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Abstract
Recent advances have provided unprecedented opportunities to identify prognostic and predictive
markers of efficacy of cancer therapy. Genetic markers can be used to exclude patients who will
not benefit from therapy, exclude patients at high risk of severe toxicity, and adjust dosing.

Genomic approaches for marker discovery now include genome-wide association studies and
tumor DNA sequencing. The challenge is now to select markers for which there is enough
evidence to transition them to the clinic.

The hurdles include the inherent low frequency of many of these markers, the lengthy validation
process through trials, as well as legislative and economic hurdles. Attempts to answer questions
about certain markers more quickly have led to an increased popularity of trials with enrichment
design, especially in the light of the dramatic phase I results seen in recent months.

Personalized medicine in oncology is a step closer to reality.
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INTRODUCTION
Especially in the field of oncology, it is no longer sufficient to depend on traditional factors,
namely tumor stage and histology, to direct treatment or to determine survival. Increasingly,
molecular biomarkers have been incorporated into treatment decision algorithm. These
markers are classified broadly into 2 groups: firstly, markers that are used to identify
genetically vulnerable subjects to extreme treatment toxicity, and secondly markers that (a)
guide the selection of treatment with the best chance of disease control or (b) stratify risk of
progression or recurrence in order to rationalize decision for or against aggressive treatment.
The former (toxicity) is in general a property of the patient’s (germline) genome while the
latter is generally a property of the tumour (somatic) genome. Predictive markers allow
physicians to improve the efficacy of cancer therapy, and prognostic markers allow for
selection of patients with high risk of cancer recurrence for treatment, and those with low
risk of recurrence for less intensive treatment or observation only. Advances in the
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identification of both germline and somatic mutations, and the understanding of their
predictive and prognostic values, have paved the way for personalized treatment, a key goal
of today’s oncology.

There still exist many challenges going forward: The pace of identifying such markers has
not been matched by the speed of validation studies. Patient and physician education
remains much to be improved upon. Improvement in legislation and administrative
processes is still ongoing and in the midst of being fine tuned. Nonetheless, the future for the
development of pharmacogenetics in cancer therapy remains promising.

PROMISES OF PHARMACOGENETICS
The concept of pharmacogenetics and personalized medicine have been anticipated for ages,
from the time of Pythagoras, in 6th century BC, prohibiting the ingestion of fava beans
amongst his followers, to the 20th century, when Sir William Osler recognized that
“Variability is the law of life, and as no two faces are the same, so no two bodies are alike,
and no two individuals react alike, and behave alike under the abnormal conditions we know
as disease”.(1) We have come a long way since then. The link between glucose-6-phosphate
dehydrogenase deficiency, hemolytic anemia, and fava beans was established in the 1950s.
(2) The completion of the Human Genome Project now allows access to the entire human
sequence of genetic information, and an easier evaluation of genetic variation.(3)

The understanding of various germline polymorphisms in association with treatment
toxicity, as well as survival benefits or lack thereof, opens up the possibility of this
knowledge directly serving to complement the array of chemotherapeutic agents available.
Pharmacogenetic testing may enable clinicians to identify patients who are less likely to
benefit from expensive drugs, those who are susceptible to severe treatment related toxicities
at standard doses, and also reduce the delay of the patient receiving perhaps the correct
alternative treatment. This is all more important in cancer therapy because many
chemotherapeutic agents have a narrow therapeutic index and not uncommonly result in life
threatening toxicities.(4)

The utility of pharmacogenetics extends beyond cancer therapy in the clinic. It has the
potential to facilitate the identification of drug targets, accelerate the discovery and
development of several drugs.(5–9) Tumor tissues frequently acquire mutations in
oncogenes, which can confer sensitivity or resistance to drugs.(10) A better understanding of
molecular processes and somatic mutations of tumors have led to an increasing number of
targeted agents being discovered and developed. The effective and appropriate use of
expensive cytotoxic and targeted agents can ultimately translate into more cost effective
treatments and eventually reduce overall healthcare costs. To evaluate the progress thus far,
a simplistic classification and examples are cited.

