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Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect
the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of
breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been
used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART)
were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We
have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming
language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on
3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and
run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study
that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction
technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the
methods are compared both visually and quantitatively by evaluating performances of themethods usingmean structural similarity
(MSSIM) values.

1. Introduction

Breast cancer is one of the three most commonly diagnosed
types of cancer among thewomen in theUSA in 2012. It is also
known as one of themost common causes of cancer deaths in
the USA [1]. Diagnosis of this type of cancer in its early stages
makes the treatment simpler and more likely to be effective.

Digital breast tomosynthesis (DBT) is an innovative
imaging modality that provides 3D reconstructed images of
a patient’s breast to diagnose the breast cancer [2]. Conven-
tionally several imaging modalities such as mammography
and ultrasound have been used in diagnosing breast cancers.
Among those modalities, X-ray mammography has been
regarded as the gold standard for diagnosis. Since X-ray
mammography image is two-dimensional, it is limited by
overlapping tissue structure [3]. The first study of geometric
tomography by Plantes introduced the concept of conven-
tional tomosynthesis [4]. Garrison et al. [5], Richards [6],
Miller et al. [7], and Grant [8] were the first scientists who

studied three-dimensional tomography. Moreover Grant in
his study introduced the term “tomosynthesis” system [8].
DBT overcomes the overlapping limitation ofmammography
by providing slice images of the breast. DBT uses projections
obtained with an X-ray source moving in a limited angle
interval to reconstruct 3D image of breast.

A number of algorithms have been addressed to recon-
struct the images. Algebraic reconstruction technique (ART)
was developed by the Polish mathematician Kaczmarz in
1937 [9]. Recently it has been proven that a sparse image
can be reconstructed from an undersampled data set via
total variation (TV) method [10, 11]. Figure 1 schematically
illustrates a digital tomosynthesis system and its three main
parts: X-ray source, object, and detector. As shown in this
figure, the X-ray source rotates around the breast in the step-
and-shoot (SAS) mode and makes exposure after a complete
stop at each position. The breast is fixed using a set of pedals
to avoid the movement during the scan time and the detector
is capable of high frame rate and has exceptional detective

http://dx.doi.org/10.1155/2013/250689


2 Computational and Mathematical Methods in Medicine

X-ray tube

Breast

Detector

Center

Figure 1: A simple schematic of digital tomosynthesis system.

quantum efficiency (DQE), making it well suited to rapid
acquisition of a large number of low-dose projection images
[2, 3].

DBT has the potential to improve the sensitivity in the
detection of breast cancer due to reduced overlap of breast
tissues, which enables earlier detection. It also significantly
improves the specificity; with the 3D data available, a 3D
analysis of the distribution of microcalcifications, or a 3D
analysis concerning shape, determining margins and size of
lesions might be easier [3, 12].

Several simulators have been implemented to simulate the
reconstruction algorithms. In 1970, SNARK was developed
by Richard Gordon to evaluate different reconstruction algo-
rithms. Later, different versions of SNARK were developed
to simulate CT and PET systems [13]. In 2010, Hansen et al.
developedAIRTools package for 2D algebraic reconstruction
techniques on MATLAB [14]. Both packages were imple-
mented only for 2D models.

In this study we introduce a simulator for 3D breast
tomosynthesis imaging system using C++ programming lan-
guage.There are other limited view angle imaging simulators
available such as AIR tools. However, the former simulation
software was typically developed using MATLAB scripts for
2D data. Our simulator is specially designed to simulate a
DBT system that takes projections of an arbitrary phantom
and reconstructs it using the acquired images from projec-
tions by applying one of the implemented reconstruction
methods in the simulator that is chosen by the user. It is
also able to run a set of newly proposed reconstruction
methods with total variation (TV) regularization algorithms
and produce the results such as the image of the layer of
interest, contrast to noise (CNR), root mean square error
(RMSE), and structural similarity (SSIM) diagrams.

