volume
hierarchy (BVH). The multi-core CPU and GPU-based parallel computation techniques are
employed in all these three steps. The main contributions in this paper include:

1. Structure specified parameters are adopted in the multi-level summation of
Gaussian kernel functions, enabling a local resolution control for the hierarchical
structure of the complicated biomolecules;

2. Neighboring search is applied to locate the grid points close to the biomolecular
surface, and thus reduce the number of grids to be analyzed;

3. KD-tree and BVH are employed to quickly search contributing atoms around a grid
point. Faraway atoms are ignored due to the decay of Gaussian kernel functions;
and

4. Multi-core CPU and GPU-based computation are employed in the entire modeling
process, which significantly accelerate the modeling process.

The remainder of this paper is organized as follows. Section 2 describes the multi-level
summation of Gaussian kernel functions. Section 3 explains the Gaussian density map
construction, promoted by the neighboring search, KD-tree structure, BVH, and parallel
computation. Sections 4 and 5 talk about mesh generation and quality improvement,
respectively. Section 6 shows the results. Finally, section 7 draws conclusions and points out
the future work.
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2. Multi-scale Biomolecular Modeling
As shown in Fig. 2, biomolecules usually have a complicated hierarchical structure,
including the atomic, residual, and chain scales. A variety of methods have been developed
to create multi-resolution models for the biomolecules [5, 18, 46, 52, 53]. However, most of
the previous works only considered the overall resolution control, and the local resolution
control was seldom studied. In this paper, we improve the multi-level summation of
Gaussian kernel functions and enable a local resolution control on the specific hierarchical
structure in biomolecules.

Gaussian kernel functions were introduced in biomolecular modeling by Blinn et al. in 1982
[8]. The biomolecular surface is generated as a level set (isocontour) of the volumetric
electron density map [3, 52]. Zhang et al. [52] improved the kernel functions to make the
distance between the generated surface and the VdW (Van de Waals surface) surface as
uniform as possible, resulting in smoother molecular surfaces. The kernel function is defined
as

(1)

where κ is the decay rate, controlling how fast the Gaussian kernel function decays. xiA and

riA are the center and radius of the  atom, respectively. A multi-level summation of
Gaussian kernel functions was applied to control the resolution of biomolecule models [52].
Lower level structures are classified into groups according to higher level structures. As the

basic unit in the biomolecules, atoms are represented by .

 are subsets of NA, representing the sets of residues. We have

(2)

The elements of  are further grouped into subsets ,
representing peptides:

(3)

Similarly, structures with a higher level (e.g., domains) can be represented as the subsets of
peptides. The density distribution of a higher level structure is obtained through the
summation of lower level density. For example, small proteins are made up of several
peptides, so the density map is generated by a two-level summation of Gaussian kernel
functions

(4)
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where iC, iR and iA are the indices of the peptide, residue and atom, respectively. PR and PC
are constant coefficients that control the local resolution of the model. GiA is defined in Eqn.
1.

To specify the structures at different levels in the biomolecule, non-uniform coefficients are
selected based on the structure indices. For example, the coefficient for the residue level is
defined as

(5)

where iC and iR are indices for the peptide and residue, respectively. The indices can specify
the concerned peptide or residue and control the resolution on the surface locally. In Fig.
3(a), suppose we only want to emphasize the peptide B (marked in red) for Ribosome 30S
(1J5E). If we vary the coefficients uniformly, all the atomic-level details on the
biomolecular surface will be strengthened (Fig. 3(b)). However, varying only the
coefficients for the structures contained by chain B results in a local resolution control on
the certain peptide (Fig. 3(c)). Similarly, structures at any level (domain, chain or residue)
can be emphasized by adjusting the corresponding coefficients, enabling a flexible local
resolution control at multiple scales.

