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Abstract
This paper deals with the estimation of a high-dimensional covariance with a conditional sparsity
structure and fast-diverging eigenvalues. By assuming sparse error covariance matrix in an
approximate factor model, we allow for the presence of some cross-sectional correlation even after
taking out common but unobservable factors. We introduce the Principal Orthogonal complEment
Thresholding (POET) method to explore such an approximate factor structure with sparsity. The
POET estimator includes the sample covariance matrix, the factor-based covariance matrix (Fan,
Fan, and Lv, 2008), the thresholding estimator (Bickel and Levina, 2008) and the adaptive
thresholding estimator (Cai and Liu, 2011) as specific examples. We provide mathematical
insights when the factor analysis is approximately the same as the principal component analysis
for high-dimensional data. The rates of convergence of the sparse residual covariance matrix and
the conditional sparse covariance matrix are studied under various norms. It is shown that the
impact of estimating the unknown factors vanishes as the dimensionality increases. The uniform
rates of convergence for the unobserved factors and their factor loadings are derived. The
asymptotic results are also verified by extensive simulation studies. Finally, a real data application
on portfolio allocation is presented.
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1 Introduction
Information and technology make large data sets widely available for scientific discovery.
Much statistical analysis of such high-dimensional data involves the estimation of a
covariance matrix or its inverse (the precision matrix). Examples include portfolio
management and risk assessment (Fan, Fan and Lv, 2008), high-dimensional classification
such as Fisher discriminant (Hastie, Tibshirani and Friedman, 2009), graphic models
(Meinshausen and Bühlmann, 2006), statistical inference such as controlling false
discoveries in multiple testing (Leek and Storey, 2008; Efron, 2010), finding quantitative
trait loci based on longitudinal data (Yap, Fan, and Wu, 2009; Xiong et al. 2011), and testing
the capital asset pricing model (Sentana, 2009), among others. See Section 5 for some of
those applications. Yet, the dimensionality is often either comparable to the sample size or
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even larger. In such cases, the sample covariance is known to have poor performance
(Johnstone, 2001), and some regularization is needed.

Realizing the importance of estimating large covariance matrices and the challenges brought
by the high dimensionality, in recent years researchers have proposed various regularization
techniques to consistently estimate Σ. One of the key assumptions is that the covariance
matrix is sparse, namely, many entries are zero or nearly so (Bickel and Levina, 2008,
Rothman et al, 2009, Lam and Fan 2009, Cai and Zhou, 2010, Cai and Liu, 2011). In many
applications, however, the sparsity assumption directly on Σ is not appropriate. For example,
financial returns depend on the equity market risks, housing prices depend on the economic
health, gene expressions can be stimulated by cytokines, among others. Due to the presence
of common factors, it is unrealistic to assume that many outcomes are uncorrelated. An
alternative method is to assume a factor model structure, as in Fan, Fan and Lv (2008).
However, they restrict themselves to the strict factor models with known factors.

A natural extension is the conditional sparsity. Given the common factors, the outcomes are
weakly correlated. In order to do so, we consider an approximate factor model, which has
been frequently used in economic and financial studies (Chamberlain and Rothschild, 1983;
Fama and French 1993; Bai and Ng, 2002, etc):

(1.1)

Here yit is the observed response for the ith (i = 1, …, p) individual at time t = 1, …, T; bi is a
vector of factor loadings; ft is a K × 1 vector of common factors, and uit is the error term,
usually called idiosyncratic component, uncorrelated with ft. Both p and T diverge to
infinity, while K is assumed fixed throughout the paper, and p is possibly much larger than
T.

We emphasize that in model (1.1), only yit is observable. It is intuitively clear that the
unknown common factors can only be inferred reliably when there are sufficiently many
cases, that is, p → ∞. In a data-rich environment, p can diverge at a rate faster than T. The
factor model (1.1) can be put in a matrix form as

(1.2)

where yt = (y1t, …, ypt)′, B = (b1, …, bp)′ and ut = (u1t, …, upt)′. We are interested in Σ, the p
× p covariance matrix of yt, and its inverse, which are assumed to be time-invariant. Under
model (1.1), Σ is given by

(1.3)

where Σu = (σu,ij)p×p is the covariance matrix of ut. The literature on approximate factor
models typically assumes that the first K eigenvalues of Bcov(ft)B′ diverge at rate O(p),
whereas all the eigenvalues of Σu are bounded as p → ∞. This assumption holds easily
when the factors are pervasive in the sense that a non-negligible fraction of factor loadings
should be non-vanishing. The decomposition (1.3) is then asymptotically identified as p →
∞. In addition to it, in this paper we assume that Σu is approximately sparse as in Bickel
and Levina (2008) and Rothman et al. (2009): for some q ∈ [0, 1),

Fan et al. Page 2

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



does not grow too fast as p → ∞. In particular, this includes the exact sparsity assumption
(q = 0) under which mp = maxi≤p Σj≤p I(σu,ij≠0), the maximum number of nonzero elements
in each row.

The conditional sparsity structure of (1.2) was explored by Fan, Liao and Mincheva (2011)
in estimating the covariance matrix, when the factors {ft} are observable. This allows them

to use regression analysis to estimate . This paper deals with the situation in which
the factors are unobservable and have to be inferred. Our approach is simple, optimization-
free and it uses the data only through the sample covariance matrix. Run the singular value
decomposition on the sample covariance matrix Σ̂sam of yt, keep the covariance matrix
formed by the first K principal components, and apply the thresholding procedure to the
remaining covariance matrix. This results in a Principal Orthogonal complEment
Thresholding (POET) estimator. When the number of common factors K is unknown, it can
be estimated from the data. See Section 2 for additional details. We will investigate various
properties of POET under the assumption that the data are serially dependent, which
includes independent observations as a specific example. The rate of convergence under
various norms for both estimated Σ and Σu and their precision (inverse) matrices will be
derived. We show that the effect of estimating the unknown factors on the rate of
convergence vanishes when p log p ≫ T, and in particular, the rate of convergence for Σu
achieves the optimal rate in Cai and Zhou (2012).

This paper focuses on the high-dimensional static factor model (1.2), which is innately
related to the principal component analysis (PCA), as clarified in Section 2. This feature
makes it different from the classical factor model with fixed dimensionality (e.g., Lawley
and Maxwell 1971). In the last ten years, much theory on the estimation and inference of the
static factor model has been developed, for example, Stock and Watson (1998, 2002), Bai
and Ng (2002), Bai (2003), Doz, Giannone and Reichlin (2011), among others. Our
contribution is on the estimation of covariance matrices and their inverse in large factor
models.

The static model considered in this paper is to be distinguished from the dynamic factor
model as in Forni, Hallin, Lippi and Reichlin (2000); the latter allows yt to also depend on ft
with lags in time. Their approach is based on the eigenvalues and principal components of
spectral density matrices, and on the frequency domain analysis. Moreover, as shown in
Forni and Lippi (2001), the dynamic factor model does not really impose a restriction on the
data generating process, and the assumption of idiosyncrasy (in their terminology, a p-
dimensional process is idiosyncratic if all the eigenvalues of its spectral density matrix
remain bounded as p → ∞) asymptotically identifies the decomposition of yit into the
common component and idiosyncratic error. The literature includes, for example, Forni et al.
(2000, 2004), Forni and Lippi (2001), Hallin and Liška (2007, 2011), and many other
references therein. Above all, both the static and dynamic factor models are receiving
increasing attention in applications of many fields where information usually is scattered
through a (very) large number of interrelated time series.

There has been extensive literature in recent years that deals with sparse principal
components, which has been widely used to enhance the convergence of the principal
components in high-dimensional space. d’Aspremont, Bach and El Ghaoui (2008), Shen and
Huang (2008), Witten, Tibshirani, and Hastie (2009) and Ma (2011) proposed and studied
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various algorithms for computations. More literature on sparse PCA is found in Johnstone
and Lu (2009), Amini and Wainwright (2009), Zhang and El Ghaoui (2011), Birnbaum et al.
(2012), among others. In addition, there has also been a growing literature that theoretically
studies the recovery from a low-rank plus sparse matrix estimation problem, see for
example, Wright et al. (2009), Lin et al. (2009), Candès et al. (2011), Luo (2011), Agarwal,
Nagahban, Wainwright (2012), Pati et al. (2012). It corresponds to the identifiability issue of
our problem.

There is a big difference between our model and those considered in the aforementioned
literature. In the current paper, the first K eigenvalues of Σ are spiked and grow at a rate
O(p), whereas the eigenvalues of the matrices studied in the existing literature on covariance
estimation are usually assumed to be either bounded or slowly growing. Due to this
distinctive feature, the common components and the idiosyncratic components can be
identified, and in addition, PCA on the sample covariance matrix can consistently estimate
the space spanned by the eigenvectors of Σ. The existing methods of either thresholding
directly or solving a constrained optimization method can fail in the presence of very spiked
principal eigenvalues. However, there is a price to pay here: as the first K eigenvalues are
“too spiked”, one can hardly obtain a satisfactory rate of convergence for estimating Σ in
absolute term, but it can be estimated accurately in relative term (see Section 3.3 for details).
In addition, Σ−1 can be estimated accurately.

We would like to further note that the low-rank plus sparse representation of our model is on
the population covariance matrix, whereas Candès et al. (2011), Wright et al. (2009), Lin et
al. (2009)1 considered such a representation on the data matrix. As there is no Σ to estimate,
their goal is limited to producing a low-rank plus sparse matrix decomposition of the data
matrix, which corresponds to the identifiability issue of our study, and does not involve
estimation and inference. In contrast, our ultimate goal is to estimate the population
covariance matrices as well as the precision matrices. For this purpose, we require the
idiosyncratic components and common factors to be uncorrelated and the data generating
process to be strictly stationary. The covariances considered in this paper are constant over
time, though slow-time-varying covariance matrices are applicable through localization in
time (time-domain smoothing). Our consistency result on Σu demonstrates that the
decomposition (1.3) is identifiable, and hence our results also shed the light of the
“surprising phenomenon” of Candès et al. (2011) that one can separate fully a sparse matrix
from a low-rank matrix when only the sum of these two components is available.

