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Abstract

Precision-recall (PR) curves and the areas under them are widely used to summarize machine 

learning results, especially for data sets exhibiting class skew. They are often used analogously to 

ROC curves and the area under ROC curves. It is known that PR curves vary as class skew 

changes. What was not recognized before this paper is that there is a region of PR space that is 

completely unachievable, and the size of this region depends only on the skew. This paper 

precisely characterizes the size of that region and discusses its implications for empirical 

evaluation methodology in machine learning.

1. Introduction

Precision-recall (PR) curves are a common way to evaluate the performance of a machine 

learning algorithm. PR curves illustrate the tradeoff between the proportion of positively 

labeled examples that are truly positive (precision) as a function of the proportion of 

correctly classified positives (recall). In particular, PR analysis is preferred to ROC analysis 

when there is a large skew in the class distribution. In this situation, even a relatively low 

false positive rate can produce a large number of false positives and hence a low precision 

(Davis & Goadrich, 2006). Many applications are characterized by a large skew in the class 

distribution. In information retrieval (IR), only a few documents are relevant to a given 

query. In medical diagnoses, only a small proportion of the population has a specific disease 

at any given time. In relational learning, only a small fraction of the possible groundings of a 

relation are true in a database.

Appearing in Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012.

HHS Public Access
Author manuscript
Proc Int Conf Mach Learn. Author manuscript; available in PMC 2013 December 11.

Published in final edited form as:
Proc Int Conf Mach Learn. 2012 December 1; 2012: 349–.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The area under the precision-recall curve (AUCPR) often serves as a summary statistic when 

comparing the performance of different algorithms. For example, IR systems are frequently 

judged by their mean average precision, or MAP (not to be confused with the same acronym 

for “maximum a posteriori”), which is an approximation of the mean AUCPR over the 

queries (Manning et al., 2008). Similarly, AUCPR often serves as an evaluation criteria for 

statistical relational learning (SRL) (Kok & Domingos, 2010; Davis et al., 2005; Sutskever 

et al., 2010; Mihalkova & Mooney, 2007) and information extraction (IE) (Ling & Weld, 

2010; Goadrich et al., 2006). Additionally, some algorithms, such as SVM-MAP (Yue et al., 

2007) and SAYU (Davis et al., 2005), explicitly optimize the AUCPR of the learned model.

There is a growing body of work that analyzes the properties of PR curves (Davis & 

Goadrich, 2006; Clémençon & Vayatis, 2009). Still, PR curves and AUCPR are frequently 

treated as a simple substitute in skewed domains for ROC curves and area under the ROC 

curve (AUCROC), despite the known differences between PR and ROC curves. These 

differences include that for a given ROC curve the corresponding PR curve varies with class 

skew (Davis & Goadrich, 2006). A related, but previously unrecognized, distinction between 

the two types of curves is that, while any point in ROC space is achievable, not every point 

in PR space is achievable. That is, for a given data set it is possible to construct a confusion 

matrix that corresponds to any (false positive rate, true positive rate) pair, but it is not 

possible to do this for every (recall, precision) pair.1

We show that this distinction between ROC space and PR space has major implications for 

the use of PR curves and AUCPR in machine learning. The foremost is that the 

unachievable points define a minimum PR curve. The area under the minimum PR curve 

constitutes a portion of AUCPR that any algorithm, no matter how poor, is guaranteed to 

obtain “for free.” Figure 1 illustrates the phenomenon. Interestingly, we prove that the size 

of the unachievable region is only a function of class skew and has a simple, closed form.

The unachievable region can influence algorithm evaluation and even behavior in many 

ways. Even for evaluations using F1 score, which only consider a single point in PR space, 

the unachievable region has subtle implications. When averaging AUCPR over multiple 

tasks (e.g., SRL target predicates or IR queries), the area under the minimum PR curve alone 

for a non-skewed task may outweigh the total area for all other tasks. A similar effect can 

occur when the folds used for cross-validation do not have the same skew. Downsampling 

that changes the skew will also change the minimum PR curve. In algorithms that explicitly 

optimize AUCPR or MAP during training, algorithm behavior can change substantially with 

a change in skew. These undesirable effects of the unachievable region can be at least 

partially offset with straightforward modifications to AUCPR, which we describe.

