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Abstract
Candidate gene-by-environment (G×E) interaction research tests the hypothesis that the effects of
some environmental variable (e.g., childhood maltreatment) on some outcome measure (e.g.,
depression) depend on a particular genetic polymorphism. Because this research is inherently non-
experimental, investigators have been rightly concerned that detected interactions could be driven
by confounders (e.g., ethnicity, gender, age, socioeconomic status, etc.) rather than by the
specified genetic or environmental variables per se. In an attempt to eliminate such alternative
explanations for detected G×E interactions, investigators routinely enter the potential confounders
as covariates in general linear models. However, this practice does not control for the effects these
variables might have on the G×E interaction. Rather, to properly control for confounders,
researchers need to enter the covariate-by-environment and the covariate-by-gene interaction
terms in the same model that tests the G×E term. In this manuscript, I demonstrate this point
analytically and show that the practice of improperly controlling for covariates is the norm in the
G×E interaction literature to date. Thus, many alternative explanations for G×E findings that
investigators had thought were eliminated have not been.
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Candidate gene-by-environment interaction (G×E) studies test the hypothesis that the effect
of some environmental variable (e.g., childhood maltreatment) on some outcome measure
(e.g., depression) depends on a particular (“candidate”) genetic polymorphism. This research
area has been a hot topic in genetics, with hundreds of publications reporting positive G×E
discoveries over the last 15 years, but there has been increasing skepticism about the validity
of many of these findings (1–6). This skepticism is based on a number of substantive and
statistical concerns: (a) a low replication rate among attempted direct replications of G×E
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findings; (b) the possibility that G×E findings capitalized on chance from among many
unreported analyses; (c) a publication bias toward positive findings; (d) small sample sizes
that exacerbate the already low statistical power for detecting interactions (7) which,
counter-intuitively, increases the false positive rate; and (e) the low prior probability that a
specified environmental variable interacts with a specified candidate gene polymorphism.
These concerns have led some researchers to suggest that the false positive rate (8)—the
proportion of significant “discoveries” that are actually false—in the G×E literature is very
high, well above the nominal type-I error rate of .05 (1, 6). In essence, skeptics are
concerned that the lessons learned from high-powered genome-wide association studies,
which failed to corroborate previous candidate gene findings (9–13), will apply equally to
G×E findings once large genome-wide interaction studies (14) are performed. In response to
such concerns, at least two journals, Behavior Genetics (15) and Journal of Abnormal Child
Psychology (16), have recently published policies outlining stricter criteria that must be met
before manuscripts reporting candidate gene main effects or interactions will be considered
for review.

The current manuscript focuses on an additional statistical problem that appears pervasive in
the G×E literature. Namely, potential confounders have not been properly controlled for in
the statistical models used to test G×E effects. Typically, G×E studies enter three variables
—the genetic polymorphism (e.g., using a dummy or effects coding), the environmental
variable, and the product of these two variables (testing the G×E effect)—into a regression
equation to predict some outcome measure. However, there are often variables such as
ethnicity, gender, age, socioeconomic status, education, IQ, and so forth that investigators
wish to eliminate as possible alternative explanations for any G×E finding. Investigators
typically enter these variables into the regression equation as covariates to “control” for their
potential confounding effects on the interaction of interest. However, while entering these
covariates does control for their potentially confounding influences on the main effects of
the genotype and the environment, it does nothing to control for the potential confounding
influences these variables might have on the interaction term. Rather, to properly control for
potential confounders, investigators need to enter all the covariate-by-environment and the
covariate-by-gene interaction terms in the same model that tests the gene-by-environment
interaction term. Note that all simple effects and interaction effects between the covariates
and the genetic and environmental variables must be entered. So, for example, to control for
ethnicity and gender, investigators need to enter six terms (ethnicity, gender, ethnicity-by-
gene, ethnicity-by-environment, gender-by-gene, and gender-by-environment) along with
the original terms (gene, environment, and G×E). The G×E term would then be properly
adjusted for the potential confounding effects of these covariates.

This general point concerning proper covariate adjustment for interactions has been made
before with respect to personality (17) and social psychological (18) research, but it does not
appear to be in circulation in the genetics field, as evident from the literature review below.
Here, I demonstrate this problem analytically, discuss three example studies that have not
properly controlled for covariates and how the conclusions of these studies might be
misleading, and show that improper control for covariates is widespread in the G×E
literature.