The rest of the paper is organized as follows. Section 2 gives our estimation procedures and
builds the relationship between the principal components analysis and the factor analysis in
high-dimensional space. Section 3 provides the asymptotic theory for various estimated
quantities. Section 4 illustrates how to choose the thresholds using cross-validation and
guarantees the positive definiteness in any finite sample. Specific applications of regularized
covariance matrices are given in Section 5. Numerical results are reported in Section 6.
Finally, Section 7 presents a real data application on portfolio allocation. All proofs are
given in the appendix. Throughout the paper, we use λmin(A) and λmax(A) to denote the
minimum and maximum eigenvalues of a matrix A. We also denote by ||A||F, ||A||, ||A||1 and
||A||max the Frobenius norm, spectral norm (also called operator norm), L1-norm, and
elementwise norm of a matrix A, defined respectively by ||A||F = tr1/2(A′A),

, ||A||1 = maxj Σi |aij| and ||A||max = maxi,j |aij|. Note that when A is a
vector, both ||A||F and ||A|| are equal to the Euclidean norm. Finally, for two sequences, we
write aT ≫ bT if bT = o(aT) and aT ≍ bT if aT = O(bT) and bT = O(aT).

1We thank a referee for reminding us these related works.
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2 Regularized Covariance Matrix via PCA
There are three main objectives of this paper: (i) understand the relationship between
principal component analysis (PCA) and the high-dimensional factor analysis; (ii) estimate
both covariance matrices Σ and the idiosyncratic Σu and their precision matrices in the
presence of common factors, and (iii) investigate the impact of estimating the unknown
factors on the covariance estimation. The propositions in Section 2.1 below show that the
space spanned by the principal components in the population level Σ is close to the space
spanned by the columns of the factor loading matrix B.

2.1 High-dimensional PCA and factor model
Consider a factor model

where the number of common factors, K = dim(ft), is small compared to p and T, and thus is
assumed to be fixed throughout the paper. In the model, the only observable variable is the
data yit. One of the distinguished features of the factor model is that the principal
eigenvalues of Σ are no longer bounded, but growing fast with the dimensionality. We
illustrate this in the following example.

Example 2.1: Consider a single-factor model yit = bift + uit where bi ∈ ℝ. Suppose that the
factor is pervasive in the sense that it has non-negligible impact on a non-vanishing

proportion of outcomes. It is then reasonable to assume  for some c > 0.
Therefore, assuming that λmax(Σu) = o(p), an application of (1.3) yields,

for all large p, assuming var(ft) > 0.

We now elucidate why PCA can be used for the factor analysis in the presence of spiked
eigenvalues. Write B = (b1, …, bp)′ as the p × K loading matrix. Note that the linear space
spanned by the first K principal components of Bcov(ft)B′ is the same as that spanned by the
columns of B when cov(ft) is non-degenerate. Thus, we can assume without loss of
generality that the columns of B are orthogonal and cov(ft) = IK, the identity matrix. This
canonical form corresponds to the identifiability condition in decomposition (1.3). Let b̃1, · ·

·, b̃K be the columns of B, ordered such that  is in a non-increasing order. Then,

 are eigenvectors of the matrix BB′ with eigenvalues  and the rest
zero. We will impose the pervasiveness assumption that all eigenvalues of the K × K matrix

p−1B′B are bounded away from zero, which holds if the factor loadings  are
independent realizations from a non-degenerate population. Since the non-vanishing
eigenvalues of the matrix BB′ are the same as those of B′B, from the pervasiveness

assumption it follows that  are all growing at rate O(p).
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Let  be the eigenvalues of Σ in a descending order and  be their
corresponding eigenvectors. Then, an application of Weyl’s eigenvalue theorem (see the
appendix) yields that

Proposition 2.1: Assume that the eigenvalues of p−1B′B are bounded away from zero for all
large p. For the factor model (1.3) with the canonical condition

(2.1)

we have

In addition, for j ≤ K, lim infp→∞ ||b̃j||2/p > 0.

Using Proposition 2.1 and the sin θ theorem of Davis and Kahn (1970, see the appendix), we
have the following:

Proposition 2.2: Under the assumptions of Proposition 2.1, if  are distinct, then

Propositions 2.1 and 2.2 state that PCA and factor analysis are approximately the same if ||
Σu|| = o(p). This is assured through a sparsity condition on Σu = (σu,ij)p×p, which is
frequently measured through

(2.2)

The intuition is that, after taking out the common factors, many pairs of the cross-sectional
units become weakly correlated. This generalized notion of sparsity was used in Bickel and
Levina (2008) and Cai and Liu (2011). Under this generalized measure of sparsity, we have

if the noise variances { } are bounded. Therefore, when mp = o(p), Proposition 2.1

implies that we have distinguished eigenvalues between the principal components 

and the rest of the components  and Proposition 2.2 ensures that the first K
principal components are approximately the same as the columns of the factor loadings.
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The aforementioned sparsity assumption appears reasonable in empirical applications.
Boivin and Ng (2006) conducted an empirical study and showed that imposing zero
correlation between weakly correlated idiosyncratic components improves forecast2. More
recently, Phan (2012) empirically estimated the level of sparsity of the idiosyncratic
covariance using the UK market data.

Recent developments on random matrix theory, for example, Johnstone and Lu (2009) and
Paul (2007), have shown that when p/T is not negligible, the eigenvalues and eigenvectors of
Σ might not be consistently estimated from the sample covariance matrix. A distinguished
feature of the covariance considered in this paper is that there are some very spiked
eigenvalues. By Propositions 2.1 and 2.2, in the factor model, the pervasiveness condition

(2.3)

implies that the first K eigenvalues are growing at a rate p. Moreover, when p is large, the

principal components  are close to the normalized vectors  when mp = o(p).
This provides the mathematics for using the first K principal components as a proxy of the
space spanned by the columns of the factor loading matrix B. In addition, due to (2.3), the
signals of the first K eigenvalues are stronger than those of the spiked covariance model
considered by Jung and Marron (2009) and Birnbaum et al. (2012). Therefore, our other
conditions for the consistency of principal components at the population level are much
weaker than those in the spiked covariance literature. On the other hand, this also shows
that, under our setting the PCA is a valid approximation to factor analysis only if p → ∞.
The fact that the PCA on the sample covariance is inconsistent when p is bounded was also
previously demonstrated in the literature (See e.g., Bai (2003)).

With assumption (2.3), the standard literature on approximate factor models has shown that
the PCA on the sample covariance matrix Σ̂sam can consistently estimate the space spanned
by the factor loadings (e.g., Stock and Watson (1998), Bai (2003)). Our contribution in
Propositions 2.1 and 2.2 is that we connect the high-dimensional factor model to the
principal components, and obtain the consistency of the spectrum in the population level Σ
instead of the sample level Σ̂sam. The spectral consistency also enhances the results in
Chamberlain and Rothschild (1983). This provides the rationale behind the consistency
results in the factor model literature.

2.2 POET
Sparsity assumption directly on Σ is inappropriate in many applications due to the presence
of common factors. Instead, we propose a nonparametric estimator of Σ based on the
principal component analysis. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the ordered eigenvalues of the

sample covariance matrix Σ̂sam and  be their corresponding eigenvectors. Then the
sample covariance has the following spectral decomposition:

(2.4)

where  is the principal orthogonal complement, and K is the
number of diverging eigenvalues of Σ. Let us first assume K is known.

2We thank a referee for this interesting reference.
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Now we apply thresholding on R̂K. Define

(2.5)

where sij(·) is a generalized shrinkage function of Antoniadis and Fan (2001), employed by
Rothman et al. (2009) and Cai and Liu (2011), and τij > 0 is an entry-dependent threshold.
In particular, the hard-thresholding rule sij(x) = xI(|x| ≥ τij) (Bickel and Levina, 2008) and
the constant thresholding parameter τij = δ are allowed. In practice, it is more desirable to
have τij be entry-adaptive. An example of the adaptive thresholding is

(2.6)

where r ̂ii is the ith diagonal element of R ̂K. This corresponds to applying the thresholding
with parameter τ to the correlation matrix of R̂K.

The estimator of Σ is then defined as:

(2.7)

We will call this estimator the Principal Orthogonal complEment thresholding (POET)
estimator. It is obtained by thresholding the remaining components of the sample covariance
matrix, after taking out the first K principal components. One of the attractiveness of POET
is that it is optimization-free, and hence is computationally appealing. 3

With the choice of τij in (2.6) and the hard thresholding rule, our estimator encompasses
many popular estimators as its specific cases. When τ = 0, the estimator is the sample
covariance matrix and when τ = 1, the estimator becomes that based on the strict factor
model (Fan, Fan, and Lv, 2008). When K = 0, our estimator is the same as the thresholding
estimator of Bickel and Levina (2008) and (with a more general thresholding function)
Rothman et al. (2009) or the adaptive thresholding estimator of Cai and Liu (2011) with a
proper choice of τij.

In practice, the number of diverging eigenvalues (or common factors) can be estimated
based on the sample covariance matrix. Determining K in a data-driven way is an important
topic, and is well understood in the literature. We will describe the POET with a data-driven
K in Section 2.4.

2.3 Least squares point of view
The POET (2.7) has an equivalent representation using a constrained least squares method.

The least squares method seeks for  and  such that

3We have written an R package for POET, which outputs the estimated Σ, Σu, K, the factors and loadings.
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(2.8)

subject to the normalization

(2.9)

The constraints (2.9) correspond to the normalization (2.1). Here we assume that the mean

of each variable  has been removed, that is, Eyit = Efjt = 0 for all i ≤ p, j ≤ K and t ≤
T. Putting it in a matrix form, the optimization problem can be written as

(2.10)

where Y = (y1, …, yT) and F′ = (f1, · · ·, fT). For each given F, the least-squares estimator of
B is Λ = T−1YF, using the constraint (2.9) on the factors. Substituting this into (2.10), the

objective function now becomes . The

minimizer is now clear: the columns of  are the eigenvectors corresponding to the K
largest eigenvalues of the T × T matrix Y′Y and Λ̂K = T−1YF̂K (see e.g., Stock and Watson
(2002)).