2. Achievable and Unachievable Points in PR Space

We first precisely define the notion of an achievable point in PR space. Then we provide an 

intuitive example to illustrate the concept of an unachievable point. Finally, in Theorems 1 

1To be strictly true in ROC space, fractional counts for tp, fp, fn, tn must be allowed. The fractional counts can be considered integer 
counts in an expanded data set.
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and 2 we present our central theoretical contributions that formalize the notion of the 

unachievable region in PR space.

We assume familiarity with precision, recall, and confusion matrices (see Davis and 

Goadrich (2006) for an overview). We use p for precision, r for recall, and tp, fp, fn, tn for 

the number of true positives, false positives, false negatives, and true negatives, respectively.

Consider a data set D with n = pos + neg examples, where pos is the number of positive 

examples and neg is the number of negative examples. A valid confusion matrix for D is a 

tuple (tp, fp, fn, tn) such that tp, fp, fn, tn ≥ 0, tp + fn = pos and fp + tn = neg. We use 

, the proportion of examples that are positive, to quantify the skew of D. Following 

convention, highly skewed refers to π near 0 and non- or less skewed to π near 0.5.

Definition 1. For a data set D, an achievable point in PR space is a point (r, p) such that 

there exists a valid confusion matrix with recall r and precision p.

2.1. Unachievable Points in PR Space

One can easily show that, like in ROC space, each valid confusion matrix, where tp > 0, 

defines a single and unique point in PR space. In PR space, both recall and precision depend 

on the tp cell of the confusion matrix, in contrast to the true positive rate and false positive 

rate used in ROC space. This dependence, together with the fact that a specific data set 

contains a fixed number of negative and positive examples, imposes limitations on what 

precisions are possible for a particular recall.

To illustrate this effect, consider a data set with pos = 100 and neg = 200. Table 1(a) shows 

a valid confusion matrix with r = 0.2 and p = 0.2. Consider holding precision constant while 

increasing recall. Obtaining r = 0.4 is possible with tp = 40 and fn = 60. Notice that keeping 

p = 0.2 requires increasing fp from 80 to 160. With a fixed number of negative examples in 

the data set, increases in fp cannot continue indefinitely. For this data set, r = 0.5 with p = 

0.2 is possible by using all negatives as false positives (so tn = 0). However, maintaining p = 

0.2 for any r > 0.5 is impossible. Table 1(b) illustrates an attempted confusion matrix with r 

= 0.6 and p = 0.2. Achieving p = 0.2 at this recall requires fp > neg. This forces tn < 0 and 

makes the confusion matrix invalid.

The following theorem formalizes this restriction on achievable points in PR space.

Theorem 1. Precision (p) and recall (r) must satisfy,

(1)

where π is the skew.

Proof. Starting from the definition of precision,
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since the false positives cannot be greater than the number of negatives. tp = rπn from the 

definition of recall, and we can reasonably assume the data set is non-empty (n > 0) so the ns 

cancel out. Thus

If a point in PR space satisfies Eq. (1), we say it is achievable. Note that a point’s 

achievability depends solely on the skew and not on a data set’s size. Thus we often refer to 

achievability in terms of the skew and not in reference to any particular data set.

2.2. Unachievable Region in PR Space

Theorem 1 gives a constraint that each achievable point in PR space must satisfy. For a 

given skew, there are many points that are unachievable, and we refer to his collection of 

points as the unachievable region of PR space. This subsection studies the properties of he 

unachievable region.

Eq. (1) makes no assumptions about a model’s performance. Consider a model that gives the 

worst possible ranking where every negative example is ranked ahead of every positive 

example. Building a PR curve based on this ranking means placing one PR point at (0, 0) 

and a second PR point at . Davis and Goadrich (2006) provide the correct method for 

interpolating between points in PR space; interpolation is non-linear in PR space but is 

linear between the corresponding points in ROC space. Interpolating between the two 

known points gives intermediate points with recall of  and precision of 

, for 0 ≤ i ≤ pos. This is the equality case from Theorem 1, so Eq. (1) is a 

tight lower bound on precision. We call the curve produced by this ranking the minimum PR 

curve because it lies on the boundary between the achievable and unachievable regions of 

PR space. For a given skew, all achievable points are on or above the minimum PR curve.

The minimum PR curve has an interesting implication for AUCPR and average precision. 