Fig. 4 shows a macromolecular complex representing the thin filament subunit in muscle
fibers. This protein contains 32 peptides, and these chains are grouped into several higher
level structures called protein “domains”, including tropomyosin (red) and actin (green). A
three-level (residue, chain and domain) summation is utilized here to construct the density
map

(6)

where iD is the domain index, and PD is the coefficient corresponding to the domain level.
Domain boundaries are blurred with a small coefficient PD, resulting in a smooth
biomolecular surface (Fig. 4(a)); when PD is set to be a large value, more detailed features
are preserved along the domain boundaries (Fig. 4(b)). Although PD controls the transition
region between different domains, the surface resolution inside each domain is mainly
decided by the lower level coefficients PC and PR. To have a full control of the multi-scale
biomolecular models, the number of levels in the summation of Gaussian kernel functions
should be consistent with the level of biomolecular structures.

Discussion
In a two-level summation, there are two coefficients: PC and PR. PC controls the boundary
resolution of each chain, and PR controls the surface resolution inside the chain. In a three-
level summation, there is one more coefficient (PD), which controls the boundary resolution
of each domain. This local resolution control is very important in some applications such as
the diffusional distribution simulation of the calcium ions in ventricular myocytes. Usually,
the active site is a small region around certain residues. To simplify the implicit model, we
can use a small PD value to blur the domain boundary, and adjust the PC and PR values to
make a smooth surface for the domain while showing more residue-level details at the active
sites.
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3. Density Map Construction
Computational efficiency is critical in biomolecular modeling, especially for large
biomolecular complexes with a complicated structure. When computing the Gaussian
density for each grid point, if we consider the contribution from all the atoms in the
biomolecule, the time complexity will be O(MN), in which M is the number of atoms and N
is the number of grid points. To improve the computational efficiency, the neighboring
search algorithm is applied to reduce the number of grid points to be analyzed; and the KD-
tree structure and a bounding volume hierarchy (BVH) are used to quickly find the
contributing atoms for the Gaussian density at a grid point. Moreover, the multi-core CPU
and GPU-assisted parallel computation are also employed to further accelerate the speed.

3.1. Neighboring Search
Biomolecular surface is extracted from the Gaussian density map as an isosurface. The grid
cell intersecting with the isosurface is called a boundary cell. Vertices on the biomolecular
surface are located either on the edges of (marching cubes [32]) or inside (dual contouring
[22]) the boundary cell. Therefore, the biomolecular surface is only determined by the
Gaussian density values at the grid points in boundary cells, while an accurate density
calculation is not necessary for faraway grids. This property has been used in the accelerated
isocontouring method [4], which detects the boundary cells to achieve a fast surface
extraction.

In this paper, a similar idea is adopted and an algorithm called neighboring search [2] is
applied to reduce the number of grid points to be analyzed. This algorithm can find out all
the grid points near the expected isosurface, as long as the biomolecular surface is a
manifold. Therefore, we only need to calculate the Gaussian density at these grid points,
while the density value for the other grids is simply set as a constant. kA is the ratio of the
analyzed grid points over the total grid points. kA is controlled by a pair of predefined
parameters: a lower threshold dl and an upper threshold du. Fig. 5 shows an example of
neighboring search. The blue curves represent the isosurfaces of dl and du. The red curve
represents the target surface. The green cells are the 1-ring neighbors of a given activated
grid cell (magenta). The initially activated cell can be found by searching along a line
passing through the center of the grid. For each neighboring cell, the Gaussian density
values are computed at the eight vertices. If the density indicates that the cell intersects with
the band between the blue curves, the cell is activated. More cells can be activated around
the newly activated cells iteratively until there are no more updates. As a result, all the grid
points close to the surface are analyzed, while faraway points are ignored. Using a flood fill
algorithm, those faraway points are marked as interior or exterior grids. Fig. 6 shows the
neighboring search results for 2KFX. In (a), the green region represents the inside volume;
and in (b) and (c), the green regions represent the band between dl and du. kA varies with
different dl and du, and also depends on the resolution of the grids. It is generally a very
small value, see Table 1.