PROGRESS OF PHARMACOGENETICS IN ONCOLOGY: HAS IT
DELIVERED?
Predictive markers for response

The clinical application of pharmacogenetic markers has been most successful in treatment
response prediction. There are at least 16 FDA approved anticancer drugs with validated
predictive markers for treatment response (Table 1). These predictive markers are all tumor
or somatic genomic alterations frequently characterized by DNA base mutations, gene copy
numbers changes, chromosomal rearrangement and epigenetic alterations. There is a
growing body of evidence that there are genetically defined subtype of tumors that might
depend upon one or more specific pathways or mechanisms to drive tumor growth and
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survival. Dramatic clinical responses may be seen when these tumors are treated with drugs
targeting oncogenes to which tumors are dependent to for their growth, survival, and
metastatic potential.(10, 11)

A prime example is the epidermal growth factor receptor (EGFR) tyrosine kinase domain
mutation and response to gefitinib and erlotinib in lung cancer. Differential responses and
outcomes to targeted agents have led to the recognition of phenotypic characteristics (non-
smokers, female, Asians and adenocarcinoma) that predicts for better response, and the
eventual validation of genetic markers.(12) Somatic mutations in EGFR, including deletion
mutations in exon 19 and leucine to arginine substitution at amino acid position 858
(L858R) in exon 21, have been identified for their ability to predict sensitivity to tyrosine
kinase inhibitors (e.g. gefitinib or erlotinib).(13) These mutations cause constitutive
activation of the EGFR receptor, resulting in uncontrolled replication and survival of tumor
cells. At the same time, because of the dependence of the cell cycle on these activating
mutations, there is also increased sensitivity and susceptibility to inhibition by tyrosine
kinase inhibitors.(14) The objective response rates to tyrosine kinase inhibitors range from
55% to as high as 80%, compared to response rates to chemotherapy of 30–45% for the
same group of patients.(12, 13, 15, 16) On the other hand, it has also been shown that the
T790M mutation at exon 20 is the most commonly found mutation that confers resistance
through steric hindrance.(13, 17)

Treatment directed at specific drug targets have created much excitement in oncologic
research, and have accelerated the development of targeted anti-cancer drugs. Under this
new model, many confirmatory phase III trials are designed with some form of enrichment,
i.e. testing the drugs in selected people deemed most likely to respond. This is especially so
in tumors where somatic biomarkers for response have had established proof of concepts,
like lung, breast and colon.(18)

In contrast, the clinical utility of germline markers predicting for treatment outcomes are
less well established. One of the most extensively studied examples is the relation between
CYP2D6 activity and outcome. CYP2D6 is responsible for the biotransformation of
tamoxifen to its active metabolite, endoxifen. The systemic exposure of endoxifen has been
shown to correlate with CYP2D6 polymorphisms.(19, 20) Decreased CYP2D6 activity was
previously thought to be associated with poorer clinical outcomes when breast cancer
patients were treated with tamoxifen in the adjuvant setting.(21–23) However, the recent
retrospective analyses of 2 large adjuvant breast cancer trials, failed to establish a
relationship between CYP2D6 polymorphisms and treatment outcome of patients treated
with tamoxifen.(24, 25) Although the reasons for the disparities are unclear, it is evident that
tumor heterogeneity, such as human epidermal growth factor receptor 2 (HER2) status and
concomitant use of selective serotonin reuptake inhibitors (SSRI) can affect treatment
outcome.(19, 26) In addition, the studies did not include the ultra-(rapid)metabolizers.
Whether variation in the dose of tamoxifen would affect the outcome is also still not known.
To complicate matters, rates of adherence to hormonal therapy may affect tamoxifen
efficacy. In a study of 8,769 patients of whom 43% were taking tamoxifen, 26% taking
aromatase inhibitors and the remaining taking both, only 49% took adjuvant hormonal
therapy for the full duration at the optimal schedule.(27) Younger women were at the
highest risk of non-adherence, while women of Asian decent were more likely to comply
with the treatment prescribed. In a prospective observational trial, CYP2D6 extensive
metabolizers had higher discontinuation rates at 4 months. The extensive metabolizers who
potentially may be more likely to benefit from tamoxifen were also paradoxically more
likely to stop the drug early.(28, 29)
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Currently, it is still recommended that patients who are on tamoxifen avoid potent CYP2D6
inhibitors (e.g. antidepressants such as paroxetine and fluoxetine).(30) Although the
AmpliChip CYP450 test has been approved by the US FDA for the testing of CYP2D6
metabolizer status,(31) studies prospectively looking at the significance of CYP2D6
polymorphisms on tamoxifen clinical effects, as well as dose escalation of tamoxifen in
patients with impaired CYP2D6 activity are ongoing.(32, 33)