Any model must produce a PR curve that lies above the minimum PR curve. Thus, the 

AUCPR score includes the size of the unachievable region “for free.” In the following 

theorem, we provide a closed form solution for calculating the area of the unachievable 

region.

Theorem 2. The area of the unachievable region in PR space and the minimum AUCPR, for 

skew π, is
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(2)

Proof. Since Eq. (1) gives a lower bound for the precision at a particular recall, the 

unachievable area is the area below the curve .

See Figure 3 for AUCPRMIN at different skews.

Similar to AUCPR, Eq. (1) also defines a minimum for average precision (AP). Average 

precision is the mean precision after correctly labeling each positive example in the ranking, 

so the minimum takes the form of a discrete summation. Unlike AUCPR, which is 

calculated from interpolated curves, the minimum AP depends on the number of positive 

examples because that controls the number of terms in the summation.

Theorem 3. The minimum AP, for pos and neg positive and negative examples, respectively, 

is

Proof.

This precisely captures the natural intuition that the worst AP involves labeling all negatives 

examples as positive before starting to label the positives.

The existence of the minimum AUCPR and minimum AP can affect the qualitative 

interpretation of a model’s performance. For example, changing the skew of a data set from 

0.01 to 0.5 (e.g., by subsampling the negative examples (Natarajan et al., 2011; Sutskever et 
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al., 2010)) increases the minimum AUCPR by approximately 0.3. This leads to an automatic 

jump of 0.3 in AUCPR simply by changing the data set and with absolutely no change to the 

learning algorithm.

Since the majority of the unachievable region is at higher recalls, the effect of AUCPRMIN 

becomes more pronounced when restricting the area calculation to high levels of recall. 

Calculating AUCPR for recalls above a threshold is frequently done due to the high variance 

of precision at low recall or because the learning problem requires high recall solutions (e.g., 

medical domains such as breast cancer risk prediction). Corollary 4 gives the formula for 

computing AUCPRMIN when the area is calculated over a restricted range of recalls. See 

Figure 3 for minimum AUCPR when calculating area over restricted recall.

Corollary 4. For calculation of AUCPR over recalls in [a, b] where 0 ≤ a < b ≤ 1,

3. PR Space Metrics that Account for Unachievable Region

The unachievable region represents a lower bound on AUCPR and it is important to develop 

evaluation metrics that account for this. We believe that any metric A′ that replaces AUCPR 

should satisfy at least the following two properties. First, A′ should relate to AUCPR. 

Assume AUCPR was used to estimate the performance of classifiers C1, …, Cn on a single 

test set. If AUCPR(Ci, testD) > AUCPR(Cj, testD), then A′(Ci, testD) > A0(Cj, testD), as test 

set testD’s skew affects each model equally. Note that this property may not be appropriate 

or desirable when aggregating scores across multiple test sets, as done in cross validation, 

because each test set may have a different skew. Second, A′ should have the same range for 

every data set, regardless of skew. This is necessary, though not sufficient, to achieve 

meaningful comparisons across data sets. AUCPR does not satisfy the second requirement 

because, as shown in Theorem 2, its range depends on the data set’s skew.

We propose the normalized area under the PR curve (AUCNPR). From AUCPR, we subtract 

the minimum AUCPR, so the worst ranking has a score of 0. We then normalize so the best 

ranking has a score of 1.

where AUCPRMAX = 1 when calculating area under the entire PR curve and AUCPRMAX = 

b − a when restricting recall to a ≤ r ≤ b.

Regardless of skew, the best possible classifier will have an AUCNPR of 1 and the worst 

possible classifier will have an AUCNPR of 0. AUCNPR also preserves the ordering of 

algorithms on the same test set since AUCPRMAX and AUCPRMIN are constant for the same 

data set. Thus, AUCNPR satisfies our proposed requirements for a replacement of AUCPR. 
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Furthermore, by accounting for the unachievable region, it makes comparisons between data 

sets with different skews more meaningful than AUCPR.

An alternative to AUCNPR would be to normalize based on the AUCPR for random 

guessing, which is simply π. This has two drawbacks. First, the range of scores depends on 

the skew, and therefore is not consistent across different data sets. Second, it can result in a 

negative score if an algorithm performs worse than random guessing, which seems counter-

intuitive for an area under a curve.

A discussion of degenerate data sets with π = 0 or π = 1, where AUCPRMIN and AUCNPR 

are undefined, is in our technical report (Boyd et al., 2012).