Discussion—Neighboring search can effectively improve the complexity of Gaussian
density computation from O(MN) to O(kAMN), in which kA is output-dependent. This
method is based on the assumption that the biomolecular surface is a manifold and all the
grid points close to the expected surface are neighboring to each other. But sometimes
biomolecules have isolated components. If any isolated component is missed in the initial
search, the modeling result would be incorrect. However, if the biomolecular structure is
known beforehand, the initial search route can be easily modified to include all the
components.
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3.2. KD-tree Structure and Bounding Volume Hierarchy
A Gaussian kernel function decays quickly as it moves away from the atom center. For one
grid point, it is reasonable to ignore faraway atoms, which contribute little to the Gaussian
density map. Two methods are used here to quickly find the nearby atoms: the KD-tree
structure and the bounding volume hierarchy (BVH).

The KD-tree structure is a widely used space-partitioning data structure, which has been
employed in biomolecular modeling [24, 25, 39]. Differently, in this paper a KD-tree is used
to quickly search atoms around grid points. The cost to build this data structure is O(M log
M). Searching atoms within a certain range around a grid point becomes quite efficient due
to the binary tree structure. The error of ignoring faraway atoms can be controlled by a
bounding radius Rkd in the KD-tree search. Suppose an atom is ignored when its density

contribution is less than ε, then Rkd should satisfy . We have

(7)

where r is the radius of the atom; and κ is the decay ratio in Eqn. 1. Pratically, the maximum
atom radius is usually 2.0 Å and the decay ratio is 1.0. When ε = 10−6, the bounding radius
Rkd = 4.3 ensures that no atom around a grid point has a density contribution smaller than ε.
For each analyzed grid point, it takes O(log M) to find the nearby atoms and compute the
Gaussian density.

The bounding volume hierarchy is a tree structure on a set of geometric objects. All
geometric objects are wrapped in bounding volumes that form the leaf nodes of the tree.
This technique has been widely used in computer visulization, and also employed in protein
structure representation [14, 33, 39]. In this paper, edges of the bounding volumes are along
the coordinate axes. The smallest box that contains all the atom centers belonging to a
structure is called the minimum bounding box of this structure. The minimum bounding box
is generally expanded by a certain ratio. The margin of the bounding box is constraint with
at least RBVH = 4.3 to make sure all the contributing atoms can be searched (similar with
Eqn. 7). The bounding box of a higher level structure contains bounding boxes of lower
structures. Fig. 7 shows an example of the BVH for a protein with an atom-residue-chain
structure. In Fig. 7(a), the space is subdivided into the bounding boxes (red and green) of
two peptides. The bounding boxes of peptides are further subdivided into the bounding
boxes of residues (Fig. 7(b)). The subdivision allows overlaps and gaps between the children
boxes. Searching nearby atoms follows a top-down order in the BVH tree structure. The
time complexity for the BVH searching can be O(log M), but in practice the efficiency
would be a bit worse because the structures usually have many overlaps. Moreover, as the
atom order is organized following the hierarchical structure, the construction of the BVH
tree can be easily conducted.

3.3. Parallel Gaussian Density Computation
To further accelerate the speed, multi-core CPU and GPU-based parallel computation are
applied in the Gaussian density calculation. In each step of the neighboring search, the grid
points to be analyzed are distributed to different threads, and the returned Gaussian density
value is used as the input of the next step. The workload for various grid points can be very
different because the number of contributing atoms can vary a lot. For the 8-core CPU
mode, the grid points are randomly distributed to different cores and the computation keeps
at full load for most of the time. Differently, the workload imbalance can seriously influence
the performance of the GPU-based computation. Therefore for GPU computation, the
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contributing atom number of the previously analyzed grids are recorded, and the workload
of the newly analyzed grid points is estimated using these numbers. Grid points with similar
estimated workload are distributed to the same GPU blocks to achieve a better balance.

As shown in Fig. 8, a variety of proteins are tested using neighboring search, the KD-tree
structure and the BVH. A 2-level summation of Gaussian kernel functions are used, with PR
= 0.5 and PC = 1.0. Time costs are listed in Table 2. The rectilinear grid for each protein is
large enough to contain all the atom centers inside, and the margin on each dimension is 4.0
Å. For all the proteins, we fix the resolution of the grid to be 0.25 Å. The CPU-based results
in Table 2 are obtained under 8-core parallel computation. All the results are generated with
an Intel E5-1620 CPU, a Nvidia GeForce GTX680 graphic card and 16GB memory. The
algorithms are implemented in C++ by using OpenMP for the multi-core CPU computation
and CUDA 5.0 for the GPU computation. T0 is the time cost of CPU computation without
any acceleration algorithms. Neighboring search, KD-tree structure and BVH are compared
in CPU-based implementations.