We will show that under some mild regularity conditions, as p and T → ∞, 

consistently estimates the true  uniformly over i ≤ p and t ≤ T. Since Σu is assumed to be
sparse, we can construct an estimator of Σu using the adaptive thresholding method by Cai

and Liu (2011) as follows. Let , and

. For some pre-determined decreasing sequence ωT > 0, and large

enough C > 0, define the adaptive threshold parameter as . The estimated
idiosyncratic covariance estimator is then given by

(2.11)

where for all z ∈ ℝ (see Antoniadis and Fan, 2001),

It is easy to verify that sij(·) includes many interesting thresholding functions such as the
hard thresholding (sij(z) = zI(|z|≥τij)), soft thresholding (sij (z) = sign(z)(|z| − τij)+), SCAD, and
adaptive lasso (See Rothman et al. (2009)).

Analogous to the decomposition (1.3), we obtain the following substitution estimators
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(2.12)

and by the Sherman-Morrison-Woodbury formula, noting that ,

(2.13)

In practice, the true number of factors K might be unknown to us. However, for any

determined K1 ≤ p, we can always construct either (Σ̂K1, ) as in (2.7) or (Σ̃K1, ) as
in (2.12) to estimate (Σ, Σu). The following theorem shows that for each given K1, the two
estimators based on either regularized PCA or least squares substitution are equivalent.
Similar results were obtained by Bai (2003) when K1 = K and no thresholding was imposed.

Theorem 2.1: Suppose that the entry-dependent threshold in (2.5) is the same as the
thresholding parameter used in (2.11). Then for any K1 ≤ p, the estimator (2.7) is equivalent
to the substitution estimator (2.12), that is,

In this paper, we will use a data-driven K̂ to construct the POET (see Section 2.4 below),
which has two equivalent representations according to Theorem 2.1.

2.4 POET with Unknown K
Determining the number of factors in a data-driven way has been an important research
topic in the econometric literature. Bai and Ng (2002) proposed a consistent estimator as
both p and T diverge. Other recent criteria are proposed by Kapetanios (2010), Onatski
(2010), Alessi et al. (2010), etc.

Our method also allows a data-driven K̂ to estimate the covariance matrices. In principle,
any procedure that gives a consistent estimate of K can be adopted. In this paper we apply
the well-known method in Bai and Ng (2002). It estimates K by

(2.14)

where M is a prescribed upper bound, F ̂K1 is a T × K1 matrix whose columns are  times
the eigenvectors corresponding to the K1 largest eigenvalues of the T × T matrix Y′Y; g(T,
p) is a penalty function of (p, T) such that g(T, p) = o(1) and min{p, T}g(T, p) → ∞. Two
examples suggested by Bai and Ng (2002) are
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Throughout the paper, we let K̂ be the solution to (2.14) using either IC1 or IC2. The
asymptotic results are not affected regardless of the specific choice of g(T, p). We define the
POET estimator with unknown K as

(2.15)

The procedure is as stated in Section 2.2 except that K̂ is now data-driven.

3 Asymptotic Properties
3.1 Assumptions

This section presents the assumptions on the model (1.2), in which only  are
observable. Recall the identifiability condition (2.1).

The first assumption has been one of the most essential ones in the literature of approximate
factor models. Under this assumption and other regularity conditions, the number of factors,
loadings and common factors can be consistently estimated (e.g., Stock and Watson (1998,
2002), Bai and Ng (2002), Bai (2003), etc.).

Assumption 3.1: All the eigenvalues of the K × K matrix p−1B′B are bounded away from
both zero and infinity as p → ∞.

Remark 3.1
1. It implies from Proposition 2.1 in Section 2 that the first K eigenvalues of Σ grow

at rate O(p). This unique feature distinguishes our work from most of other low-
rank plus sparse covariances considered in the literature, e.g., Luo (2011), Pati et al.
(2012), Agarwal et al. (2012), Birnbaum et al. (2012). 4

2. Assumption 3.1 requires the factors to be pervasive, that is, to impact a non-
vanishing proportion of individual time series. See Example 2.1 for its meaning. 5

3. As to be illustrated in Section 3.3 below, due to the fast diverging eigenvalues, one
can hardly achieve a good rate of convergence for estimating Σ under either the
spectral norm or Frobenius norm when p > T. This phenomenon arises naturally
from the characteristics of the high-dimensional factor model, which is another
distinguished feature compared to those convergence results in the existing
literature.

4To our best knowledge, the only other papers that estimate large covariances with diverging eigenvalues (growing at the rate of
dimensionality O(p)) are Fan et al. (2008, 2011) and Bai and Shi (2011). While Fan et al. (2008, 2011) assumed the factors are
observable, Bai and Shi (2011) considered the strict factor model in which Σu is diagonal.
5It is important to distinguish the model we consider in this paper from the “sparse factor model” in the literature, e.g., Carvalho et al.
(2009), Pati et al. (2012), which assumes that the loading matrix B is sparse The intuition of a sparse loading matrix is that each factor
is related to only a relatively small number of stocks, assets, genes, etc. With B being sparse, all the eigenvalues of B′B and hence
those of Σ are bounded.
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Assumption 3.2
i. {ut, ft}t≥1 is strictly stationary. In addition, Euit = Euitfjt = 0 for all i ≤ p, j ≤ K and t

≤ T.

ii. There exist constants c1, c2 > 0 such that λmin(Σu) > c1, ||Σu||1 < c2, and mini≤p,j≤p
var(uitujt) > c1.

iii. There exist r1, r2 > 0 and b1, b2 > 0, such that for any s > 0, i ≤ p and j ≤ K,

Condition (i) requires strict stationarity as well as the non-correlation between {ut} and {ft}.
These conditions are slightly stronger than those in the literature, e.g., Bai (2003), but are
still standard and simplify our technicalities. Condition (ii) requires that Σu be well-
conditioned. The condition ||Σu||1 ≤ c2 instead of a weaker condition λmax(Σu) ≤ c2 is
imposed here in order to consistently estimate K. But it is still standard in the approximate
factor model literature as in Bai and Ng (2002), Bai (2003), etc. When K is known, such a
condition can be removed. Our working paper6 shows that the results continue to hold for a
growing (known) K under the weaker condition λmax(Σu) ≤ c2. Condition (iii) requires
exponential-type tails, which allows us to apply the large deviation theory to

 and .

We impose the strong mixing condition. Let  and  denote the σ-algebras generated
by {(ft, ut) : t ≤ 0} and {(ft, ut) : t ≥ T} respectively. In addition, define the mixing
coefficient

(3.1)

Assumption 3.3: Strong mixing: There exists r3 > 0 such that , and C
> 0 satisfying: for all T ∈ ℤ+,

In addition, we impose the following regularity conditions.

Assumption 3.4: There exists M > 0 such that for all i ≤ p, t ≤ T and s ≤ T,

i. ||bi||max < M,

ii. ,

iii.
.

These conditions are needed to consistently estimate the transformed common factors as
well as the factor loadings. Similar conditions were also assumed in Bai (2003), and Bai and

6See Fan, Liao and Mincheva (2011), working paper, arxiv.org/pdf/1201.0175.pdf
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Ng (2006). The number of factors is assumed to be fixed. Our conditions in Assumption 3.4
are weaker than those in Bai (2003) as we focus on different aspects of the study.

3.2 Convergence of the idiosyncratic covariance
Estimating the covariance matrix Σu of the idiosyncratic components {ut} is important for
many statistical inferences. For example, it is needed for large sample inference of the
unknown factors and their loadings, for testing the capital asset pricing model (Sentana,
2009), and large-scale hypothesis testing (Fan, Han and Gu, 2012). See Section 5.

We estimate Σu by thresholding the principal orthogonal complements after the first K̂

principal components of the sample covariance are taken out: . By Theorem 2.1,

it also has an equivalent expression given by (2.11), with . Throughout the
paper, we apply the adaptive threshold

(3.2)

where C > 0 is a sufficiently large constant, though the results hold for other types of
thresholding. As in Bickel and Levina (2008) and Cai and Liu (2011), the threshold chosen
in the current paper is in fact obtained from the optimal uniform rate of convergence of
maxi≤p,j≤p |σ̂ij − σu,ij|. When direct observation of uit is not available, the effect of estimating
the unknown factors also contributes to this uniform estimation error, which is why p−1/2

appears in the threshold.

The following theorem gives the rate of convergence of the estimated idiosyncratic

covariance. Let . In the convergence rate below, recall that mp
and q are defined in the measure of sparsity (2.2).

Theorem 3.1: Suppose log p = o(Tγ/6), T = o(p2), and Assumptions 3.1–3.4 hold. Then for a

sufficiently large constant C > 0 in the threshold (3.2), the POET estimator  satisfies

If further , then the eigenvalues of  are all bounded away from zero with
probability approaching one, and
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When estimating Σu, p is allowed to grow exponentially fast in T, and  can be made

consistent under the spectral norm. In addition,  is asymptotically invertible while the
classical sample covariance matrix based on the residuals is not when p > T.

Remark 3.2
1. Consistent estimation of Σu indicates that Σu is identifiable in (1.3), namely, the

sparse Σu can be separated perfectly from the low-rank matrix there. The result here

gives another proof (when assuming  of the “surprising
phenomenon” in Candès et al (2011) under different technical conditions.

2. Fan, Liao and Mincheva (2011) recently showed that when  are observable
and q = 0, the rate of convergence of the adaptive thresholding estimator is given

by . Hence when the
common factors are unobservable, the rate of convergence has an additional term

, coming from the impact of estimating the unknown factors. This impact
vanishes when p log p ≫ T, in which case the minimax rate as in Cai and Zhou
(2010) is achieved. As p increases, more information about the common factors is

collected, which results in more accurate estimation of the common factors .