Quantification of bias when improperly controlling for covariates in G×E
studies

The quantification of the bias that occurs in the interaction term in the presence of
improperly modeled covariates has been derived under simplifying assumptions by Yzerbyt,
Muller, and Judd (18), and so here I merely translate their conclusions to a G×E framework
and refer the interested reader to their article. For simplicity, let Gi be the effects-coded (−1,
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0, +1 for the aa, Aa, and AA alleles, arbitrarily coded) genetic variable where p(a)=p(A)=.5,
Ei be a normally distributed, standardized environmental variable, and C1i be a mean
centered covariate of interest (e.g., an ancestry score from a principal components analysis
of the identity-by-state matrix) that is correlated (confounded) with either Gi or Ei. The
substantive conclusions of what follows do not depend on these distributional assumptions,
but the assumptions simplify the math. For the derivations below, let us first assume that C1i
is confounded with Gi. In a properly specified model, the dependant variable, Yi, is therefore
a function of these variables and error:

(1)

where GiEi is the product of the genetic and environmental term and C1iEi is the product of
the covariate and environmental term.

Notice that when C1i is confounded with Gi, either Gi or C1i might interact with Ei, and thus
both the GiEi and the C1iEi term must be included in the properly specified model. This
allows for the possibility that it is the covariate that interacts with the hypothesized
environmental moderator rather than, or in addition to, the genetic polymorphism interacting
with the hypothesized environmental moderator. If C1 is ethnicity, for example, one can
imagine that individuals of a certain ethnic background are more sensitive to the
environmental variable than individuals of another ethnic background. This could easily
occur due to, e.g., cultural differences in reporting of environmental adversity, such that the
more ‘sensitive’ ethnicity only reports environmental adversity when it is more severe and
harmful. To the degree that there are genotype frequency differences between ethnicities,
GiEi will be confounded with C1iEi. Alternatively, if C1 is socioeconomic status, subtle
stratification not captured by self-report ethnicity, or a gene-environment correlation, may
cause a relationship between the genetic polymorphism and C1, again leading to the GiEi
term being confounded with the C1iEi term. In either case, the model in Equation (1) will
properly control for such alternative explanations, and βG×E will be estimated correctly in
the presence of βC1×E.

However, assume that the investigators control for the covariate in the typical way by
estimating only its main effect, and fit the following model:

(2)

The bias in the G×E term can then be quantified as the difference between βG×E (the
unbiased estimate from Model 1) and βG×E* (the biased estimate from Model 2). In this
case:

(3)

and βG×E* is biased as a function of . Note that βC1 does not affect the bias;
controlling for the main effect of the covariate does nothing to control for the covariate’s
effect on the interaction. It is therefore possible that some or all of the estimated G×E effect
in a model that “controls” for only the main effect of a covariate is due to the interaction
between the covariate and the environmental term rather than the G×E effect itself. A similar
situation occurs if the covariate is correlated with the environmental variable and interacts
with the genetic polymorphism. For example, the effect of the genetic polymorphism may
depend on ethnic or socioeconomic background rather than on the hypothesized
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environmental moderator. In this case, βG×E* is biased as a function of . Thus, to
properly control for all the potential ways k covariates might confound the G×E effect of
interest, investigators should fit the following model:

(4)

When the signs of the  or the  terms are opposite the sign of the
βG×E term, properly controlling for covariates can increase power to detect true G×E
interactions. However, when those terms are of the same sign as the βG×E term, properly
controlling for covariates will weaken evidence for apparent G×E interactions.

The G×E term will be biased in Model 2 when (a) the covariate is related to the genetic
variable and the covariate-by-environment interaction coefficient is nonzero or (b) the
covariate is related to environmental variable and the covariate-by-gene interaction
coefficient is nonzero. Nevertheless, the decision of whether to include or drop covariates
along with their interaction terms in a model should be based on theory, not on statistical
significance. As demonstrated via simulation by Yzerbyt et al. (18), dropping non-
significant covariate interaction terms can seriously inflate the type-I error rate of the G×E
term. Terms that are non-significant can still share enough variance with the G×E term to
change conclusions about its significance.