Epigenetics is an emerging, promising field in oncology therapeutics. It involves the
understanding of changes in gene function that occur without a change in the DNA
sequence, and usually involve DNA hypo- or hypermethylation, histone modification, or
microRNAs (miRNAs).(34) The main successes in its predictive value and clinical
translation are currently found in the treatment of hematopoietic malignancies, with DNA
methylation inhibitors azacitidine and decitabine both FDA approved for the treatment of
myelodysplastic syndromes, as well as suberoylanilide hydroxamic acid (vorinostat), a
histone deacetylase inhibitor, in the treatment of cutaneous T-cell lymphoma.(35–38)
Patients with O6-methylguanine-DNA methyltransferase (MGMT) gene silencing has been
shown to benefit more from temozolomide in addition to radiotherapy as treatment for
glioblastoma multiforme.(39) Other non-hematopoietic tumor types, such as ovarian, colon,
and breast have also showed promising preliminary results as well.(40–43)

Predictive markers for toxicity
There are several anti-cancer drugs with labels reporting germline pharmacogenetic markers
of toxicity (Table 2). Some of these may also affect efficacy, for example, thiopurine
methyltransferase (TPMT) polymorphisms might affect 6-mercarptopurine (6-MP) response.
(44) Even when treated at 10% of the standard dose of 6-MP, patients homozygous for
TPMT variants have similar or superior survival compared with patients with at least one
wild-type allele. Although the associations between germline polymorphisms and treatment
toxicities are well established, they have not been embraced fully into clinical practice. The
reasons will be discussed later in this review.

The majority of these markers were discovered by a candidate gene approach, where prior
knowledge of pathophysiology, pharmacokinetics, pharmacodynamics and tumor biology is
required. In recent years, the examination of population variation in all the annotated genes
in the human genome has became possible.(45) Through statistical analyses and probability
calculations, candidate genes can be identified without prior knowledge of the association.
Most recently, Ingle et al. used genome wide association study (GWAS) to retrospectively
identify the gene (T-Cell leukemia/lymphoma protein 1A gene, or TCL1A) that may predict
for musculoskeletal side effects in women receiving anastrozole and exemestane.(46)
TCL1A expression enhances Akt serine threonine kinase activity, functioning as an Akt co-
activator, and is usually associated with hematopoietic malignancies. Functional studies
suggested that the SNP variant (rs11849538) creates an estrogen response element, which
leads to greater reductions in TCL1A and interleukin 17 receptor A (IL17RA) expression in
women on aromatase inhibitors, giving rise to symptoms. The authors also suggested a link
between a change in cytokines level and aromatase inhibitors musculoskeletal adverse
effects. Although association between TCL1A, changes in cytokines and musculoskeletal
adverse effects remain to be validated, it had demonstrated the potential ability of GWAS in
identifying potential clinically relevant novel candidate gene variants.

Prognostic markers to guide treatment decision
Many predictive markers in oncology such as EGFR mutation status, are found to have
prognostic impact as well, aiding physicians in making clinical decisions for treatment or
observation.(47, 48) In recent years, gene expression has increasing been used to dissect
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tumor heterogeneity, allowing clinicians to classify tumors into genomic subtypes with
distinct clinical behavior and response to treatment. Based on variations in gene expression
patterns derived from cDNA microarrays, Sorlie et al. classified breast carcinoma into a
basal epithelial-like group, an ERBB2+ group, a normal breast-like group, and a luminal
estrogen receptor(ER) positive group, which was further divided into at least 2 subgroups
with distinct expression profiles.(49) This was prospectively validated, showing that
untreated patients with basal-like and ERBB2+ subtype had poorer prognosis compared to
luminal A and normal-like tumors. In addition, basal tumors responded poorly to hormonal
and cytotoxic therapy; whereas ERBB2+ tumors were more likely to respond to anti-HER2
therapy.(50)