3. When K is known and grows with p and T, with slightly weaker assumptions, our
working paper (Fan et al. 2011) shows that under the exactly sparse case (that is, q

= 0), the result continues to hold with convergence rate .

3.3 Convergence of the POET estimator
Since the first K eigenvalues of Σ grow with p, one can hardly estimate Σ with satisfactory
accuracy in the absolute term. This problem arises not from the limitation of any estimation
method, but is due to the nature of the high-dimensional factor model. We illustrate this
using a simple example.

Example 3.1: Consider an ideal case where we know the spectrum except for the first

eigenvector of Σ. Let  be the eigenvalues and vectors, and assume that the largest
eigenvalue λ1 ≥ cp for some c > 0. Let ξ̂1 be the estimated first eigenvector and define the

covariance estimator . Assume that ξ̂1 is a good estimator in the
sense that ||ξ̂1 − ξ1||2 = Op(T−1). However,

which can diverge when T = O(p2).

In the presence of very spiked eigenvalues, while the covariance Σ cannot be consistently
estimated in absolute term, it can be well estimated in terms of the relative error matrix
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which is more relevant for many applications (see Example 5.2). The relative error matrix
can be measured by either its spectral norm or the normalized Frobenius norm defined by

(3.3)

In the last equality, there are p terms being added in the trace operation and the factor p−1

plays the role of normalization. The loss (3.3) is closely related to the entropy loss,
introduced by James and Stein (1961). Also note that

where ||A||Σ = p−1/2||Σ−1/2AΣ−1/2||F is the weighted quadratic norm in Fan et al (2008).

Fan et al. (2008) showed that in a large factor model, the sample covariance is such that

, which does not converge if p > T. On the other hand,
Theorem 3.2 below shows that ||Σ̂K̂ − Σ||Σ can still be convergent as long as p = o(T2).
Technically, the impact of high-dimensionality on the convergence rate of Σ̂K̂ − Σ is via the
number of rows in B. We show in the appendix that B appears in ||Σ̂K̂ − Σ||Σ through B′Σ−1B
whose eigenvalues are bounded. Therefore it successfully cancels out the curse of high-
dimensionality introduced by B.

Compared to estimating Σ, in a large approximate factor model, we can estimate the
precision matrix with a satisfactory rate under the spectral norm. The intuition follows from
the fact that Σ−1 has bounded eigenvalues.

The following theorem summarizes the rate of convergence under various norms.

Theorem 3.2: Under the assumptions of Theorem 3.1, the POET estimator defined in (2.15)
satisfies

In addition, if , then Σ̂K̂ is nonsingular with probability approaching one, with
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Remark 3.3
1. When estimating Σ−1, p is allowed to grow exponentially fast in T, and the

estimator has the same rate of convergence as that of the estimator  in
Theorem 3.1. When p becomes much larger than T, the precision matrix can be
estimated at the same rate as if the factors were observable.

2. As in Remark 3.2, when K > 0 is known and grows with p and T, the working
paper Fan et al. (2011) proves the following results (when q = 0) 7:

The results state explicitly the dependence of the rate of convergence on the
number of factors.

3. The relative error ||Σ−1/2 Σ̂K̂ Σ−1/2 − Ip|| in operator norm can be shown to have the
same order as the maximum relative error of estimated eigenvalues. It does not
converge to zero nor diverge. It is much smaller than ||Σ̂K̂ − Σ||, which is of order

 (see Example 3.1).

3.4 Convergence of unknown factors and factor loadings
Many applications of the factor model require estimating the unknown factors. In general,
factor loadings in B and the common factors ft are not separably identifiable, as for any
matrix H such that H′H = IK, Bft = BH′Hft. Hence (B, ft) cannot be identified from (BH′,
Hft). Note that the linear space spanned by the rows of B is the same as that by those of BH′.
In practice, it often does not matter which one is used.

Let V denote the K ̂ × K ̂ diagonal matrix of the first K̂ largest eigenvalues of the sample
covariance matrix in decreasing order. Recall that F′ = (f1, …, fT) and define a K̂ × K̂ matrix

. Then for t ≤ T, Hft = T−1V−1F̂′(Bf1, …, BfT)′Bft. Note that Hft depends

only on the data V−1F̂′ and an identifiable part of parameters . Therefore, there is
no identifiability issue in Hft regardless of the imposed identifiability condition.

Bai (2003) obtained the rate of convergence for both b̂i and f ̂t for any fixed (i, t). However,
the uniform rate of convergence is more relevant for many applications (see Example 5.1).
The following theorem extends those results in Bai (2003) in a uniformity sense. In
particular, with a more refined technique, we have improved the uniform convergence rate
for f̂t.

Theorem 3.3: Under the assumptions of Theorem 3.1,

7The assumptions in the working paper Fan et al. (2011) are slightly weak than those presented here, in that it required λmax(Σu)
instead of ||Σu||1 be bounded.
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As a consequence of Theorem 3.3, we obtain the following: (recall that the constant r2 is
defined in Assumption 3.2.)

Corollary 3.1: Under the assumptions of Theorem 3.1,

The rates of convergence obtained above also explain the condition T = o(p2) in Theorems

3.1 and 3.2. It is needed in order to estimate the common factors  uniformly in t ≤ T.

When we do not observe , in addition to the factor loadings, there are KT factors to
estimate. Intuitively, the condition T = o(p2) requires the number of parameters introduced
by the unknown factors be “not too many”, so that we can consistently estimate them
uniformly. Technically, as demonstrated by Bickel and Levina (2008), Cai and Liu (2011)
and many other authors, achieving uniform accuracy is essential for large covariance
estimations.

4 Choice of Threshold
4.1 Finite-sample positive definiteness

Recall that the threshold value , where C is determined by the users. To make
POET operational in practice, one has to choose C to maintain the positive definiteness of

the estimated covariances for any given finite sample. We write , where
the covariance estimator depends on C via the threshold. We choose C in the range where

. Define

(4.1)

When C is sufficiently large, the estimator becomes diagonal, while its minimum eigenvalue

must retain strictly positive. Thus, Cmin is well defined and for all C > Cmin,  is

positive definite under finite sample. We can obtain Cmin by solving , C

≠ 0. We can also approximate Cmin by plotting  as a function of C, as
illustrated in Figure 1. In practice, we can choose C in the range (Cmin + ε, M) for a small ε
and large enough M. Choosing the threshold in a range to guarantee the finite-sample
positive definiteness has also been previously suggested by Fryzlewicz (2010).
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4.2 Multifold Cross-Validation
In practice, C can be data-driven, and chosen through multifold cross-validation. After
obtaining the estimated residuals {ût}t≤T by the PCA, we divide them randomly into two
subsets, which are, for simplicity, denoted by {ût}t∈J1 and {ût}t∈J2. The sizes of J1 and J2,
denoted by T(J1) and T (J2), are T (J1) ≍ T and T (J2) + T (J1) = T. For example, in sparse
matrix estimation, Bickel and Levina (2008) suggested to choose T(J1) = T (1 − (log T)−1).

We repeat this procedure H times. At the jth split, we denote by  the POET

estimator with the threshold  on the training data set {ût}t∈J1. We also denote by

 the sample covariance based on the validation set, defined by

. Then we choose the constant C* by minimizing a cross-
validation objective function over a compact interval

(4.2)

Here Cmin is the minimum constant that guarantees the positive definiteness of  for
C > Cmin as described in the previous subsection, and M is a large constant such that

 is diagonal. The resulting C* is data-driven, so depends on Y as well as p and T
via the data. On the other hand, for each given N × T data matrix Y, C* is a universal

constant in the threshold  in the sense that it does not change with respect to
the position (i, j). We also note that the cross-validation is based on the estimate of Σu rather
than Σ because POET thresholds the error covariance matrix. Thus cross-validation
improves the performance of thresholding.

It is possible to derive the rate of convergence for  under the current model
setting, but it ought to be much more technically involved than the regular sparse matrix
estimation considered by Bickel and Levina (2008) and Cai and Liu (2011). To keep our
presentation simple we do not pursue it in the current paper.

5 Applications of POET
We give four examples to which the results in Theorems 3.1–3.3 can be applied. Detailed
pursuits of these are beyond the scope of the paper.

Example 5.1 (Large-scale hypothesis testing): Controlling the false discovery rate in
large-scale hypothesis testing based on correlated test statistics is an important and
challenging problem in statistics (Leek and Storey, 2008; Efron, 2010; Fan, et al., 2012).
Suppose that the test statistic for each of the hypothesis

Fan et al. Page 18

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



is Zi ~ N (μi, 1) and these test statistics Z are jointly normal N (μ, Σ) where Σ is unknown.
For a given critical value x, the false discovery proportion is then defined as FDP(x) = V (x)/

R(x) where V (x) = p−1 Σμi=0 I(|Zi| > x) and  are the total number
of false discoveries and the total number of discoveries, respectively. Our interest is to
estimate FDP(x) for each given x. Note that R(x) is an observable quantity. Only V (x) needs
to be estimated.

If the covariance Σ admits the approximate factor structure (1.3), then the test statistics can
be stochastically decomposed as

(5.1)

By the principal factor approximation (Theorem 1, Fan, Han, Gu, 2012)

(5.2)

when mp = o(p) and the number of true significant hypothesis {i : μi ≠ 0} is o(p), where zx is
the upper x-quantile of the standard normal distribution, ηi = (Bf)i and ai = var(ui)−1.

Now suppose that we have n repeated measurements from the model (5.1). Then, by
Corollary 3.1, {ηi} can be uniformly consistently estimated, and hence p−1V (x) and FDP(x)
can be consistently estimated. Efron (2010) obtained these repeated test statistics based on
the bootstrap sample from the original raw data. Our theory (Theorem 3.3) gives a formal
justification to the framework of Efron (2007, 2010).