Finally, it should be noted that even if a G×E result ‘disappears’ after properly controlling
for covariates, this does not necessarily mean that the original G×E hypothesis was wrong.
For example, the genetic polymorphism might cause changes in the covariate which in turn
moderates the environmental variable, in which case the covariate is a mediating mechanism
by which the gene moderates the environmental variable (19). That said, this possibility
applies to all models that statistically control for covariates in regression, and the traditional
interpretation of ‘disappearing’ effects after controlling for a covariate is that the true causal
pathway is ambiguous and alternative (confounding) explanations cannot be ruled out. That
said, in some cases, a particular causal pathway can be discarded as impossible or unlikely.
In such cases, investigators can be more definitive about ruling out certain hypotheses. For
example, changes at a genetic polymorphism will not lead to changes in ethnicity, and so a
G×E hypothesis can be safely discarded if it is mediated by an ethnicity-by-environment
interaction.

Three examples of misspecified models in the G×E literature
I briefly review three highly-cited examples from the G×E literature where investigators
improperly attempted to control for covariates in their regression models. The purpose is not
to draw attention to these studies per se, nor to suggest that they are particularly egregious
examples of this practice; as shown below, no G×E study reviewed here properly controlled
for covariates. Rather, the purpose is to better illustrate the problem with examples
representative of the field, and to allow the reader to gauge the plausibility (or
implausibility) of alternative explanations that could have been tested had investigators
properly controlled for covariates.

Kaufman et al., 2004: A gene-by-environment or an ethnicity-by-environment interaction?
Using a mixed-ethnicity sample (32% African American, 22% biracial, and 46% non-
African American; n=104), Kaufman et al. (20) reported results showing that the
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depressogenic effect of a repeat polymorphism (short/long [s/l]) at the serotonin-transporter-
linked polymorphic region (5HTTLPR) depended on childhood maltreatment and on social
support. I focus first on the two-way 5HTTLPR-by-maltreatment interaction they describe.
The investigators included ethnicity (the ancestral proportion score), age, and gender in the
regression equation “given the relevance of these potential confounding variables in
interpreting the study results,” (p. 17318). The test of the 5HTTLPR-by-maltreatment
interaction was significant (p=.007), and this effect was primarily due to maltreated
individuals with the s/s allele having significantly higher depression scores. However, as
noted by the investigators, African Americans have a significantly higher frequency of the
long repeat allele compared to non-African Americans. If, due to cultural norms, maltreated
African Americans are less likely to report depression than maltreated non-African
Americans, some or all of the detected G×E interaction may have been due to ethnicity
moderating the effect of maltreatment. Somewhat less plausibly, it is also possible that the
effect of 5HTTLPR on depression depends on ethnicity. If African Americans in the sample
had different rates of maltreatment, a 5HTTLPR-by-ethnicity interaction might also have
caused the apparent 5HTTLPR-by-maltreatment interaction. Because the authors failed to
include the environment-by-ethnicity and gene-by-ethnicity interaction terms, these
alternative explanations for their findings cannot be ruled out.

Kaufman et al. (20) reported their 5HTTLPR-by-maltreatment interaction in a model that
also tested a two-way 5HTTLPR-by-social support interaction (ns) and a three-way
5HTTLPR-by-maltreatment-by-social support interaction (p=.0001). This raises two issues.
First, in models testing three-way interactions, investigators must include not only all
relevant two-way covariate-by-gene and covariate-by-environment interactions, but must
also include all relevant three-way interactions involving the covariate. With small sample
sizes, this can eat up a relatively large number of available degrees of freedom, but it is
necessary if investigators wish to eliminate these covariates as explanations for their
interaction results.

Second, it is difficult and potentially misleading to interpret two-way interactions in the
presence of three-way interactions. In such a model, the lower-order two-way interactions
become conditional interactions, and the regression betas and p-values are interpreted as the
predicted two-way interactions when the other (omitted) variable is coded as 0 (21). For
example, the 5HTTLRP-by-maltreatment interaction reported by Kaufman et al. (2004) is
the predicted effect of this interaction when social support is at 0. Whether “0” is
meaningful (e.g., the average level of social support) or not (e.g., outside the range of the
data) is essential for interpreting the lower-order interactions (the exact same issue applies to
“main” effects in the context of interactions). Because the authors do not mention their final
coding scheme for social support, it is not possible to know whether the reported significant
two-way interaction is meaningful, although in interpreting their results above, it was
assumed that the authors centered social support so that the two-way 5HTTLRP-by-
maltreatment effect is the interaction predicted to occur among those at average levels of
social support.