Generally, as the atom number M increases, the speedups for neighboring search, KD-tree
and BVH all become more significant. For KD-tree and BVH, the time complexity of
Gaussian density map generation is improved to O(N log M), compared with the original
O(NM). Therefore, it is easy to understand that the speedups of KD-tree and BVH increase
as M gets larger. For neighboring search, the corresponding time complexity is O(kANM). At
a certain resolution, kA decreases as M gets larger because generally the surface area grows
much slower than the grid size increases. Therefore, the speedup of neighboring search also
increases as M gets larger. Besides atom number, the efficiency speedups are also affected
by the biomolecular structure. The performance of BVH is directly related to the
hierarchical structure of the biomolecules, while the KD-tree is not. For example, 1GTP and
2KXH have similar atom numbers, but the structures in 2KXH are much tighter than in
1GTP, leading to many more overlaps among the bounding boxes. Therefore, the speedup of
BVH for 2KXH (8.01 times) is not as significant as 1GTP (30.88 times).

TCPU(NS+KD) and TGPU(NS+BVH) shows the effect of different combinations of the
techniques. As the hierarchical structure information is ignored in the KD-tree, a re-
organization of the atoms is required for multi-level summation of Gaussian kernel
functions. The re-organization needs a lot of memory. Therefore instead of KD-tree, the
BVH is chosen for GPU-based computation. The combination of neighboring search, KD-
tree structure and multi-core CPU computation results in a speedup varying from 6.01 to
111.54 times. For the combination of neighboring search, BVH and GPU computation, the
speedup can range from 19.44 times for the smallest protein (1BOR) to 1,367.74 times for
the largest protein (1GTP), due to the highly parallel computational capability of the GPU
and the maximum effect of neighboring search.

4. Mesh Generation
The dual contouring method [22, 50] is applied to generate adaptive tetrahedral meshes from
the Gaussian density map. The multi-core CPU and GPU-based parallel computation are
employed to speed up mesh generation.

4.1. Dual Contouring Method
The biomolecular surface is defined as an isosurface of the Gaussian density map, from
which tetrahedral meshes can be extracted using the dual contouring method [50, 52]. A
strongly-balanced octree structure is built from the rectilinear grid that contains the Gaussian
density, and the mesh adaptation is controlled by a feature sensitive error function [50]. To
resolve topology ambiguities, we detect ambiguious cells using a trilinear function, and then
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split them into tetrahedral cells [51]. For each octree cell, the minimum and maximum (min-
max) density values are calculated, making it easy to tell if the octree cell is inside or outside
the domain to be meshed. For each leaf cell, a dual vertex is generated and the tetrahedral
mesh is constructed by connecting the dual vertices with octree grids. For each octree
boundary cell that intersects with the biomolecular surface, we choose the mass center as the
dual vertex. The mass center is defined as the the average of all the intersection points
between the biomolecular surface and the cell edges. For interior leaf cells, the dual vertex is
the cell center.

Tetrahedral elements are generated around each minimal edge, which is defined as an edge
of a leaf cube that do not properly contain any edge of its neighbors. The minimal edge
intersecting with the biomolecular surface is called a sign change edge, and those inside the
domain to be meshed are called interior edges. For each sign change edge, we first find out
all its surrounding leaf cells and obtain three or four dual vertices. These dual vertices and
the interior grid point of this edge form a tetrahedron or a pyramid. For each interior edge,
we also obtain three or four dual vertices. Differently, these dual vertices and two endpoints
of this edge form a pyramid or a diamond. Later, the pyramids and diamonds can be splitted
into tetrahedra. The ambiguous leaf cells are split into tetrahedra, and meshes are generated
by analyzing the edges of these tetrahedra [51].