Example 5.2 (Risk management): The maximum elementwise estimation error ||Σ̂K̂ −
Σ||max appears in risk assessment as in Fan, Zhang and Yu (2012). For a fixed portfolio
allocation vector w, the true portfolio variance and the estimated one are given by w′Σw and
w′Σ̂K̂w respectively. The estimation error is bounded by

where ||w||1, the L1-norm of w, is the gross exposure of the portfolio. Usually a constraint is
placed on the total percentage of the short positions, in which case we have a restriction ||
w||1 ≤ c for some c > 0. In particular, c = 1 corresponds to a portfolio with no-short positions
(all weights are nonnegative). Theorem 3.2 quantifies the maximum approximation error.

The above compares the absolute error of perceived risk and true risk. The relative error is
bounded by

for any allocation vector w. Theorem 3.2 quantifies this relative error.
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Example 5.3 (Panel regression with a factor structure in the errors): Consider the
following panel regression model

where xit is a vector of observable regressors with fixed dimension. The regression error εit
has a factor structure and is assumed to be independent of xit, but bi, ft and uit are all
unobservable. We are interested in the common regression coefficients β. The above panel
regression model has been considered by many researchers, such as Ahn, Lee and Schmidt
(2001), Pesaran (2006), and has broad applications in social sciences.

Although OLS (ordinary least squares) produces a consistent estimator of β, a more efficient
estimation can be obtained by GLS (generalized least squares). The GLS method depends,

however, on an estimator of , the inverse of the covariance matrix of εt = (ε1t, …, εpt)′.
By assuming the covariance matrix of (u1t, …, upt) to be sparse, we can successfully solve
this problem by applying Theorem 3.2. Although εit is unobservable, it can be replaced by
the regression residuals ε̂it, obtained via first regressing Yit on xit. We then apply the POET

estimator to . By Theorem 3.2, the inverse of the resulting estimator is a

consistent estimator of  under the spectral norm. A slight difference lies in the fact that

when we apply POET,  is replaced with , which introduces an

additional term  in the estimation error.

Example 5.4 (Validating an asset pricing theory): A celebrated financial economic theory
is the capital asset pricing model (CAPM, Sharpe 1964) that makes William Sharpe win the
Nobel prize in Economics in 1990, whose extension is the multi-factor model (Ross, 1976,
Chamberlain and Rothschild, 1983). It states that in a frictionless market, the excessive
return of any financial asset equals the excessive returns of the risk factors times its factor
loadings plus noises. In the multi-period model, the excess return yit of firm i at time t
follows model (1.1), in which ft is the excess returns of the risk factors at time t. To test the
null hypothesis (1.2), one embeds the model into the multivariate linear model

(5.3)

and wishes to test H0 : α = 0. The F-test statistic involves the estimation of the covariance
matrix Σu, whose estimates are degenerate without regularization when p ≥ T. Therefore, in
the literature (Sentana, 2009, and references therein), one focuses on the case p is relatively
small. The typical choices of parameters are T = 60 monthly data and the number of assets p
= 5, 10 or 25. However, the CAPM should hold for all tradeable assets, not just a small

fraction of assets. With our regularization technique, non-degenerate estimate  can be
obtained and the F-test or likelihood-ratio test statistics can be employed even when p ≫ T.

To provide some insights, let α̂ be the least-squares estimator of (5.3). Then, when ut ~ N (0,
Σu), α̂ ~ N(α, Σu/cT) for a constant cT which depends on the observed factors. When Σu is

known, the Wald test statistic is . When it is unknown and p is large, it is
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natural to use the F-type of test statistic . The difference between these
two statistics is bounded by

Since under the null hypothesis α̂ ~ N(0, Σu/cT), we have . Thus, it

follows from boundness of ||Σu|| that . Theorem 3.1
provides the rate of convergence for the above difference. Detailed development is out of the
scope of the current paper, and we will leave it as a separate research project.

6 Monte Carlo Experiments
In this section, we will examine the performance of the POET method in a finite sample. We
will also demonstrate the effect of this estimator on the asset allocation and risk assessment.
Similarly to Fan, et al. (2008, 2011), we simulated from a standard Fama-French three-factor
model, assuming a sparse error covariance matrix and three factors. Throughout this section,
the time span is fixed at T = 300, and the dimensionality p increases from 1 to 600. We
assume that the excess returns of each of p stocks over the risk-free interest rate follow the
following model:

The factor loadings are drawn from a trivariate normal distribution b ~ N3(μB, ΣB), the
idiosyncratic errors from ut ~ Np(0, Σu), and the factor returns ft follow a VAR(1) model. To
make the simulation more realistic, model parameters are calibrated from the financial
returns, as detailed in the following section.

6.1 Calibration
To calibrate the model, we use the data on annualized returns of 100 industrial portfolios
from the website of Kenneth French, and the data on 3-month Treasury bill rates from the
CRSP database. These industrial portfolios are formed as the intersection of 10 portfolios
based on size (market equity) and 10 portfolios based on book equity to market equity ratio.
Their excess returns (ỹt) are computed for the period from January 1st, 2009 to December
31st, 2010. Here, we present a short outline of the calibration procedure.

1. Given  as the input data, we fit a Fama-French-three-factor model and
calculate a 100 × 3 matrix B̃, and 500 × 3 matrix F ̃, using the principal components
method described in Section 3.1.

2. We summarize 100 factor loadings (the rows of B̃) by their sample mean vector μB
and sample covariance matrix ΣB, which are reported in Table 1. The factor
loadings bi = (bi1, bi2, bi3)T for i = 1, …, p are drawn from N3(μB, ΣB).

3. We run the stationary vector autoregressive model ft = μ + Φft−1 + εt, a VAR(1)
model, to the data F̃ to obtain the multivariate least squares estimator for μ and Φ,
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and estimate Σε. Note that all eigenvalues of Φ in Table 2 fall within the unit circle,
so our model is stationary. The covariance matrix cov(ft) can be obtained by
solving the linear equation cov(ft) = Φcov(ft) Φ′ + Σε. The estimated parameters are
depicted in Table 2 and are used to generate ft.

4. For each value of p, we generate a sparse covariance matrix Σu of the form:

Here, Σ0 is the error correlation matrix, and D is the diagonal matrix of the standard
deviations of the errors. We set D = diag(σ1, …, σp), where each σi is generated
independently from a Gamma distribution G(α, β), and α and β are chosen to match
the sample mean and sample standard deviation of the standard deviations of the
errors. A similar approach to Fan et al. (2011) has been used in this calibration step.
The off-diagonal entries of Σ0 are generated independently from a normal
distribution, with mean and standard deviation equal to the sample mean and
sample standard deviation of the sample correlations among the estimated
residuals, conditional on their absolute values being no larger than 0.95. We then
employ hard thresholding to make Σ0 sparse, where the threshold is found as the
smallest constant that provides the positive definiteness of Σ0. More precisely, start
with threshold value 1, which gives Σ0 = Ip and then decrease the threshold values
in a grid until positive definiteness is violated.

6.2 Simulation
For the simulation, we fix T = 300, and let p increase from 1 to 600. For each fixed p, we
repeat the following steps N = 200 times, and record the means and the standard deviations
of each respective norm.

1.
Generate independently , and set B = (b1, …, bp)′.

2.
Generate independently .

3. Generate  as a vector autoregressive sequence of the form ft = μ + Φft−1 + εt.

4. Calculate  from yt = Bft + ut.

5.
Set hard-thresholding with threshold . Estimate K using Bai
and Ng (2002)’s IC1. Calculate covariance estimators using the POET method.
Calculate the sample covariance matrix Σ̂sam.

In the graphs below, we plot the averages and standard deviations of the distance from Σ̂K̂

and Σ̂sam to the true covariance matrix Σ, under norms ||.||Σ, ||.|| and ||.||max. We also plot the

means and standard deviations of the distances from (Σ̂K̂)−1 and  to Σ−1 under the
spectral norm. The dimensionality p ranges from 20 to 600 in increments of 20. Due to

invertibility, the spectral norm for  is plotted only up to p = 280. Also, we zoom into
these graphs by plotting the values of p from 1 to 100, this time in increments of 1. Notice
that we also plot the distance from Σ̂obs to Σ for comparison, where Σ̂obs is the estimated
covariance matrix proposed by Fan et al. (2011), assuming the factors are observable.
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6.3 Results
In a factor model, we expect POET to perform as well as Σ̂obs when p is relatively large,
since the effect of estimating the unknown factors should vanish as p increases. This is
illustrated in the plots below.

From the simulation results, reported in Figures 2–5, we observe that POET under the
unobservable factor model performs just as well as the estimator in Fan et al. (2011) if the
factors are known, when p is large enough. The cost of not knowing the factors is
approximately of order . It can be seen in Figures 2 and 3 that this cost vanishes
for p ≥ 200. To give a better insight of the impact of estimating the unknown factors for
small p, a separate set of simulations is conducted for p ≤ 100. As we can see from Figures 2
(bottom panel) and 3 (middle and bottom panels), the impact decreases quickly. In addition,
when estimating Σ−1, it is hard to distinguish the estimators with known and unknown
factors, whose performances are quite stable compared to the sample covariance matrix.
Also, the maximum absolute elementwise error (Figure 4) of our estimator performs very
similarly to that of the sample covariance matrix, which coincides with our asymptotic
result. Figure 5 shows that the performances of the three methods are indistinguishable in
the spectral norm, as expected.

6.4 Robustness to the estimation of K
The POET estimator depends on the estimated number of factors. Our theory uses a
consistent esimator K̂. To assess the robustness of our procedure to K̂ in finite sample, we

calculate  for K = 1, 2, …, 10. Again, the threshold is fixed to be .

6.4.1 Design 1—The simulation setup is the same as before where the true K0 = 3. We

calculate  and ||Σ̂K − Σ||Σ for K = 1,
2, …, 10. Figure 6 plots these norms as p increases but with a fixed T = 300. The results
demonstrate a trend that is quite robust when K ≥ 3; especially, the estimation accuracy of
the spectral norms for large p are close to each other. When K = 1 or 2, the estimators
perform badly due to modeling bias. Therefore, POET is robust to over-estimated K, but not
to under-estimation.