4. Discussion and Recommendations

We believe all practitioners using evaluation scores based on PR space (e.g., PR curves, 

AUCPR, AP, F1) should be cognizant of the unachievable region and how it may affect their 

analysis.

Visually inspecting the PR curve or looking at an AUCPR score often gives an intuitive 

sense for the quality of an algorithm or difficulty of a task or data set. If the skew is 

extremely large, the effect of the very small unachievable region is negligible on PR 

analysis. However, there are many instances where the skew is closer to 0.5 and the 

unachievable area is not insignificant. With π = 0.1, AUCPRMIN ≈ 0.05, and it increases as 

π approaches 0.5. AUCPR is used in many applications where π > 0.1 (Hu et al., 2009; 

Sonnenburg et al., 2006; Liu & Shriberg, 2007). Thus a general awareness of the 

unachievable region and its relationship to skew is important when casually comparing or 

inspecting PR curves and AUCPR scores. A simple recommendation that will make the 

unachievable region’s impact on results clear is to always show the minimum PR curve on 

PR curve plots.

Next, we discuss several specific situations where the unachievable region is highly 

relevant.

4.1. Aggregation for Cross-Validation

In cross validation, stratification typically allows different folds to have similar skews. 

However, particularly in relational domains, this is not always the case. In relational 

domains, stratification must consider fold membership constraints imposed by links between 

objects that, if violated, would bias the results of cross validation. For example, consider the 

bioinformatics task of protein secondary structure prediction. Putting amino acids from the 

same protein in different folds has two drawbacks. First, it could bias the results as 

information about the same protein is in both the train and test set. Second, it does not 

properly simulate the ultimate goal of predicting the structure of entirely novel proteins. 

Links between examples occur in most relational domains, and placing all linked items in 

the same fold can lead to substantial variation in the skew of the folds. Since the different 

skews yield different AUCPRMIN, care must be taken when aggregating results to create a 

single summary statistic of an algorithm’s performance.
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Cross validation assumes that each fold is sampled from the same underlying distribution. 

Even if the skew varies across folds, the merged data set is the best estimate of the 

underlying distribution and thus the overall skew. Ideally, aggregate descriptions, like a PR 

curve or AUCPR, should be calculated on a single, merged data set. Merging directly 

compares probability estimates for examples in different folds and assumes that the models 

are calibrated. Unfortunately, this is rarely a primary goal of machine learning and learned 

models tend to be poorly calibrated (Forman & Scholz, 2010).

With uncalibrated models, the most common practice is to average the results from each 

fold. For AUCPR, the summary score is the mean of the AUCPR from each fold. For a PR 

curve, vertical averaging of the individual PR curves from each fold provides a summary 

curve. In both cases, averaging fails to account for any difference in the unachievable 

regions that arise due to variations in class skew. As shown in Theorem 2, the range of 

possible AUCPR values varies according to a fold’s skew. Similarly, when vertically 

averaging PR curves, a particular recall level will have varying ranges of potential precision 

values for each fold if the folds have different skews. Even a single fold, which has much 

higher precision values due to a substantially lower skew, can cause a higher vertically 

averaged PR curve because of its larger unachievable region. Failing to account for fold-by-

fold variation in skew can lead to overly optimistic assessments when using straight-forward 

averaging.

We recommend averaging AUCNPR instead of AUCPR when evaluating area under the 

curve. Averaging AUCNPR, which has the same range regardless of skew, helps reduce (but 

not eliminate) skew’s effect compared to averaging AUCPR. A similar normalization 

approach for summarizing the PR curve leads to a non-linear transformation of PR space 

that can change the area under the curves in unexpected ways. An effective method for 

generating a summary PR curve that preserves measures of area in a satisfying way and 

accounts for the unachievable region would be useful and is a promising area of future 

research.

4.2. Aggregation among Different Tasks

Machine learning algorithms are commonly evaluated on several different tasks. This setting 

differs from cross-validation because each task is not assumed to have the same underlying 

distribution. While the tasks may be unrelated (Tang et al., 2009), often they come from the 

same domain. For example, the tasks could be the truth values of different predicates in a 

relational domain (Kok & Domingos, 2010; Mihalkova & Mooney, 2007) or different 

queries in an IR setting (Manning et al., 2008). Often, researchers report a single, aggregate 

score by averaging the results across the different tasks. However, the tasks can potentially 

have very different skews, and hence different minimum AUCPR. Therefore, averaging 

AUCNPR scores, which (somewhat) control for skew, is preferred to averaging AUCPR.