4.2. Paralleled mesh generation
GPU-based computation has been used in isocontouring for surface mesh generation [38].
Differently, in this paper we aim to apply multi-core CPU and GPU-based techniques to the
dual contouring method for adaptive tetrahedral mesh generation. In the twelve edges of one
leaf cell, at least three of them are independent. As shown in Fig. 9, we divide all the edges
into four groups (orange, green, blue and red), and analyze one group in each step. For
example, the orange group (edge e01, e03 and e04) is analyzed for all the leaf cells. Each
octree cell is distributed to a CPU or GPU thread, and the connectivity can be constructed in
a parallel way. During octree subdivision, the most time-consuming step is the min-max
computation, which is more expensive for the lower level octree cells with more grid points.
To improve the workload balance, octree cells at the same or similar levels are distributed to
the same GPU blocks.

5. Quality Improvement
In our generated tetrahedral meshes, most elements are in good quality except some
elements around the boundary. Therefore, we need to improve the mesh quality. First, let us
choose a few metrics to measure mesh quality [29, 50]: the edge ratio, the Jue-Liu parameter
[31], and the dihedral angle. The edge ratio is the ratio of the longest edge length over the
shortest edge length in one element. The Joe-Liu parameter is defined as

(8)

where  are six edge lengths, and V is the volume of a tetrahedron.

Three techniques are applied to improve the mesh quality: face swapping, edge contraction,
and geometric flow [29]. Both face swapping and edge contraction are operations of
topological optimization. Face swapping reconnects vertices of some elements, while edge
contraction removes a few poor quality elements. Differently, geometric flow relocates
vertices iteratively to improve the overall mesh quality. Generally speaking, face swapping
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and edge contraction only change the local topology for a few elements (< 1%), and the
process is very fast. Geometric flow smoothing needs to relocate vertices overally, which is
the most time-consuming part for quality improvement. Using a similar data structure with
[12], the parallel computation is applied to the smoothing step. Vertices are relocated and
updated one by one. In the CPU-based computation, METIS [23] is employed to partition
the mesh, and vertices in different parts are independent from each other. The location of the
vertices on the shared boundaries are synchronized after each smoothing step.

For GPU-assisted computation, vertices are relocated after each step to avoid any conflict.
The workload imbalance is the main concern in the implementation. For adaptive meshes,
vertices with a large valence number may happen, which can cause serious workload
imbalance during the GPU-based geometric flow smoothing. Therefore, vertices are grouped
according to their valence number, and the ones with similar valence number are distributed
to the same GPU blocks.

6. Results and Discussion
In this section, all the steps in our multi-scale modeling, including Gaussian density
computation, mesh generation and quality improvement, are tested in three modes: CPU
sequential, CPU 8-core parallel and GPU parallel. Among the tested biomolecular
complexes (see Figs. 1, 10 and 11), TFC, the SERCA pump and the myofibril lattice (ML)
are from the human cardiac calcium signaling system, while 2W4A, 1HTQ and 2KU2 are
chosen from the Protein Data Bank (PDB). A 3-level summation of Gaussian kernel
functions is applied for TFC, while the other models use a 2-level summation. Table 3
shows the modeling results, which are generated from a computer with an Intel Xeon
E5-1620 CPU, a Nvidia GeForce GTX680 graphic card, and 16GB of memory.

Thin filament complex (TFC)
The thin filament complex is an important component in myofibrils, which is also the key
functional part in the muscle fibers. The contraction of muscle fibers rely heavily on the
interaction between the myosin heads and the filaments. To study the calcium ion signaling
process during the muscle contraction, a cuboidal outer boundary is inserted around the thin
filament, and the exterior tetrahedral meshes are generated, see the 2W4U model in Fig. 1.

SERCA pump
The SERCA pump works as a pump for the calcium ions in the signaling. The system
contains a segment of lipid and a protein 1SU4 intersecting with it. As shown in Fig. 10(a–
c), a cuboidal boundary is insert around it and intersecting with the membrane. The exterior
mesh is generated which is divided by the membrane into two separated parts.