6.4.2 Design 2—We also simulated from a new data generating process for the robustness
assessment. Consider a banded idiosyncratic matrix

We still consider a K0 = 3 factor model, where the factors are independently simulated as

Table 3 summarizes the average estimation error of covariance matrices across K in the
spectral norm. Each simulation is replicated 50 times and T = 200.
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Table 3 illustrates some interesting patterns. First of all, the best estimation accuracy is
achieved when K = K0. Second, the estimation is robust for K ≥ K0. As K increases from K0,
the estimation error becomes larger, but is increasing slowly in general, which indicates the
robustness when a slightly larger K has been used. Third, when the number of factors is
under-estimated, corresponding to K = 1, 2, all the estimators perform badly, which
demonstrates the danger of missing any common factors. Therefore, over-estimating the
number of factors, while still maintaining a satisfactory estimation accuracy of the
covariance matrices, is much better than under-estimating. The resulting bias caused by
under-estimation is more severe than the additional variance introduced by over-estimation.
Finally, estimating Σ, the covariance of yt, does not achieve a good accuracy even when K =
K0 in the absolute term ||Σ̂ − Σ||, but the relative error ||Σ−1/2 Σ̂KΣ

−1/2 − Ip|| is much smaller.
This is consistent with our discussions in Section 3.3.

6.5 Comparisons with Other Methods
6.5.1 Comparison with related methods—We compare POET with related methods
that address low-rank plus sparse covariance estimation, specifically, LOREC proposed by
Luo (2012), the strict factor model (SFM) by Fan, Fan and Lv (2008), the Dual Method
(Dual) by Lin et al. (2009), and finally, the singular value thresholding (SVT) by Cai,
Candès and Shen (2008). In particular, SFM is a special case of POET which employs a
large threshold that forces Σ̂u to be diagonal even when the true Σu might not be. Note that
Dual, SVT and many others dealing with low-rank plus sparse, such as Candès et al. (2011)
and Wright et al. (2009), assume a known Σ and focus on recovering the decomposition.
Hence they do not estimate Σ or its inverse, but decompose the sample covariance into two
components. The resulting sparse component may not be positive definite, which can lead to

large estimation errors for  and Σ̂−1.

Data are generated from the same setup as Design 2 in Section 6.4. Table 4 reports the
averaged estimation error of the four comparing methods, calculated based on 50
replications for each simulation. Dual and SVT assume the data matrix has a low-rank plus
sparse representation, which is not the case for the sample covariance matrix (though the
population Σ has such a representation). The tuning parameters for POET, LOREC, Dual
and SVT are chosen to achieve the best performance for each method.8

6.5.2 Comparison with direct thresholding—This section compares POET with direct
thresholding on the sample covariance matrix without taking out common factors (Rothman
et al. 2009, Cai and Liu 2011. We denote this method by THR). We also run simulations to
demonstrate the finite sample performance when Σ itself is sparse and has bounded
eigenvalues, corresponding to the case K = 0. Three models are considered and both POET
and THR use the soft thresholding. We fix T = 200. Reported results are the average of 100
replications.

Model 1: one-factor: The factors and loadings are independently generated from N(0, 1).
The error covariance is the same banded matrix as Design 2 in Section 6.4. Here Σ has one
diverging eigenvalue.

8We used the R package for LOREC developed by Luo (2012) and the Matlab codes for Dual and SVT provided on Yi Ma’s website
“Low-rank matrix recovery and completion via convex optimization” at University of Illinois. The tuning parameters for each method

have been chosen to minimize the sum of relative errors . We have
also written an R package for POET.
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Model 2: sparse covariance: Set K = 0, hence Σ = Σu itself is a banded matrix with
bounded eigenvalues.

Model 3: cross-sectional AR(1): Set K = 0, but Σ = Σu = (0.85|i−j|)p×p. Now Σ is no longer
sparse (or banded), but is not too dense either since Σij decreases to zero exponentially fast

as |i − j| → ∞. This is the correlation matrix if  follows a cross-sectional AR(1)
process: yit = 0.85yi−1,t + εit.

For each model, POET uses an estimated K̂ based on IC1 of Bai and Ng (2002), while THR
thresholds the sample covariance directly. We find that in Model 1, POET performs
significantly better than THR as the latter misses the common factor. For Model 2, IC1
estimates K̂ = 0 precisely in each replication, and hence POET is identical to THR. For
Model 3, POET still outperforms. The results are summarized in Table 5.

6.6 Simulated portfolio allocation
We demonstrate the improvement of our method compared to the sample covariance and
that based on the strict factor model (SFM), in a problem of portfolio allocation for risk
minimization purposes.

Let Σ̂ be a generic estimator of the covariance matrix of the return vector yt, and w be the
allocation vector of a portfolio consisting of the corresponding p financial securities. Then
the theoretical and the empirical risk of the given portfolio are R(w) = w′Σw and R̂ (w) = w
′Σ̂w, respectively. Now, define

the estimated (minimum variance) portfolio. Then the actual risk of the estimated portfolio
is defined as R(ŵ) = ŵ′Σŵ, and the estimated risk (also called empirical risk) is equal to R̂

(ŵ) = ŵ′Σ̂ŵ. In practice, the actual risk is unknown, and only the empirical risk can be
calculated.

For each fixed p, the population Σ was generated in the same way as described in Section
6.1, with a sparse but not diagonal error covariance. We use three different methods to
estimate Σ and obtain ŵ: strict factor model Σ̂diag (estimate Σu using a diagonal matrix), our
POET estimator Σ̂POET, both are with unknown factors, and sample covariance Σ̂Sam. We
then calculate the corresponding actual and empirical risks.

It is interesting to examine the accuracy and the performance of the actual risk of our
portfolio ŵ in comparison to the oracle risk R* = minw′1=1 w′Σw, which is the theoretical
risk of the portfolio we would have created if we knew the true covariance matrix Σ. We
thus compare the regret R(ŵ) − R*, which is always nonnegative, for three estimators of Σ̂.
They are summarized by using the box plots over the 200 simulations. The results are
reported in Figure 7. In practice, we are also concerned about the difference between the
actual and empirical risk of the chosen portfolio ŵ. Hence, in Figure 8, we also compare the
average estimation error |R(ŵ) − R ̂ (ŵ)| and the average relative estimation error |R̂ (ŵ)/
R(ŵ) − 1| over 200 simulations. When ŵ is obtained based on the strict factor model, both
differences - between actual and oracle risk, and between actual and empirical risk, are
persistently greater than the corresponding differences for the approximate factor estimator.
Also, in terms of the relative estimation error, the factor model based method is negligible,
where as the sample covariance does not process such a property.
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7 Real Data Example
We demonstrate the sparsity of the approximate factor model on real data, and present the
improvement of the POET estimator over the strict factor model (SFM) in a real-world
application of portfolio allocation.

7.1 Sarsity of Idiosyncratic Errors
The data were obtained from the CRSP (The Center for Research in Security Prices)
database, and consists of p = 50 stocks and their annualized daily returns for the period
January 1st, 2010-December 31st, 2010 (T = 252). The stocks are chosen from 5 different
industry sectors, (more specifically, Consumer Goods-Textile & Apparel Clothing,
Financial-Credit Services, Healthcare-Hospitals, Services-Restaurants, Utilities-Water
utilities), with 10 stocks from each sector. We made this selection to demonstrate a block
diagonal trend in the sparsity. More specifically, we show that the non-zero elements are
clustered mainly within companies in the same industry. We also notice that these are the
same groups that show predominantly positive correlation.

The largest eigenvalues of the sample covariance equal 0.0102, 0.0045 and 0.0039, while
the rest are bounded by 0.0020. Hence K = 0, 1, 2, 3 are the possible values of the number of
factors. Figure 9 shows the heatmap of the thresholded error correlation matrix (for
simplicity, we applied hard thresholding). The threshold has been chosen using the cross
validation as described in Section 4. We compare the level of sparsity (percentage of non-
zero off-diagonal elements) for the 5 diagonal blocks of size 10 × 10, versus the sparsity of
the rest of the matrix. For K = 2, our method results in 25.8% non-zero off-diagonal
elements in the 5 diagonal blocks, as opposed to 7.3% non-zero elements in the rest of the
covariance matrix. Note that, out of the non-zero elements in the central 5 blocks, 100% are
positive, as opposed to a distribution of 60.3% positive and 39.7% negative amongst the
non-zero elements in off-diagonal blocks. There is a strong positive correlation between the
returns of companies in the same industry after the common factors are taken out, and the
thresholding has preserved them. The results for K = 1, 2 and 3 show the same
characteristics. These provide stark evidence that the strict factor model is not appropriate.

7.2 Portfolio Allocation
We extend our data size by including larger industrial portfolios (p = 100), and longer period
(ten years): January 1st, 2000 to December 31st, 2010 of annualized daily excess returns.
Two portfolios are created at the beginning of each month, based on two different
covariance estimates through approximate and strict factor models with unknown factors. At
the end of each month, we compare the risks of both portfolios.

The number of factors is determined using the penalty function proposed by Bai and Ng
(2002), as defined in (2.14). For calibration, we use the last 100 consecutive business days
of the above data, and both IC1 and IC2 give K̂ = 3. On the 1st of each month, we estimate
Σ̂diag (SFM) and Σ̂K̂ (POET with soft thresholding) using the historical data of excess daily
returns for the proceeding 12 months (T = 252). The value of the threshold is determined
using the cross-validation procedure. We minimize the empirical risk of both portfolios to
obtain the two respective optimal portfolio allocations ŵ = ŵ1 and ŵ2 (based on Σ̂ = Σ̂diag
and Σ̂K̂): ŵ = arg minw̃′1=1 w′Σ̂w. At the end of the month (21 trading days), their actual
risks are compared, calculated by
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We can see from Figure 10 that the minimum-risk portfolio created by the POET estimator
performs significantly better, achieving lower variance 76% of the time. Amongst those
months, the risk is decreased by 48.63%. On the other hand, during the months that POET
produces a higher-risk portfolio, the risk is increased by only 17.66%.

