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Abstract
It is an obvious fact that the power of a test statistic is dependent upon the significance (alpha)
level at which the test is performed. It is perhaps a less obvious fact that the relative performance
of two statistics in terms of power is also a function of the alpha level. Through numerous
personal discussions, we have noted that even some competent statisticians have the mistaken
intuition that relative power comparisons at traditional levels such as α = 0.05 will be roughly
similar to relative power comparisons at very low levels, such as the level α = 5 × 10−8, which is
commonly used in genome-wide association studies. In this brief note, we demonstrate that this
notion is in fact quite wrong, especially with respect to comparing tests with differing degrees of
freedom. In fact, at very low alpha levels the cost of additional degrees of freedom is often
comparatively low. Thus we recommend that statisticians exercise caution when interpreting the
results of power comparison studies which use alpha levels that will not be used in practice.

Keywords
Power; Small Significance Levels

1 Introduction
Hypothesis testing is an established part of any conventional statistics education, as are the
familiar phrases “P-Value,” “type I error,” “alpha level” and “power.” Every first-year
student of statistics learns that if the P-Value is less than α = 0.05 one should “reject the null
hypothesis.” While this cutoff is arbitrary, it is nevertheless tradition, and so we have grown
used to it. We have developed our professional intuitions around this sacred, but quite
arbitrary, standard. For example, traditional claims about the robustness of the central limit
theorem in terms of Type I error are based on α = 0.05. While such claims may be
challenged even when α = 0.05, one could certainly wonder if such rules of thumb are even
remotely valid when alpha is orders of magnitude smaller than traditional levels (Bradley,
1978). In this note, however, we will pretend that all such considerations relating to the
proper control of type I error at extremely small alpha levels are adequately addressed.
Instead, we will consider power, and show that intuitions developed for α = 0.05 may not
apply at much lower alpha levels.

To motivate our discussion, let us consider genome-wide association studies (Wang et al.,
2005). There are positions in the genome where the DNA of some individuals differs from
that of others by a single nucleotide. These variations among individuals are referred to as
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single nucleotide polymorphisms (SNPs). Usually, SNPs have only two possible variations
(i.e., two possible alleles), and we will refer to the more common allele as “A” and the less
common allele as “a.” Because humans have two copies of most of their DNA, there are
three possible combinations of alleles (i.e., three possible genotypes) that an individual can
have: “AA,” “Aa” and “aa.” We make no distinction between “Aa” and “aA.” A typical
genome-wide association study will assay something on the order of 106 SNPs for each
individual. A hypothesis test is then performed for each SNP to determine if it is associated
in some way with the trait of interest. This leads to a Bonferoni corrected alpha level of α =
0.05/106 = 5 × 10−8 to control the family wise error rate at 0.05.

If the trait of interest (y) is quantitative, then we may easily view the test in the linear model
framework. For SNP j and individual i we may code a predictive variable xij as 0, 1 or 2 for
genotypes “AA,” “Aa” or “aa,” respectively (i.e., xij represents the number of “a” alleles
carried by individual i at SNP j). Two possible single SNP linear models are: (m1) yi =

β0+β1xij+εi and (m2) . For model m1 we would test the null

hypothesis  vs. , while for model m2 we would test the hypothesis

.  or β2 ≠ 0. Comparing the power of a test of  with a test

of  involves comparing two tests with differing degrees of freedom. It is true that in

some sense these are distinct hypotheses, and technically,  may be true at the same time

 is false. However, the rejection of either hypothesis will lead us to the conclusion that
the SNP being investigated is associated with the disease. Some have suggested testing for
association between y and two neighboring markers at a time (Kim et al., 2010). In this case
we have numerous possible linear models such as: (m3) yi = β0 + β1xij + β2xi(j+1) + εi and
(m4) yi = β0 + β1xij + β2xi(j+1) + β3xi(j+1)xij + εi. For m3 we would test the hypothesis

.  or β2 ≠ 0, while for m4 we would test the hypothesis

.  or β2 ≠ 0 or β3 ≠ 0. Again, comparing these two tests
involves comparing two tests with differing degrees of freedom, though from a biological
viewpoint they are equivalent in that they both may be used to demonstrate that a particular
genomic region is associated with a trait. Clearly more complicated tests may be created
with quadratic terms and higher-order interaction terms leading to tests with a large number
of degrees of freedom.

Suppose we are comparing the power of two test statistics that are based upon two models
ma and mb. For example, ma and mb could be m1 and m2 above. We define νa as the number
of coefficients in model ma, and νb is defined similarly. We will assume that νa < νb. For ma

we perform a test (using, say, the Wald test) of , and for mb we perform a

test of . We refer to the test statistics as Ta and Tb, respectively. Let 
represent a non-central chi-squared distribution with degrees of freedom ν and a non-
centrality parameter (NCP) Δ. Also, let n represent the sample size. In order to make our

discussion simple we will simply assume that under the null hypothesis  and

. Under a given alternative, we will assume that the distributions can be adequately
characterized by the two non-centrality parameters (NCPs) Δa = nλa and Δb = nλb, so that

 and . Some discussion of how to calculate such NCPs for genome-
wide association studies may be found for example in Kim et al. (2010) and Yang et al.
(2010).