Caspi et al., 2005: The effect of COMT on psychosis risk depends on adolescent cannabis
use, but is cannabis the true moderator?

In a sample of 803 Caucasian individuals, Caspi et al. (22) found that adolescent-onset
cannabis use interacted with a SNP in the Catechol-O-Methyltransferase (COMT) gene to
significantly predict several related adult psychotic symptoms. The investigators attempted
to rule out the hypothesis that early cannabis use was a gateway to using amphetamines and
hallucinogens, which in turn were the true moderators of the COMT polymorphism. They
did this by including amphetamine/hallucinogen usage as a covariate in the model, which
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unsurprisingly (see Equation 3) had little effect on the COMT-by-cannabis use interaction.
However, given that there is a relationship between early cannabis use and later usage of
‘harder’ drugs (23), it is possible that the observed interaction had little to do with cannabis
use, but rather was driven by or was partially mediated by a COMT-by-hallucinogen/
amphetamine interaction. Similarly, Caspi et al. (22) attempted to eliminate the counter-
explanation that the COMT-by-cannabis interaction was driven by conduct disorder by
including conduct disorder as a covariate, which again had little effect on the interaction
result. However, given the relationship between cannabis use and conduct disorder reported
by the investigators, it is also possible that the observed interaction was caused by COMT
effects differing by level of conduct disorder. In other words, despite attempts to show the
specificity of the interaction by controlling for covariates, their findings do not provide
convincing evidence that adolescent cannabis use per se moderated the effect of COMT.
Finally, if COMT itself is related either to hallucinogen/amphetamine usage or to conduct
disorder (due to a passive or evocative gene-environment correlation or to subtle
stratification effects), then it is possible that there is no G×E interaction here at all. Rather,
the effect of conduct disorder (or hallucinogen/amphetamine usage, SES, IQ, etc.) on
psychosis might depend on cannabis usage, and the apparent G×E interaction may have
actually been caused by a covariate-by-cannabis interaction.

Cicchetti et al., 2007: A gene-by-environment or a gender-by-environment interaction?
Using a mixed-gender (54% male) sample of 267 individuals, Cicchetti et al. (24) found that
a repeat polymorphism in the X-linked monoamine oxidase A (MAOA) gene interacted with
childhood maltreatment to predict depression. The investigators coded “high activity” of the
gene as having more than 3.5 repeats (63% allele frequency) and “low activity” as fewer
than 3.5 repeats. Because males have only one copy of the gene, coding the genetic variable
for males was straight-forward, but it was unclear how to code heterozygous (high/low)
females, who were therefore excluded. However, this coding strategy probably induced a
relationship between MAOA activity and gender. The proportion of males was ~.63 for the
high activity allele and ~.37 for the low activity allele. However, for females these
proportions were ~.632=.40 for the high activity and ~.372=.14 for the low activity alleles
(assuming Hardy-Weinberg equilibrium). Thus, females were probably over-represented in
the high activity group: there were ~1.7 times more males in the high vs. low activity groups
but ~2.9 times more females in the high vs. low activity groups. Investigators controlled for
the main effects of gender and ethnicity, but not for their interactions with MAOA activity
or childhood maltreatment. Therefore, a potential alternative to their findings is that the
effects of maltreatment depend on gender, which presented itself as a MAOA-by-
maltreatment interaction in their results. Last, this study also used a mixed-ethnicity sample
of African Americans, European Americans, and Hispanics, and given large differences in
MAOA allele frequencies between ethnicities (25), it is also possible that the observed
interaction was driven by an ethnicity-by-maltreatment or an ethnicity-by-COMT
interaction.