In SRL, researchers frequently evaluate algorithms by reporting the average AUCPR over a 

variety of tasks in a single data set (Mihalkova & Mooney, 2007; Kok & Domingos, 2010). 

As a case study, consider the commonly used IMDB data set. Here, the task is to predict the 

probability that each possible grounding of each predicate is true. Across all predicates in 

IMDB the skew of true groundings is relatively low (π = 0.06), but there is significant 
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variation in the skew of individual predicates. For example, the gender predicate has a 

skew close to π = 0.5, whereas a predicate such as genre has a skew closer to π = 0.05. 

While presenting the mean AUCPR across all predicates is a good first approach, it leads to 

averaging values that do not all have the same range. For example, the gender predicate’s 

range is [0.31, 1.0] while the genre predicate’s range is [0.02, 1.0]. Thus, an AUCPR of 0.4 

means very different things on these two predicates. For the gender predicate, this score is 

worse than random guessing, while for the genre predicate this is a reasonably high score. 

In a sense, all AUCPR scores of 0.4 are not created equal, but averaging the AUCPR treats 

them as equals.

Table 2 shows AUCPR and AUCNPR for each predicate on a Markov logic network model 

learned by the LSM algorithm (Kok & Domingos, 2010). Notice the wide range of scores 

and that AUCNPR gives a more conservative overall estimate. AUCNPR is still sensitive to 

skew, so an AUCNPR of 0.4 in the aforementioned predicates still does not imply 

completely comparable performances, but it is closer than AUCPR.

4.3. Downsampling

Downsampling is common when learning on highly skewed tasks. Often the downsampling 

alters the skew on the train set (e.g., subsampling the negatives to facilitate learning, or 

using data from case-control studies) such that it does not reflect the true skew. PR analysis 

is frequently used on the downsampled data sets (Sonnenburg et al., 2006; Natarajan et al., 

2011; Sutskever et al., 2010). The sensitivity of AUCPR and related scores makes it 

important to recognize, and if possible quantify, the effect of downsampling on evaluation 

metrics.

The varying size of the unachievable region provides an explanation and quantification of 

some of the dependence of PR curves and AUCPR on skew. Thus, AUCNPR, which adjusts 

for the unachievable region, should be more stable than AUCPR to changes in skew. To 

explore this, we used SAYU (Davis et al., 2005) to learn a model for the advisedBy task in 

the UW-CSE domain for several downsampled train sets. Table 3 shows the AUCPR and 

AUCNPR scores on a test set downsampled to the same skew as the train set and on the 

original (i.e., non-downsampled) test set. AUCNPR has less variance than AUCPR. 

However, there is still a sizable difference between the scores on the downsampled test set 

and the original test set. As expected, the difference increases as the ratio approaches 1 

positive to 1 negative. At this ratio, even the AUCNPR score on the downsampled data is 

more than twice the score on the original skew. This is a massive difference and it is 

disconcerting that it occurs simply by changing the data set skew. An intriguing area for 

future research is to investigate scoring metrics that either are less sensitive to skew or 

permit simple and accurate transformations that facilitate comparisons between different 

skews.

4.4. F1 Score

A commonly used evaluation metric for a single point in PR space is the Fβ family,
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where β > 0 is a parameter to control the relative importance of recall and precision 

(Manning et al., 2008). Most frequently, the F1 score (β = 1), which is the harmonic mean of 

precision and recall, is used. We focus our discussion on the F1 score, but similar analysis 

applies to Fβ. Figure 4 shows contours of the F1 score over PR space.

While the unachievable region of PR space does not put any bounds on F1 score based on 

skew, there is still a subtle interaction between skew and F1. Since F1 combines precision 

and recall into a single score, it necessarily loses information. One aspect of this information 

loss is that PR points with the same F1 score can have vastly different relationships with the 

unachievable region. Consider points A, B, and C in Figure 4. All three have an F1 score of 

0.45, but each has a very different interpretation if obtained from a data set with π = 0.33. 

Point A is unachievable and no valid confusion matrix for it exists. Point B is achievable, 

but is very near the minimum PR curve and is only marginally better than random guessing. 