Many multigene expression profiles for different tumors are now commercially available,
including MammaPrint and Oncotype Dx (for breast cancer) and ColoPrint, (for colon
cancer).(51–53) Multigene expression profiles in general utilize a recurrence score algorithm
for prognostication, and aid decisions for adjuvant treatment in borderline risk patients. In
Oncotype Dx for breast cancer, the risk score is generated from expression of 16 cancer-
related genes and 5 reference genes. It can further stratify good risk breast cancer defined by
‘traditional’ staging, hormonal and HER2 status into 3 groups with distinct recurrence risk.
As well as prognostication, some gene expression profiles also predict for treatment
response in patients.(54) Most of these have been validated in previous randomized
controlled trials, and are even included in several prospective trials for evaluation. However,
several questions remain unanswered. For example, in breast cancer, whether patients who
are deemed to be at intermediate risk (based on their recurrence score from both Oncotype
Dx and MammaPrint) benefit from more aggressive treatment remains to be validated, and
is the subject of ongoing trials, such as the TAILORx [Trial Assigning IndividuaLized
Options for Treatment (Rx)] and MINDACT (Microarray In Node-negative and 1 to 3
positive lymph node Disease may Avoid ChemoTherapy) trials.(55, 56)

Use of epigenetics for prognostication is currently still in its infancy, although many
promoter methylations and CpG island methylation aberrancies have been identified,
including lung and colon cancer.(57, 58)

CHALLENGES IN DEVELOPMENT AND VALIDATION
Development model for genetic markers and evaluation

Translation of pharmacogenetic knowledge from bench to bedside has been disappointingly
limited thus far. Although several paradigmatic examples have been given, these have not
been freely embraced by both physicians and patients. The main reason is the large
imbalance between discovery and validation, with a bottleneck at the validation process.

The steps for the development of a pharmacogenetics marker include the initial discovery of
the biomarker, followed by its functional characterization. As diagnostic tests are developed
for it, clinical correlation needs to follow. Retrospective analyses can provide the fastest and
most convenient way to test the clinical validity of a biomarker.

Retrospective analyses of somatic mutations of completed prospective randomized trials
have led to results that changed medical practice, for example, the addition of cetuximab and
panitumumab to chemotherapy in patients who are KRAS wild type resulted in longer
overall survival.(59, 60) Prospective trials were designed thereafter with the aim to confirm
the findings,(61, 62) although the recent Medical Research Council (MRC) CR-10 and
NORDIC VII studies have shown conflicting results.(63, 64) The reasons for the
discrepancies are not entirely clear.
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In the retrospective analyses of previous trials for biomarker validation, it might be that not
all the patients or samples may be available for analysis. It is pertinent though, that the
available cohort of patients that are analyzed be representative of all the patients in the
study, ideally a sizable number, or the validity of the analysis may fall short and be
questioned.

In this age of evidence-based medicine, the current model still asks for prospective testing as
the ultimate validation of a biomarker through very time consuming and expensive trials.
Although alternative models should be considered and novel strategies developed to speed
up the validation process, the importance of prospective validation cannot be ignored.
Prospective studies allow for better profiling of sensitivity, specificity, absolute risks,
predictive values, and also factor in environmental factors and treatment outcomes.(65)
They should ideally also focus on clinical relevance, as well as optimal dosing strategy.(66)

Sargent et al. discussed strategies for evaluation of genetic markers by classifying cancer
treatment trial designs into 2 simple groups: 1) Marker by Treatment Interaction Design and
2) Marker-Based Strategy Design. The authors defined the designs as such: In the Marker by
Treatment Interaction design, “Patients in each marker group are randomly assigned to two
different treatments, and the testing plan determines whether one treatment is superior to the
other separately within each marker group”, while in the Marker-Based Strategy Design,
“after the marker status is known, each patient is randomly assigned to either have his/her
therapy determined by their marker status or to receive therapy independent of marker
status”.(67) The former is reminiscent of classical randomized controlled trials with upfront
stratification for the marker, while the latter is reflective of enrichment models. With
improved knowledge of tumor molecular biology and a bottleneck at validation studies, it
has become more pressing currently to identify an optimal design that answers questions
regarding clinical relevance in an efficient and rapid manner.

Enriched trials as an alternative model?
Several alternative strategies have been considered for validation, including enrichment,
biomarker-based strategies. Enrichment strategies are most appropriate when 1) the
mechanism of drug action is already known, 2) a reliable, sensitive and specific detection
method or assay is available, and 3) there is compelling preliminary evidence that patients
with or without that marker profile do not benefit from the treatments in question. Enriched
trials are more powered and need fewer randomized patients to validate a marker, as they
include only patients who have a certain marker characteristic or profile, and patients are
randomized to the new treatment vs. the standard treatment.(67) The caveat of such an
approach is that predictive value of the pharmacogenetic marker in question cannot be fully
established in the patients that were excluded from the study, this particularly relevant when
the marker is not common in that patient population.(68) Furthermore, the numbers needed
to screen to obtain the desired number of patients remains the same, and the perceived
shorter duration of trial occurs only after recruitment.