We now introduce a key piece of notation:
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(1)

or equivalently δb = δa(1 + q). Thus q, which is independent of the sample size, represents
the fractional increase in the NCP that can be achieved by using a hypothesis test based on
the higher dimensional model mb instead of the lower dimensional model ma. When q = 0
then the NCPs of the two models are equal. Unfortunately, Tb has additional degrees of
freedom compared to Ta, and therefore at a given alpha level the cutoff for rejecting H0
using Tb is larger than the cutoff for rejecting using Ta. There is a cost/benefit analogy to be
drawn; we can purchase a larger NCP (as quantified by q) at the cost of increased degrees of
freedom. We will only be willing to pay this price if q is large compared to the increase in
degrees of freedom.

In what follows, we pose two simple questions, and show that the answers to these questions
depend on alpha. All of the computations below were performed in R 2.9.2. The numerical
accuracy of the chi-squared CDF at low alpha levels in R has been evaluated by Bangalore
et al. (2009).

2 Results
First, we ask: what must q be for Ta and Tb to have equal power? That is, to borrow from the
cost benefit analogy, we ask what value of q would allow us to break even with costs equal

to the benefits. To answer this question, we first consider a test statistic (T) such that 

distribution under H0 and  under some alternative hypothesis. In this case, the

power for a given α and ν is  where  is the
cumulative distribution function of the non-central chi-squared distribution with degrees of
freedom ν and NCP = Δ evaluated at the 1 − α quantile of the central chi-squared
distribution with ν degrees of freedom. Because the power of T at a fixed α is a strictly
increasing (thus invertible) function of Δ, we may solve for the Δ which would yield a power
(p) where p ∈ (α, 1). We define the function Δ (α, p, ν) as the solution to this equation (i.e.

the Δ such that . We wish to find the value of q that would give
equal power (p) for Ta and to Tb at a given α, and we define the function Q(α, p, νa, νb) as
the answer to this question. From equation (1) we have

(2)

Figures 1a and 1b show plots of Q(α, p, 1, 2) and Q(α, p, 1, 3), which are obviously
dependent on alpha. Figure 1a and 1b may be interpreted as saying that, in general, for a
given p, α, νa and νb, we should use Tb if q is above what is suggested by the corresponding
curve and we should use Ta otherwise. What is perhaps most remarkable about Figures 1a
and 1b is the decreasing behavior of the function. This indicates that the cost of an additional
degree of freedom, at least in this context, is less at a low alpha level than at a standard 0.05
alpha level. That is very small. The general behavior of the curves is similar over a broad
range of choices for νa and νb.

Our second question is this: given some values of q and the power of Ta, how much power
would be gained or lost by using Tb instead of Ta? Using the same notation described above,
we want to know

(3)
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In equation (3) the non-centrality parameter (1 + q) Δ (α, p, νa) comes from equation (1)
because Δb = (1 + q)Δa. In Figures 1c and 1d we show that, in the worst case scenario, when
q = 0 (i.e., the extra degree(s)of freedom buy(s) no increase in the NCP) the percentage of
power lost is fairly constant across alpha levels. However, if there is even a small increase in
the NCP, the behavior at different alpha levels may be quite different. The curves shown in
Figures 1c and 1d have the power (p) of Ta fixed at 65%. As may be expected, for larger p
the dependence on alpha is less dramatic (i.e., the slopes are not as large) because a power
cannot be larger than 100%.

3 Conclusion
We may wonder why we instinctively believe that power comparisons between different
statistics will not be dependent on alpha. It may be our natural propensity to generalize, or it
may be our experience with point hypotheses and uniformly most powerful (UMP) tests
(Lehmann and Romano, 2005). UMP tests are typically not only most powerful for every
value of the parameter in the parameter space, but also for every “attainable” value of α ∈
[0, 1] (Hogg and Craig, 1995, p. 411). In the examples we present, no UMP test exists

because we can easily find genetic models that would make the test of  more powerful

than  and vice versa. Therefore, power comparison studies must compare power over a
broad range of plausible genetic models.

With the development of numerous high throughput molecular techniques such as array-
based genotyping, many modern applications in statistics involve high dimensional scans,
and thus require multiple-test corrections leading to extremely small alpha levels. Many
methodological papers set out to compare the power of various test statistics for such high
dimensional applications. This note serves as a warning that power comparisons done with α
= 0.05 may not generalize to these realistic applications, especially when comparing
statistics with differing degrees of freedom.
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Figure 1.
Power comparisons are a function of alpha level. By definition q = (δb − δa)/δa is the relative
increase in the NCP purchased by the additional degrees of freedom. Note the log scale on
the x-axis of all four graphs. (a,b) For different values of α, power (p) of Ta, and degrees of
freedom, we show how large q must be for Tb and Ta to have equal power. (c,d) For
different values of q and α and with the power of Ta fixed at 65% we show the percentage of

power gained by using Tb (i.e., 100% × [ /
0.65).
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