In this paper we briefly describe the reconstruction
techniques used in the simulator and then the characteristics
of the simulator will be provided. The results obtained from
the simulator on a designed sample model are given.

2. Methods

2.1. Arithmetic Reconstruction Technique (ART). The alge-
braic reconstruction technique (ART) is an iterative image
reconstruction with a long history and rich literature. First
of all it was designed by Kaczmarz in 1937 [9], and it was
independently used by Gordon et al. in image reconstruction
[13]. ART is a reconstruction algorithm that uses a set of
projections to reconstruct the desired object [15, 16].

The term ray sum takes the place of the line integral in
transform-based methods. The ray sum, 𝑦

𝑖
, measured with

the 𝑖th ray, is expressed as

𝑁

∑
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where 𝑎
𝑖𝑗
is the weighting parameter which stands for the

influence of 𝑗th cell on the 𝑖th ray line integral, 𝑥
𝑗
is the

constant intensity value of the 𝑗th cell,𝑁 is the total number
of cells, and 𝑀 is the total number of rays. Convention
matrix inversion methods mentioned above would be useful
to solve (1) if 𝑀 and 𝑁 are small and the problem is
well posed. Iterative methods are introduced for ill-posed
inversion problems with large values of𝑁 and𝑀. Expanded
form of (1) can be written as
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If there is a unique solution to (2), then the intersections
of the planes to be defined by these equations are a single
point in 𝑁 dimensional space. Finding the solution via
subsequent projections is known as the Kaczmarz method
which forms the basis of ART.The implementation procedure
starts with an initial guess, �⃗�(0) at the solution, and �⃗�(0)is
projected on the first plane in (2) giving �⃗�(1). Then �⃗�(1) is
projected on the second plane giving �⃗�(2), thus the initial
guess is updated so on. This procedure can be formulated as
projection of �⃗�(𝑖−1) on ith plane yields �⃗�(𝑖):
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Equation (3) states that the previous intensity values of
the estimated image, �⃗�(𝑖−1),s, are updated by adding an error
parameter Δ𝑥(𝑖)

𝑗
which is the difference between measured

ray sum, 𝑦
𝑖
, and the computed ray sum, ∑𝑁

𝑘=1
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,
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2

𝑖𝑘
. This process is repeated until all the

projections are considered and all the pixel values converge
to a solution [13, 16].

2.2. Simultaneous Arithmetic Reconstruction Technique
(SART). ART method was the first iterative algorithm used
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Figure 2: Flow diagram for DBT simulator.

Figure 3: Simulator’s configuration part; user inserts simulator
parameters manually or by loading an xml file.

in CT [13]. In 1984, the simultaneous algebraic reconstruction
technique (SART) was proposed with major alterations in
the ART [17, 18]. SART, as described by Andersen and Kak
(1984), is given by
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Figure 4: Simulator’s projection part; user can insert more objects
into the phantom and run the projection method.

where 0 < 𝜔 < 2 represents relaxation parameter; for
iterations 𝑘 = 0, 1, . . . , 𝑘 we set 𝜔 to 1 for our simulation.
Although larger values may speed up convergence, if the
value is too large, too much weight is given to the last
projection, which prevents convergence. Smaller values cause
the algorithm to converge slowly, which is not acceptable for
real-time applications and systems with a huge number of
pixels [19].
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Figure 5: Simulator’s reconstruction part; user can choose a
reconstruction method, insert the layer of interest and number of
iterations, and change the initial objects characteristics then run the
desired method.