Next, we demonstrate the impact of the choice of number of factors and threshold on the
performance of POET. If cross-validation seems computationally expensive, we can choose
a common soft-threshold throughout the whole investment process. The average constant in
the cross-validation was 0.53, close to our suggested constant 0.5 used for simulation. We
also present the results based on various choices of constant C = 0.5, 0.75, 1 and 1.25, with

soft threshold . The results are summarized in Table 6. The performance of POET
seems consistent across different choices of these parameters.

8 Conclusion and Discussion
We study the problem of estimating a high-dimensional covariance matrix with conditional
sparsity. Realizing unconditional sparsity assumption is inappropriate in many applications,
we introduce a latent factor model that has a conditional sparsity feature, and propose the
POET estimator to take advantage of the structure. This expands considerably the scope of
the model based on the strict factor model, which assumes independent idiosyncratic noise
and is too restrictive in practice. By assuming sparse error covariance matrix, we allow for
the presence of the cross-sectional correlation even after taking out the common factors. The
sparse covariance is estimated by the adaptive thresholding technique.

It is found that the rates of convergence of the estimators have an extra term approximately
Op(p−1/2) in addition to the results based on observable factors by Fan et al. (2008, 2011),
which arises from the effect of estimating the unobservable factors. As we can see, this
effect vanishes as the dimensionality increases, as more information about the common
factors becomes available. When p gets large enough, the effect of estimating the unknown
factors is negligible, and we estimate the covariance matrices as if we knew the factors.

The proposed POET also has wide applicability in statistical genomics. For example,
Carvalho et al. (2008) applied a Bayesian sparse factor model to study the breast cancer
hormonal pathways. Their real-data results have identified about two common factors that
have highly loaded genes (about half of 250 genes). As a result, these factors should be
treated as “pervasive” (see the explanation in Example 2.1), which will result in one or two
very spiked eigenvalues of the gene expressions’ covariance matrix. The POET can be
applied to estimate such a covariance matrix and its network model.
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APPENDIX

A Estimating a sparse covariance with contaminated data
We estimate Σu by applying the adaptive thresholding given by (2.11). However, the task
here is slightly different from the standard problem of estimating a sparse covariance matrix

in the literature, as no direct observations for  are available. In many cases the
original data are contaminated, including any type of estimate of the data when direct

observations are not available. This typically happens when  represent the error
terms in regression models or when data is subject to measurement of errors. Instead, we

may observe . For instance, in the approximate factor models, .

We can estimate Σu using the adaptive thresholding proposed by Cai and Liu (2011): for the

threshold , define

(A.1)

where sij(.) satisfies: for all z ∈ ℝ, sij(z) = 0, when |z| ≤ τij; |sij(z) − z| ≤ τij.

When  is close enough to , we can show that  is also consistent. The
following theorem extends the standard thresholding results in Bickel and Levina (2008) and
Cai and Liu (2011) to the case when no direct observations are available, or the original data
are contaminated. For the tail and mixing parameters r1 and r3 defined in Assumptions 3.2

and 3.3, let .
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Theorem A.1—Suppose (log p)6α = o(T), and Assumptions 3.2 and 3.3 hold. In addition,

suppose there is a sequence aT = o(1) so that , and
maxi≤p,t≤T |uit − ûit| = op(1); Then there is a constant C > 0 in the adaptive thresholding
estimator (A.1) with

such that

If further ωT mp = o(1), then  is invertible with probability approaching one, and

Proof: By Assumptions 3.2 and 3.3, the conditions of Lemmas A.3 and A.4 of Fan, Liao
and Mincheva (2011, Ann. Statist, 39, 3320–3356) are satisfied. Hence for any ε > 0, there
are positive constants M, θ1 and θ2 such that each of the events

occurs with probability at least 1 − ε. By the condition of threshold function,

. Now for , under the event A1 ∩ A2,
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Let M1 = (Cθ1+M)(M−q+(Cθ1+M)−q). Then with probability at least 1 − 2ε,

. Since ε is arbitrary, we have . If

in addition, ωT mp = o(1), then the minimum eigenvalue of  is bounded away from zero
with probability approaching one since λmin(Σu) > c1. This then implies

.

B Proofs for Section 2
We first cite two useful theorems, which are needed to prove propositions 2.1 and 2.2. In

Lemma B.1 below, let  be the eigenvalues of Σ in descending order and  be

their associated eigenvectors. Correspondingly, let  be the eigenvalues of Σ̂ in

descending order and  be their associated eigenvectors.

Lemma B.1
1. (Weyl’s Theorem) |λ̂i − λi| ≤ ||Σ̂ − Σ||.

2. (sin θ Theorem, Davis and Kahan, 1970)

Proof of Proposition 2.1

Proof: Since  are the eigenvalue of Σ and  are the first K eigenvalues of
BB′ (the remaining p − K eigenvalues are zero), then by the Weyl’s theorem, for each j ≤ K,
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For j > K, |λj| = |λj − 0| ≤ ||Σu||. On the other hand, the first K eigenvalues of BB are also the
eigenvalues of B′B. By the assumption, the eigenvalues of p−1B′B are bounded away from
zero. Thus when j ≤ K, ||b̃j||2/p are bounded away from zero for all large p.

Proof of Proposition 2.2
Proof: Applying the sin θ theorem yields

For a generic constant c > 0, |λj−1 − ||b̃j||2| ≥ |||b̃j−1||2 − ||b̃j||2| − |λj−1 − ||b̃j−1||2| ≥ cp for all
large p, since |||b̃j−1||2 − ||b̃j||2| ≥ cp but |λj−1 − ||b̃j−1||2| is bounded by Prosposition 2.1. On
the other hand, if j < K, the same argument implies |||b̃j||2 − λj+1| ≥ cp. If j = K, |||b̃j||2 − λj+1|
= p|||b̃K||2/p − λK+1/p|, where ||b̃K||2/p is bounded away from zero, but λK+1/p = O(p−1).
Hence again, |||b ̃j||2 − λj+1| ≥ cp.

Proof of Theorem 2.1
Proof: The sample covariance matrix of the residuals using least squares method is given by

. where we used the normalization condition F̂′F̂

= TIK and Λ̂ = YF̂/T. If we show that , then from the decompositions of
the sample covariance

we have R̂ = Σ̂u. Consequently, applying thresholding on Σ̂u is equivalent to applying
thresholding on R̂, which gives the desired result.

We now show  indeed holds. Consider again the least squares problem

(2.8) but with the following alternative normalization constraints: , and

 is diagonal. Let (Λ̃, F̃) be the solution to the new optimization problem.
Switching the roles of B and F, then the solution of (2.10) is Λ̃ = (ξ̂1, · · ·, ξ̂K) and F̃ = p−1Y
′Λ̃. In addition, T−1F̃′F ̃= diag(λ̂1, · · ·, λ̂K). From Λ̂F ̂′ = Λ̃F ̃′, it follows that

.

C Proofs for Section 3
We will proceed by subsequently showing Theorems 3.3, 3.1 and 3.2.
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C.1 Preliminary lemmas
The following results are to be used subsequently. The proofs of Lemmas C.1, C.2 and C.3
are found in Fan, Liao and Mincheva (2011).

Lemma C.1—Suppose A, B are symmetric semi-positive definite matrices, and λmin(B) >
cT for a sequence cT > 0. If ||A − B|| = op(cT ), then λmin(A) > cT/2, and

Lemma C.2—Suppose that the random variables Z1, Z2 both satisfy the exponential-type
tail condition: There exist r1, r2 ∈ (0, 1) and b1, b2 > 0, such that ∀s > 0,

Then for some r3 and b3 > 0, and any s > 0,

(C.1)

Lemma C.3—Under the assumptions of Theorem 3.1,

i.
.

ii.

iii.

Lemma C.4—Let λ̂K denote the Kth largest eigenvalue of , then λ̂K >
C1p with probability approaching one for some C1 > 0.

Proof: First of all, by Proposition 2.1, under Assumption 3.1, the Kth largest eigenvalue λK
of Σ satisfies: for some c > 0,

for sufficiently large p. Using Weyl’s theorem, we need only to prove that ||Σ̂sam − Σ|| =
op(p). Without loss of generality, we prove the result under the identifiability condition

(2.1). Using model (1.2), . Using this and (1.3),
Σ̂sam − Σ can be decomposed as the sum of the four terms:
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We now deal them term by term. We will repeatedly use the fact that for a p × p matrix A,

First of all, by Lemma C.3,

, which is op(p) if K log p
= o(T). Consequently, by Assumption 3.1, we have

We now deal with D2. It follows from Lemma C.3 that

Since ||D4|| = ||D3||, it remains to deal with D3, which is bounded by

which is op(p) since log p = o(T).

Lemma C.5—Under Assumption 3.3, .

Proof: Since  is weakly stationary, .
In addition, E|uit|4 < M for some constant M and any i, t since uit has exponential tail. Hence
by Davydov’s inequality (Corollary 16.2.4 in Athreya and Lahiri 2006), there is a constant C

> 0, for all i ≤ p, t ≤ T, , where α (t) is the α-mixing coefficient. By

Assumption 3.3, . Thus uniformly in T,
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C.2 Proof of Theorem 3.3
Our derivation below relies on a result obtained by Bai and Ng (2002), which showed that
the estimated number of factors is consistent, in the sense that K̂ equals the true K with
probability approaching one. Note that under our Assumptions 3.1–3.4, all the assumptions
in Bai and Ng (2002) are satisfied. Thus immediately we have the following Lemma.

Lemma C.6 (Theorem 2 in Bai and Ng (2002))—For K̂ defined in (2.14),

Proof: See Bai and Ng (2002).

Using (A.1) in Bai (2003), we have the following identity:

(C.2)

where , and .

We first prove some preliminary results in the following Lemmas. Denote by f̂t = (f̂1t, …,
f̂ K̂t)′.

