Skip to main content
. 2013 Oct 14;13(10):13820–13834. doi: 10.3390/s131013820

Table 2.

Results of regression models for the quantification of Notoginseng powder (NP) adulterated by sophora flavescens powder (SFP), corn flour (CF), and the mixture of two adulterants using least-squares support vector machines (LS-SVM) algorithm based on the data of visible spectra, short-wave near infrared spectra (SNIR), and long-wave near infrared spectra (LNIR), respectively.

Adulterant Spectral Range Modeling Method LVs Calibration Prediction


rC
RC2
RMSEC (%) rP
RP2
RMSEP (%) RPD
SFP Visible LS-SVM / 0.971 0.943 1.693 0.932 0.846 2.778 2.670
PLSR 6 0.939 0.882 2.427 0.911 0.787 3.261 2.314
SNIR LS-SVM / 0.961 0.922 1.972 0.921 0.841 2.815 2.559
PLSR 4 0.867 0.751 3.528 0.874 0.762 3.451 2.055
LNIR LS-SVM / 0.984 0.967 1.276 0.917 0.840 2.829 2.501
PLSR 4 0.924 0.853 2.709 0.912 0.821 2.994 2.362
CF Visible LS-SVM / 0.950 0.897 2.269 0.845 0.710 3.809 1.858
PLSR 10 0.936 0.876 2.489 0.792 0.602 4.461 1.623
SNIR LS-SVM / 0.994 0.987 0.796 0.959 0.918 2.029 3.514
PLSR 5 0.851 0.724 3.716 0.821 0.670 4.062 1.746
LNIR LS-SVM / 0.986 0.973 1.166 0.930 0.864 2.609 2.724
PLSR 5 0.957 0.916 2.047 0.946 0.893 2.308 3.071
SFP&CF Visible LS-SVM / 0.834 0.685 3.241 0.688 0.471 4.198 1.376
PLSR 2 0.548 0.300 4.830 0.574 0.327 4.735 1.220
SNIR LS-SVM / 0.996 0.991 0.555 0.786 0.560 3.830 1.577
PLSR 1 0.576 0.332 4.720 0.571 0.325 4.743 1.218
LNIR LS-SVM / 0.892 0.794 2.621 0.898 0.789 2.652 2.183
PLSR 8 0.887 0.787 2.665 0.871 0.754 2.862 2.033

LVs: Number of latent variables.