2.3. Compressed Sensing (CS). Compressed sensing (CS)
image reconstruction is used to reconstruct a sparse image by
minimizing the 𝑙1 norm of the sparse image. There are some
significant factors in original CS method to be considered:
(1) the image must be sparse; (2) reconstruction of the image
must be done using a nonlinear method; and (3) the standard
linear reconstruction method should generate incoherent
view aliasing artifacts by applying the sparsifying transform
in (7) [10, 11]. The image can be sparsified using sparsifying
transform (Ψ) which is a linear transform operator and is
used to transform nonsparse version of image 𝑋 to the
sparsified version. Equation (5) shows the constrained min-
imization problem which CS image reconstruction theory
tries to solve iteratively:

min ‖Ψ𝑋‖1 (5)

s.t. 𝐴𝑋 = 𝑌. (6)

2.4. Prior Image Constrained Compressed Sensing (PICCS).
PICCS method considers a high quality prior image 𝑋

𝑃
to

reconstruct the image 𝑋 from an undersampled data set by
solving the following constrained minimization problem:

min [𝛼Ψ1 (𝑋 − 𝑋𝑌)
1 + (1 − 𝛼)

Ψ2 (𝑋)
1] , (7)

where 𝐴𝑋 = 𝑌 is assumed and Ψ
1
and Ψ

2
can be any

transform like those used in CS and they can be the same
or different transforms, and 𝛼 is the regularization parameter
that can be selected between 0 and 1; for 𝛼 = 0 the PICCS
algorithm is equivalent to the known CS method [10, 11].

The constrainedminimization problemof PICCSmethod
is numerically implemented using arithmetic reconstruction

technique (ART) and the total variation (TV) regularization
methods, respectively. ART is used to reconstruct the image
𝑋 by considering the consistency condition 𝐴𝑋 = 𝑌 and
TV regularization of 𝑋 is defined as 𝑙1 norm of the discrete
gradient of the image. Equation (8) shows the 2D TV of pixel
𝑋(𝑖, 𝑗) in the image

TV
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The discrete gradient of image in pixel (𝑖, 𝑗) is defined as
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where 𝑋(𝑖, 𝑗) is the intensity value at pixel (𝑖, 𝑗), 𝐷
𝑥
𝑋 =

𝑋(𝑖, 𝑗) − 𝑋(𝑖 + 1, 𝑗), and𝐷
𝑦
𝑋 = 𝑋(𝑖, 𝑗) − 𝑋(𝑖, 𝑗 + 1).

TV regularization can be assumed in 3D objects where
it shows better performance in the 𝑧-axis neighborhood or
axial direction of the object; (10) shows the 3DTVof the voxel
𝑋(𝑖, 𝑗, 𝑘) in 3D object
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The discrete gradient of image in voxel (𝑖, 𝑗, 𝑘) is shown in
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where 𝑋(𝑖, 𝑗, 𝑘) is the intensity value at voxel (𝑖, 𝑗, 𝑘), 𝐷
𝑥
𝑋 =

𝑋(𝑖, 𝑗, 𝑘) −𝑋(𝑖 + 1, 𝑗, 𝑘),𝐷
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𝐷
𝑧
𝑋 = 𝑋(𝑖, 𝑗, 𝑘) − 𝑋(𝑖, 𝑗, 𝑘 + 1).
The TV method is applied after each iteration of ART

method. After applying TV, the forward projection runs
again. TV method can be applied to 2D or 3D data. 2D TV
is applied for each layer of 3D object, but, the 3D version of
TV regularization is applied to the whole of the 3D object at
the end of each iteration.The pseudocode of the ARTwith 3D
TV or SART with 3D TV implementation is shown below:

𝑋
𝑃
← Prior Image

𝑌
𝑃
← Forward Projection of𝑋

𝑃

𝑌 ←Measured Projections

while (‖𝑌
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for each iteration

Calculate Δ𝑋𝑘 Using ART
Update𝑋(𝑘)
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(𝑋(𝑘+1)
𝑃

= 𝑋
(𝑘)
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+ Δ𝑋
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end for each iteration
3D Total Variation Regularization
𝑌
𝑃
← Forward Projection of𝑋

𝑃

end while



Computational and Mathematical Methods in Medicine 5

20 40 60 80 100 120

20

40

60

80

100

120
0

5

10

15

(a)

20 40 60 80 100 120

20

40

60

80

100

120
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b)

Figure 6: Original 3D phantom: (a) objects with higher absorption in the upper layers, (b) the LOI of the phantom.