Crizotinib, an anaplastic lymphoma kinase (ALK) inhibitor, has created much excitement
for treatment response rate of greater than 70% in non-small cell lung cancer (NSCLC).(9)
However, the incidence of NSCLC harboring the echinoderm microtubule-associated
protein-like 4 anaplastic lymphoma kinase (EML4-ALK) fusion gene, the target for
crizotinib, in the unscreened population is low, with an estimated incidence of 2–7%.(9, 69,
70) EML4-ALK in lung cancer is known to be more prevalent in females who are non-
smokers and the adenocarcinoma subtype.(71) The knowledge that EML4-ALK and EGFR
mutations are mutually exclusive has high significance.(70, 72) Patients who are EGFR
mutation negative with such phenotypic characteristics can be the target of randomized
clinical trials for crizotinib, reducing the numbers needed for adequately powered trials, and
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accelerating the development of crizotinib and increasing the chance of a successful trial.
Vemurafenib has similar success with V600E BRAF mutation positive melanoma,(7) and
both crizotinib and vemurafenib have transited with an accelerated pace from phase I trials
directly to phase III.(5, 6) These newer approaches serve as paradigmatic examples of the
enrichment model, and this strategy is likely to be increasingly employed in this era of
targeted and personalized medicine.

PROBLEMS WITH CLINICAL IMPLEMENTATION
Frequency and relevance of polymorphisms

The prevalence of a marker is an important factor that needs to be considered when
validation trials are designed to determine clinical effectiveness. Many pharmacogenetic
markers have a low frequency in the population, making difficult their validation and
clinical implementation. Even in patients who experience severe toxicity, the complex
pharmacodynamic pathways may mean that the purported molecular marker identified may
not be the only reason for the observed toxicity. Dihydropyrimidine dehydrogenase*2A
(DPYD*2A) is the most common DPYD polymorphism associated with impaired DPD
activity. Up to a quarter of patients suffering from severe 5-FU toxicity may have
DPYD*2A polymorphism, although the allelic frequency of DPYD*2A is only about 1.8%
in European Caucasians and less than 1% in Asian populations.(73–76) The majority, up to
two-thirds, of patients who experienced severe treatment toxicity after 5-fluorouracil do not
have a molecular basis for DPD deficiency.(77) Apart from DPD, thymidylate synthase is
another important enzyme in folate metabolism, and is a key target for 5-FU. Thymidylate
synthase catalyses the methylation of deoxyuridine monophosphate (dUMP) to
deoxythymidine monophosphate (dTMP), the source of intracellular thymidylate vital for
DNA repair and replication.(78) Although many polymorphisms for DPYD and the
thymidylate synthase gene (TYMS) have been identified and studied, these polymorphisms
have relatively modest or inconsistent associations with 5-fluorouracil toxicity, and several
studies have failed to replicate the results. One such study, Schwab et al., looked to assess
the predictive value of polymorphisms in DPYD, TYMS for severe toxicities related to
fluorouracil treatment.(79) The sensitivity of DPYD genotyping for overall toxicity was low
with a positive predictive value of barely half. Interestingly, while women had a higher risk
for toxicity, DPYD genotype was not a dependent factor. The proposed algorithm for 5-FU
dosing remains a theoretical exercise with no clinical utility.

Pharmacoethnic variation is an important factor that needs to be considered when applying a
genetic testing model across ethnic borders. The knowledge of the predominant
polymorphisms and their respective frequencies should be borne to mind. In Caucasian
populations, the UGT1A1*28 polymorphism is the most common variant but this is present
in only 1.2–5% of South East Asian and Pacific populations.(80, 81) In East Asians, the
predominant functional polymorphism is UGT1A1*6, with a reported allelic frequency of
13–23%.(82) Indeed, the Japanese Ministry of Health and Welfare approved the use of
testing for both UGT1A1*28 as well as UGT1A1*6 to predict for toxicity from irinotecan in
the treatment of colorectal cancer.(83) The application of testing for UGT1A1*28 only
would not be clinically relevant in the Japanese (and other Asian) population.