Myofibril lattice (ML)
During the heart muscle contraction, the calcium signaling process is a combination of the
interaction between the thin and thick filaments. A model containing six thin filaments and
four thick filaments is built with a cuboidal outer boundary intersecting with the filaments,
see Fig. 10(d–f). The exterior tetrahedral mesh is generated to represent the environment
around the filaments. The thin filaments here contains six myosin heads, and the thick
filaments are represented by cylinders. The density map for a single thin filament is
generated using the multi-level summation of Gaussian kernel functions, it is used for the
assembly of the intact density map containing six thin filaments. The assembly step costs
about ten seconds, which is not count in Table 3.
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As shown in Fig. 11, three large proteins are chosen from the Protein Data Bank, and tested
using our modeling methods. 2W4A is a contractile protein for insect flight muscle. 1HTQ
is a glutamine synthetase from Mycobacterium tuberculosis, the second largest protein we
found in the PDB. 2KU2 is a hydrolase protein, which is also the largest protein we found in
the PDB.

In Gaussian density map generation, the rectilinear grid size for the Gaussian density map is
constraint to be 513 × 513 × 513. For the CPU-based computation, neighboring search and
the KD-tree structure are applied in both the sequential and parallel modes; while the
combination of neighboring search and BVH is employed in the GPU-based mode. The
speedups of the 8-core CPU computation are similar for all the complexes (4.1~5.2), while
the speedups of the GPU-assisted computation vary from 14.1 to 73.5 times. The worst
speedup of the GPU computation happens on the SERCA pump, as shown in Fig. 10(a). In
SERCA pump, the lipid (pink) contains most of the atoms without a hierarchical structure,
which greatly reduces the subdivision efficiency of the BVH.

In both 8-core CPU and GPU-based computation, the time costs of mesh generation are
similar for all the tested models although the mesh size differs. This is because in mesh
generation, the most time-consuming step is octree subdivision. Compared to the uniform
grids, the adaptive octree construction requires a much more complicated index system,
which significantly limits the speedups. From Table 3, we can observe that the speedups are
1.9~2.0 times for the 8-core CPU computation, and 4.9~5.6 times for the GPU-based
computation.

During quality improvement, for both the CPU sequential and the 8-core CPU computation,
we can observe that the time cost increases as the mesh size becomes larger. However, it is
more complicated for the GPU-based computation due to its high sensitivity to the vertex
valence number, which also brings in serious workload imbalance on different threads. As
discussed in Section 5, high valence numbers are introduced by mesh adaptation. In
particular, TFC, the SERCA pump, and 1HTQ contain large volumes, and they require more
adaptive meshes to reduce the mesh size. Due to this reason, a workload imbalance is
introduced in their GPU computation. Therefore, for these three models the speedups are
only about 20.0~25.2 times, not as significant as the others (26.6~32.9 times).

For the whole modeling process, the 8-core CPU computation introduces a similar speedup
on the efficiency for all the tested proteins (4.1~4.9 times), while the speedups of the GPU-
assisted computation vary from 16.1 to 65.2 times. In addition, from Table 3 we can observe
that the obtained meshes are in good quality with the minimal dihedral angle ≥ 14.86°.

7. Conclusion and Future Work
In this paper, a multi-level summation of Gaussian kernel functions is applied to generate
multi-scale implicit models for the biomolecules. Structures at different levels are specified
and emphasized with more details on the local surface. The computational efficiency is
improved by using a combination of neighboring search, KD-tree structure and bounding
volume hierarchy. The CPU and GPU-assisted parallel computation techniques are
employed in all the modeling steps, including Gaussian density map construction, mesh
generation and quality improvement. In our approach, large proteins can be modeled quickly
with quality adaptive tetrahedral meshes as output.