3. Software Design and Implementation

3D tomosynthesis simulator was written in C++. An object-
oriented programming language and .Net framework was
used to design the graphical user interface (GUI) of the
simulator on Visual Studio.Net 2010 which was run on a
personal computer with Intel Core i7 2.00GHz processor and
6GB RAM memory. Unlike the procedural programming
languages that separate data from operations, object-oriented
C++ programming language is capable of considering a
collection of classes that combine data and operations on
data.

Figure 2 shows the flow diagram of the simulator where
three main parts of the simulator and related operators are
shown. As shown in this figure, the simulator consists of three
main classes: configuration (parameters), projection, and
reconstruction classes.The first class includes the parameters
of all the system parts and functions to read/write data from
XML files. Three main parts of DBT system are defined as
three different subclasses which refer to X-ray source, phan-
tom, and detector. The projection class includes methods to
receive the system parameters from the configuration part
and to find the projection images of a particular phantom
which could be used by the reconstruction class to run
different reconstruction methods. The simulator includes a
graphical user interface (GUI) which facilitates design and
editing of a phantom, executes the projection and reconstruc-
tion method, and saves, the results.

Figure 3 shows the configuration interface of the simula-
tor that allows one to insert or select the parameters of the X-
ray source, phantom, and detector such as their location and
dimensionsmanually in the specified places or by loading the
xml files that include the desired data in a predefined format.
One can load the xml file by pressing the load button and
inserting the path for the desired file.

It is possible to choose a set of small 3D objects, such as
rectangular parallelepiped, sphere, or ellipsoid for both orig-
inal and initial objects to start the reconstruction procedure.

Figure 4 shows the projection interface of the simulator;
it is possible to insert and edit a set of small 3D objects such
as rectangular parallelepiped, sphere, or ellipsoid in the phan-
tom which are displayed sequentially in the object list part of
the form. The user is required to insert the characteristics of
each object to generate the desired phantom. After generating
the phantom, the projection task can be performed to get
the projection images of the phantom. The results of the
projection on the detector could be displayed by choosing the
desired angle of projection.

Figure 5 exhibits the reconstruction interface where the
user can choose one of the reconstructionmethods including
ART, SART, ART with 3DTV, and SART with 3DTV, and
can insert the number of iterations (NOI) of the iterative
method with the layer of interest (LOI) number of the 3D
phantom. It is also possible to revise the initial object list
for the reconstruction. After running the chosen method the
reconstruction results such as the image of all layers including
the LOI of the object and also the structural similarity (SSIM),
contrast-to-noise-ratio (CNR), and root mean square error
(RMSE) diagramswill be shown as the output of the program.

A special xml file format is designed to store all of the
system characteristics using the different tags such as X-ray
source, detector, phantom, and reconstruction. A user can
insert and edit the contents of the file and load it automatically
to update the parameters of the system.

4. Results

In order to exhibit the performance of the different recon-
structionmethods run by the simulator, a 3D phantommodel
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Figure 7: Images of the LOI of the reconstructed phantom (11th layer of the phantom): (a) reconstructed LOI image using ART method, (b)
reconstructed LOI image using SART method, (c) reconstructed LOI image using ART+TV 3D method, and (d) reconstructed LOI image
using SART+TV 3D method.

was designed with resolution of 128 × 128 voxels in 16 layers.
This phantom was created to imitate the overlapping tissue
problem of the breast imaging. The phantom includes some
smaller objects, where objects with the low X-ray absorption
are obscured by the objects with higher X-ray absorption
(Figure 6). Measured projections were generated from the
phantom for the range of scan angles from −25∘ to +25∘ and
11 projections.