Costs and availability of pharmacogenetics
The finite nature of healthcare budget requires for treatments and biomarkers to be cost
effective. Pharmacogenetics can potentially reduce healthcare cost by allowing the clinician
identify patients that are most likely to benefit from treatment, thus reducing unnecessary
treatment and minimize cost incurred during management of treatment related toxicities and
hospitalizations.
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It has been demonstrated that the mean calculated cost per life-year gained by TPMT
genotyping in acute lymphoblastic leukemia patients treated with 6-MP was 2100€, based on
genotyping costs of 150€ per patient.(84) Unfortunately, there is a paucity of studies
focusing on the impact of pharmacogenetic testing on health economics. Economic
evaluation is often a complicated, tedious process. Several models for economic evaluation,
for example the Cost Utility Analysis (CUA) and Cost-effectiveness analysis (CEA), serve
to better quantify the potential benefits of pharmacogenetic testing in oncology.(85)
However, limitations of individual economic evaluation models include not being able to
capture abstract but important factors, such as opportunity costs, willingness of the patient to
pay, psychological impact and patient preference.

A more efficient pharmacogenetic test is often not necessarily the cheapest test, but one that
predicts more reliably the intended outcome, and allows for selection of the optimal
treatment. With advances in technology, the cost and time of whole human genome
sequencing have dramatically been improved, with eventual realization of the “$1000”
genome.(86) In consideration of the dropping cost of genotyping, the incorporation of
genomic scans in patient evaluation becomes a dynamic and ongoing process that should be
constantly checked and updated by policy makers in accordance to the depreciating costs, to
allow for more accessibility for genotyping and its benefits as more evidence becomes
available.

The integration of pharmacogenetics into the clinic is often hindered by the cost of testing or
lack of reimbursement from public or private insurers. Many countries especially developing
ones, do not even have access to pharmacogenetic testing. However, pharmacogenetics can,
in the long haul, lead to a more cost-effective healthcare system. Several initiatives on
reimbursement policies have recently shown that insurers are now beginning to move
towards supporting pharmacogenetic integration into clinical practice.(87, 88) Researchers,
diagnostic firms, and the regulatory authorities are still seeking to establish methodologies
by which to judge the effectiveness of pharmacogenetic integration to clinical practice. The
full application of pharmacogenetics into clinical practice will require dramatic changes in
regulations, legislative protection for privacy and reimbursement policies. Several recent
regulatory policies, providing guidelines for genomic data management, pharmacogenetic
testing, and designing of adaptive clinical trials, have been implemented to support genomic
and personalized medicine.(89–93)

Preconceived notion of genetic testing
There exist an acute lack of education of both the physicians and the patients regarding
pharmacogenetics and personalized care. The current knowledge of healthcare professionals
regarding pharmacogenetics is still low, and medical school curricula are only slowly
including teaching of this subject in their courses.(94–96) Even when included, the depth of
teaching may be limited.(97) Pharmacogenetic knowledge is rapidly developing and
changing, and it is imperative that healthcare professionals keep abreast of the advances and
clinical indications.

Unfortunately, many have perceived notions that toxicity such as neutropenia can be easily
managed, especially with advances in supportive care such as granulocyte colony
stimulating factors. The large number of chemotherapeutic options available also means that
physicians are often spoilt for choice, and have a low threshold to consider alternative
therapies when toxicity becomes unmanageable. The need to evaluate the genetic basis for
side effects becomes less clinically relevant in such circumstances.

However, it is often forgotten that genetic testing does not only predict for treatment related
toxicity or allow for dose adjustment, and that it also determines response or lack thereof. It
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is frequently imperative that testing is done before treatment, as giving inappropriate
treatment may result in an outcome poorer than the alternative. Patients who are EGFR wild
types had a poorer outcome when treated with gefitinib.(12) A ‘treat-and-see’ approach has
ethical and legal implications in this era where genetic testing is readily available, as it
delays and even potentially deprives patients of appropriate treatment, and deterioration is
often rapid without it.

CONCLUSION
With increasing knowledge and understanding of the human genome, the clinical relevance
of pharmacogenetics in oncology will invariably improve, especially with more validation
studies and lowering costs of testing. Several obstacles still exist before pharmacogenetics
can be fully embraced, for institutions, clinicians and patients. As more genetic and somatic
information become easily accessible and available, we will be one step closer to making
personalized medicine a reality.
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