Lemma C.7—For all i ≤ K̂,

i.
,

ii.
,

iii.
,

iv.
.

Proof
i.

We have ∀i, . By the Cauchy-Schwarz inequality,
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By Lemma C.5, , which then yields the result.

ii. By the Cauchy-Schwarz inequality,

Note that .

By Assumption 3.4, , which implies that

, and yields the result.

iii.
By definition, . We first bound || ||. Assumption 3.4

implies . Therefore, by the
Cauchy-Schwarz inequality,

iv. Similar to part (iii), noting that ξst is a scalar, we have:

where the third line follows from the Cauchy-Schwarz inequality.

Lemma C.8
i.

,

ii.
,

iii.
,

iv.
.
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Proof
i.

By the Cauchy-Schwarz inequality and the fact that ,

The result then follows from Assumption 3.3.

ii. By the Cauchy-Schwarz inequality,

It follows from Assumption 3.4 that . It
then follows from the Chebyshev’s inequality and Bonferroni’s method that

.

iii.
By Assumption 3.4, . Chebyshev’s inequality and

Bonferroni’s method yield  with probability
one, which then implies:

.

iv. By the Cauchy-Schwarz inequality and Assumption 3.4, we have demonstrated that

. In addition, since E||K−2 ft||4 < M, maxt≤T ||
ft|| = Op(T1/4). It follows that

.

Lemma C.9
i.

.

ii.
.

iii.
.

Proof: We prove this lemma conditioning on the event K̂= K. Once this is done, due to P(K̂

≠ K) = o(1), it then implies the unconditional arguments.
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i. When K̂ = K, by Lemma C.4, all the eigenvalues of V/p are bounded away from
zero. Using the inequality (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2) and the identity
(C.2), we have, for some constant C > 0,

Each of the four terms on the right hand side above are bounded in Lemma C.7,
which then yields the desired result.

ii. It follows from part (i) and that

. Part (iii) is implied by (C.2)
and Lemma C.8.

Lemma C.10
i.

.

ii. .

Proof: We first condition on K̂ = K. (i) Lemma C.4 implies ||V−1|| = Op(p−1). Also

. In addition, . It then follows

from the definition of H that ||H|| = Op(1). Define . Applying
the triangular inequality gives:

(C.3)

By Lemma C.3, the first term in (C.3) is

. The second term of (C.3) can be
bounded, by the Cauchy-Schwarz inequality and Lemma C.9, as follows:

(ii) Still conditioning on K̂ = K, since  and ||H|| = Op(1), right

multiplying H gives . Part (i) also gives, conditioning on K̂

= K, ||H−1|| = Op(1). Hence further left multiplying H−1 yields .
Due to P(K̂ = K) → 1, we reach the desired result.
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Proof of Theorem 3.3
Proof: The second part of this theorem was proved in Lemma C.9. We now derive the
convergence rate of maxi≤p ||b̂i − Hbi||.

Using the facts that , and that , we have

(C.4)

We bound the three terms on the right hand side respectively. It follows from Lemmas C.3
and C.10 that

. For the

second term, . Therefore, . The Cauchy-Schwarz
inequality and Lemma C.9 imply

Finally,  and maxi ||bi|| = O(1) imply that the third term is
Op(T−1/2).

Proof of Corollary 3.1—Under Assumption 3.3, it can be shown by Bonferroni’s method
that maxt≤T ||ft|| = Op((log T )1/r2 ). By Theorem 3.3, uniformly in i and t,

C.3 Proof of Theorem 3.1

Lemma C.11— , and maxi,t |uit − ûit| = op(1).

Proof: We have, . Therefore, using
the inequality (a + b + c)2 ≤ 4a2 + 4b2 + 4c2, we have:

The first part of the lemma then follows from Theorem 3.3 and Lemma C.9. The second part
follows from Corollary 3.1.
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Proof of Theorem 3.1—The theorem follows immediately from Theorem A.1 and
Lemma C.11.

C.4 Proof of Theorem 3.2
Define

Lemma C.12
i.

, and .

ii.

.

iii.
.

iv.
.

Proof
i.

We have . Moreover, since all the
eigenvalues of Σ are bounded away from zero, for any matrix A,

. Hence .

ii. By Theorem 3.1,

.

iii. The same argument of the proof of Theorem 2 in Fan, Fan and Lv (2008) implies

that ||B′Σ−1B|| = O(1). Thus,  is
upper bounded by

.

iv. Again, by ||B′Σ−1B|| = O(1), and Lemma C.10,

(C.5)
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Proof of Theorem 3.2 (i)
Proof: By Lemma C.12,

. Hence for a generic
constant C > 0,

Lemma C.13— .

Proof: . Hence

(C.6)

Lemma C.14—If , then with probability approaching one, for some c > 0,

i.
.

ii.

.

iii.
.

iv.
.

Proof: (i) By Lemma C.10, with probability approaching one, λmin(HH′) is bounded away
from zero. Hence,

(ii) The result follows from part (i) and Lemma C.13. Part (iii) and (iv) follow from a similar
argument of part (i) and Lemma C.10.
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Proof of Theorem 3.2

Proof: We derive the rate for . Define

Note that  and Σ = BB′ + Σu. The triangular inequality gives

Using the Sherman-Morrison-Woodbury formula, we have ,
where

(C.7)

We bound each of the six terms respectively. First of all, L1 is bounded by Theorem 3.1. Let

, then

Note that Theorem 3.1 implies . Lemma C.14 then implies ||G|| =
Op(p−1). This shows that L2 = Op(L1). Similarly L3 = Op(L1). In addition, since

.
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Similarly L5 = Op(L4). Finally, let . By Lemma C.14, ||G1|| =
Op(p−1). Then by Lemma C.13,

Consequently, . Adding up L1–L6 gives

One the other hand, using Sherman-Morrison-Woodbury formula again implies

Proof of Theorem 3.2—||Σ̂τ − Σ||max

Proof: We first bound ||Λ̂Λ̂′ − BB′||max. Repeatedly using the triangular inequality yields

On the other hand, let σu,ij be the (i, j) entry of Σu. Then maxij |σ̂ij − σu,ij| = Op(ωT).

Hence . The result then follows immediately.
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Figure 1.

Minimum eigenvalue of  as a function of C for three choices of thresholding rules.
The plot is based on the simulated data set in Section 6.2.
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Figure 2.
Averages (left panel) and standard deviations (right panel) of the relative error p−1/2||
Σ−1/2Σ̂Σ−1/2 − Ip||F with known factors (Σ̂ = Σ̂obs solid red curve), POET (Σ̂ = Σ̂K̂ solid blue
curve), and sample covariance (Σ̂ = Σ̂sam dashed curve) over 200 simulations, as a function
of the dimensionality p. Top panel: p ranges in 20 to 600 with increment 20; bottom panel: p
ranges in 1 to 100 with increment 1.
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Figure 3.
Averages (left panel) and standard deviations (right panel) of ||Σ̂−1 − Σ−1|| with known
factors (Σ̂ = Σ̂obs solid red curve), POET (Σ̂ = Σ̂K̂ solid blue curve), and sample covariance
(Σ̂ = Σ̂sam dashed curve) over 200 simulations, as a function of the dimensionality p. Top
panel: p ranges in 20 to 600 with increment 20; middle panel: p ranges in 1 to 100 with
increment 1; Bottom panel: the same as the top panel with dashed curve excluded.
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Figure 4.
Averages (left panel) and standard deviations (right panel) of ||Σ̂ − Σ||max with known
factors (Σ̂ = Σ̂obs solid red curve), POET (Σ̂ = Σ̂K̂ solid blue curve), and sample covariance
(Σ̂ = Σ̂sam dashed curve) over 200 simulations, as a function of the dimensionality p. They
are nearly indifferentiable.

Fan et al. Page 48

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2014 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Averages of ||Σ̂ − Σ|| (left panel) and ||Σ−1/2Σ̂Σ−1/2 − Ip|| with known factors (Σ̂ = Σ̂obs solid
red curve), POET (Σ̂= Σ̂K̂ ω solid blue curve), and sample covariance (Σ̂ = Σ̂sam dashed
curve) over 200 simulations, as a function of the dimensionality p. The three curves are
hardly distinguishable on the left panel.
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Figure 6.
Robustness of K as p increases for various choices of K (Design 1, T = 300). Top left: ||

||; top right: || ||; bottom left: ||Σ̂K − Σ||Σ; bottom right: ||

||.
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Figure 7.
Box plots of regrets R(ŵ) − R* for p = 80 and 140. In each panel, the box plots from left to
right correspond to ŵ obtained using Σ̂ based on approximate factor model, strict factor
model, and sample covariance, respectively.
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Figure 8.
Estimation errors for risk assessments as a function of the portfolio size p. Left panel plots
the average absolute error |R(ŵ) − R ̂ (ŵ)| and right panel depicts the average relative error |R̂

(ŵ)/R(ŵ) − 1|. Here, ŵ and R̂ are obtained based on three estimators of Σ̂.
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Figure 9.
Heatmap of thresholded error correlation matrix for number of factors K = 0, K = 1, K = 2
and K = 3.
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Figure 10.
Risk of portfolios created with POET and SFM (strict factor model)
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Table 1

Mean and covariance matrix used to generate b

μB ΣB

0.0047 0.0767 −0.00004 0.0087

0.0007 −0.00004 0.0841 0.0013

−1.8078 0.0087 0.0013 0.1649
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Table 6

Comparisons of the risks of portfolios using POET and SFM: The first number is proportion of the time POET
outperforms and the second number is percentage of average risk improvements. C represents the constant in
the threshold.

C K̂ = 1 K̂ = 2 K̂ = 3

0.25 0.58/29.6% 0.68/38% 0.71/33%

0.5 0.66/31.7% 0.70/38.2% 0.75/33.5%

0.75 0.68/29.3% 0.70/29.6% 0.71/25.1%

1 0.66/20.7% 0.62/19.4% 0.69/18%
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