Point C has reasonable performance representing good precision at modest recall.

While losing information is inevitable with a summary like F1, the different interpretations 

arise partly because F1 treats recall and precision interchangeably. Furthermore, this is not 

unique to β = 1. While Fβ changes the relative importance, the assumption remains that 

precision and recall, appropriately scaled by β, are equivalent for assessing performance. 

Our results on the unachievable region show this is problematic as recall and precision have 

fundamentally different properties. Every recall has a minimum precision, while there is a 

maximum recall for low precision, and no constraints for most levels of precision.

While a modified F1 score that is sensitive to the unachievable region would be useful, 

initial work suggests an ideal solution may not exist. Consider three simple requirements for 

a modified F1 score, f′:

(3)

(4)

(5)

Eq. (3) ensures f′ = 0 if the PR point is on the minimum PR curve and Eqs. (4) and (5) 

capture the expectation that an increase in precision or recall while the other is constant 

should always increase f′. However, these three properties are impossible to satisfy because 

they require 0 = f′(0, 0) < f′(0, π) < f′(1, π) = 0. Relaxing Eqs. (4) and (5) to ≤ makes it 

possible to construct an f′ that satisfies the requirements but implies f′ (r, p) = 0 if p ≤ π. 

This seems unsatisfactory because it ignores all distinctions once the performance is worse 

than random guessing. One modified F1 score that satisfies the relaxed requirements would 
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assign 0 to any PR point worse than random guessing and use the harmonic mean of recall 

and  (precision normalized to random guessing) otherwise.

Ultimately, while F1 score or a modified F1 score can be extremely useful, nuanced 

analyses must never overlook that it is a summary metric, and vital information for 

interpreting a model’s performance may be lost in the summarizing.

5. Conclusion

We demonstrate that a region of precision-recall space is unachievable for any particular 

ratio of positive to negative examples. With the precise characterization of this unachievable 

region given in Theorems 1 and 2, we further the understanding of the effects of 

downsampling and the impact of the minimum PR curve on F measure and score 

aggregation.
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Figure 1. 
Minimum PR curve and random guessing curve at a skew of 1 positive for every 2 negative 

examples.
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Figure 2. 
Minimum PR curves for several values of π.
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Figure 3. 
Minimum AUCPR versus π for area calculated over recall in [0, 1] (entire PR curve), [0.5, 

1], and [0.8, 1].
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Figure 4. 
Contours of F1 score in PR space with the minimum PR curve and unachievable region for 

π = 0.33. The points A, B, and C all have F1 = 0.45, but lead to substantially different 

practical interpretations.
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Table 1

(a) Valid confusion matrix with r = 0.2 and p = 0.2 and (b) invalid confusion matrix attempting to obtain r = 

0.6 and p = 0.2.

(a) Valid

Actual

Label Pos Neg

Pos 20 80

Neg 80 120

Total 100 200

(b) Invalid

Actual

Label Pos Neg

Pos 60 240

Neg 40 −40

Total 100 200
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Table 2

Average AUCPR and AUCNPR scores for each predicate in the IMDB set. Results are for the LSM algorithm 

from Kok and Domingos (2010). The range of scores shows the difficulty and skews of the prediction tasks 

vary greatly. By accounting for the (potentially large) unachievable regions, AUCNPR yields a more 

conservative overall estimate of performance.

Predicate AUCPR AUCNPR

actor 1.000 1.000

director 1.000 1.000

gender 0.509 0.325

genre 0.624 0.611

movie 0.267 0.141

workedUnder 1.000 1.000

mean 0.733 0.680
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Table 3

AUCPR and AUCNPR scores for SAYU on UWCSE advisedBy task for different train set skews. The 

downsampled columns report scores on a test set with the same downsampled skew as the train set. The 

original skew columns report scores on the original test set with a ratio of 1 positive to 24 negatives (π = 

0.04).

Downsampled Original Skew

Ratio AUCPR AUCNPR AUCPR AUCNPR

1:1 0.851 0.785 0.330 0.316

1:2 0.740 0.680 0.329 0.315

1:3 0.678 0.627 0.343 0.329

1:4 0.701 0.665 0.314 0.299

1:5 0.599 0.560 0.334 0.320

1:10 0.383 0.352 0.258 0.242

1:24 0.363 0.349 0.363 0.349
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