In the future, it is worth to apply the multi-level summation of Gaussian kernel functions in
various application problems such as the diffusion simulation and boundary element solvers
of the Poisson-Boltzmann equation [15, 16, 34]. In particular, the study of large
biomolecules will benefit a lot from the high efficiency introduced by our techniques. The
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multi-level summation can also be extended to work for a combination of biomolecular
information from the Protein Data Bank and Cryo-EM scanned images.
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Fig 1.
Multi-scale model for the thin filament complex (TFC, PDB ID: 2W4U). High resolution is
shown for the actin domain (cyan) with parameters PR = 0.8, PC = 0.5, and PD = 1.0; chain
K (magenta) and troponin C (orange) are further emphasized with PR = 2.0, PC = 1.0, and
PD = 1.0; and the rest of the protein (pink) is blurred with PR = 0.5, PC = 0.3, and PD = 0.8.
(a) Biomolecular surface; (b) exterior tetrahedral mesh; and (c) exterior mesh with embeded
protein. PR, PC and PD are parameters to control the local resolution of residuals, chains and
domains, respectively.
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Fig 2.
Hierarchical structure of the biomolecules.
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Fig 3.
Surface construction of 1J5E from a two-level summation of Gaussian kernels. (a)
Uniformly blurred surface, PR = 0.05 and PC = 0.5; (b) all details on the model are
strengthened, PR = 0.5 and PC = 1.0; and (c) only details on chain B are strengthened, PR =
0.5 and PC = 1.0 for chain B while PR = 0.05 and PC = 0.5 for the remaining structure.
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Fig 4.
Resolution control of TFC at the domain level, PR = 0.7, PC = 0.4. (a) Blurred domain
boundary for tropomyosin (red) and actin (green), PD = 0.25 for the entire protein; and (b)
more detailed features are preserved along the boundary of tropomyosin and actin, PD = 0.8
for these two domains while PD = 0.25 for the remaining structure.
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Fig 5.
The neighboring search algorithm. (a) The activated grid cell (magenta) and its 1-ring
neighbors; and (b) the newly activated cell (magenta) in the 1-ring neighbors.

Liao et al. Page 18

Mol Based Math Biol. Author manuscript; available in PMC 2013 December 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig 6.
Neighboring search results for 2KFX. (a) The interior domain (green); (b) one detected band
using dl = 0.9, du = 1.1 and kA = 0.026; and (c) another detected band using dl = 0.1, du = 2.0
and kA = 0.12.
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Fig 7.
The bounding box system. (a) The bounding boxes of two peptides; and (b) the bounding
box of one peptide is subdivided into bounding boxes of residues.
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Fig 8.
Eight proteins tested in Table 2. (a) 1BOR; (b) 1NEQ; (c) 1A63; (d) 1A7M; (e) 1BEB; (f)
1VNG; (g) 1GTP; and (h) 2KXH.
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Fig 9.
Group of the edges.
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Fig 10.
Two biomolecualr complexes in human cardiac calcium signaling system. (a–c) SERCA
pump with PR = 0.2, PC = 0.8 and PR = 0.2, PC = 1.1 for low and high resolution
components, respectively; and (d-f) the myofibril lattice (ML) with PR = 0.5, PC = 0.3 and
PR = 0.7, PC = 0.4 for low and high resolution components, respectively. (a) and (d) show
the protein structure with the blue region emphasized in high resolution; (b) and (e) show
exterior tetrahedral meshes; and (c) and (f) show exterior meshes with embeded proteins.
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Fig 11.
Three large proteins. (a–b) 2W4A with PR = 0.2, PC = 0.8 and PR = 0.4, PC = 1.2 for low
and high resolution components, respectively; (c–d) 1HTQ with PR = 0.3, PC = 0.8 and PR =
1.0, PC = 1.5 for low and high resolution components, respectively; and (e–f) 2KU2 with PR
= 0.5, PC = 1.0 and PR = 1.6, PC = 2.0 for low and high resolution components, respectively.
(a), (c) and (e) show tetrahedral mesh of the proteins with the blue region emphasized in
high resolution, and the pink region shows a cross section of the model; (b), (d) and (f) show
the partition results in parallel computation.
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Table 1

Ratio of analyzed grid points in 2KFX (513 × 513 × 513).

Lower threshold dl Upper threshold du Analyzed ratio kA

0.9 1.1 0.026

0.6 1.4 0.048

0.3 1.7 0.092

0.1 2.0 0.12
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