Parameters of the simulator and phantom are listed in
Table 1.

Reconstructed images of the LOI for ART, SART,
ART+TV 3D, and SART+TV 3D are shown in Figure 7(a) to
Figure 7(d), respectively.

One of the mostly used image quality metrics is the mean
square error (MSE) because of its simplicity in calculating

Table 1: Simulation parameters.

Parameter Value
Source to detector distance 300 pixels
Object to detector distance 100 pixels
Scan angle 50∘ degrees (−25∘ to +25∘)
Number of projections 11 projections
TV regularization parameter 0.8
Phantom size 128 × 128 × 16

Detector size 160 × 160 × 1

and clear physical meaning, but this is not a very appropriate
metric to exhibit the visual quality of the images [20–22]. A
number of quality assessment methods are developed that
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Figure 8: MSSIM value comparison of ART, ART+3D TV, SART,
and SART+3D TV for the layer of interest.

implement the characteristics of the human visual system
(HVS). One of the well-known quality assessment methods
is the measure of structural similarity (SSIM) that compares
local patterns of pixel values which are normalized for
amount of luminance and contrast [23].

The SSIM index is shown:

SSIM (𝑥, 𝑦) =
(2𝜇
𝑥
𝜇
𝑦
+ 𝐶
1
) (𝜎
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2
)

(𝜇2
𝑥
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𝑦
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1
) (𝜎2
𝑥
+ 𝜎2
𝑦
+ 𝐶
2
)
, (12)

where 𝜇
𝑥
and 𝜇
𝑦
refer to the mean of the intensities of signals

𝑥 and𝑦, respectively, and𝜎
𝑥
and𝜎
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are the standard deviation

of them. 𝐶
1
and 𝐶

2
are given:
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= (𝐾
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𝐿)
2
, 𝑚 = 1, 2, (13)

where 𝐿 is the dynamic range of the pixel values and𝐾
𝑚
≪ 1

for 𝑘 = 1, 2 are small constants.
Practically we need a single overall quality measure of the

entire image. In this study we used a mean SSIM (MSSIM)
index to evaluate the overall image quality:

MSSIM (𝑋, 𝑌) = 1

𝑀

𝑇

∑

𝑗=1

SSIM (𝑥
𝑗
+ 𝑦
𝑗
) , (14)

where 𝑋 and 𝑌 refer to original and reconstructed images,
respectively; 𝑥

𝑗
and 𝑦

𝑗
are the image contents at the 𝑗th local

window and 𝑇 is the number of local windows of the image.
MSSIM indexes of the reconstruction methods tested

with the simulator are given in Figure 8. Compressed sensed
methods implemented as ART+TV 3D and SART+TV 3D
provided improved results compared with the results of ART
and SART while ART and SART performed similarly.

The time needed to perform a simulation study depends
on the complexity of the phantom and detector size. In this

study the average time required to complete each iteration
of ART on the proposed simulator is 128 seconds which is
obtained after measuring the first fifteen iterations. The same
problem takes 28800 seconds on the MATLAB which was
only implemented by us for comparison.

5. Conclusion

A new simulator was designed for 3D DBT studies. Our
simulator is capable of implementing several reconstruction
techniques including recently proposed compressed sensing
based methods. A user friendly graphical user interface
(GUI) helps users to select and run the desired methods on
the designed phantom models or real data sets. The simu-
lator was implemented for 3D limited view angle imaging
problems using C++ programming language whereas the
former simulation software was typically developed using
MATLAB scripts for 2D data. We tested the simulator by
running different reconstruction methods with a specific 3D
phantommodel which was created to imitate the overlapping
tissue problem of the breast imaging. We also compared the
methods in the simulator by demonstrating reconstructed
images of LOI and evaluating their performances using
RMSE and MSSIM metrics. The simulator can be extended
by including new reconstruction methods.
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