Literature review
To understand the extent of improper usage of covariates in G×E studies, I selected all (47)
novel G×E studies that were identified in the Duncan & Keller (2011) review of the first ten
years of candidate G×E studies in psychiatry. Novel studies (first reports of a given G×E
finding) were selected because replication attempts were likely to employ the same model
used in the original report, and therefore would provide redundant information about typical
practices for controlling covariates. Studies were coded according to the following criteria:
(a) whether they reported significant G×E findings or not; (b) whether the investigators
properly controlled for covariates by including all relevant covariate-by-gene and covariate-
by-environment interactions; and (c) whether the sample was ethnically heterogeneous or
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not. Of the 47 studies, 45 (96%) reported significant G×E results (Table 1). This high rate,
when compared to the lower rate (27%) of positive results among replication attempts (not
shown), is probably symptomatic of publication bias (1). As shown in Table 1, of the 41
studies that attempted to statistically control for potential confounders by including them as
covariates in linear models, none used the properly specified model. Assuming that this
sample of studies is representative of studies in the wider G×E literature, it is likely that
almost all published G×E findings that have attempted to statistically control for covariates
have done so improperly, and thus alternative explanations for these findings cannot be
ruled out.

Because allele frequencies in the candidate genes typically investigated in G×E studies often
differ across ethnicities, an ethnicity-by-environment interaction is a particularly plausible
alternative explanation for G×E findings from ethnically heterogeneous samples. Of the 47
studies, 26 used an ethnically homogeneous sample, 10 used an ethnically heterogeneous
sample, and 11 did not provide information about ethnicity. Most but not all of those studies
that failed to provide information about the ethnic compositions of their samples were
conducted in Europe and presumably used ethnically homogeneous samples. Thus,
stratification is a possible alternative explanation for around one-fifth of these G×E results.

Finally, although no study included all relevant covariate-by-environment or covariate-by-
gene terms to control for the effects of the covariates on G×E interactions, it should be noted
that several studies conducted follow-up analyses that went at least partway toward
eliminating certain covariates as alternative explanations for the G×E findings. Dick et al.
(26) tested gender-by-gene and age-by-gene interactions in separate models that did not
include the G×E term and found they were not significant. This procedure does make it less
likely that the two covariates investigated are responsible for the reported G×E interaction.
However, it did not include the covariate-by-gene or covariate-by-environment interactions
in the primary model, and as noted above, even non-significant covariate interaction terms
can substantively change conclusions about the interaction of interest. Caspi et al (27)
stratified their sample by MAOA genotype and noted that the interaction held in each
subsample. This is a highly conservative control for MAOA and essentially eliminates it as a
potential confounder of their G×E finding, but the investigators did not control for their
other covariate (gender) in the same way and did not control for any other potential
confounders. Similarly, Amstadter et al. (28) and Ǻslund et al. (29) restricted follow-up
analyses to ethnically homogeneous subsamples and found similar results to their original
ones, eliminating stratification as a possible alternative explanation to their findings.
However, the datasets were not similarly stratified on other covariates. Finally, the study by
Waldman (30) was the only one of those investigated that included several covariate-by-
gene (in this case) interaction terms in the primary model to eliminate several alternative
explanations for the G×E finding, but the study failed to control for other covariates such as
ethnicity in a similar way.

Conclusions
Because G×E research is inherently non-experimental (even if the environmental variable is
manipulated, the genetic variable cannot be), it is essential that investigators control for
potential confounders in order to eliminate alternative explanations for G×E results.
Unfortunately, it appears that virtually no G×E studies to date have appropriately controlled
for covariates. This is not to say that previously published G×E findings are necessarily
wrong; properly controlling for confounders would not have changed conclusions in some
cases and may have even strengthened them in others. However, the point is that it is
unknown how often G×E conclusions would have changed with properly specified models,
and this is cause for concern.
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There are at least two related potential objections to the recommendation to include all
relevant covariate-by-gene and covariate-by-environment interactions to models estimating
a G×E term. The first has to do with overfitting: with so many terms, it may be
unrealistically hopeful to obtain precise estimates of all the covariate interaction terms,
especially if sample sizes are small. However, the purpose of including covariate interaction
terms is not to estimate their effects per se, but rather to control for their effects on the G×E
term of interest. The second potential objection is that, with a large number of interaction
terms included in the model, multicolinearity may degrade evidence for the G×E term.
However, this is entirely the point. To the degree interaction terms containing covariates are
correlated with the G×E term, alternative explanations for the observed G×E interaction are
possible. Moreover, inclusion of covariate interaction terms in a model tested on the full
dataset is a much more statistically powerful approach for controlling potential confounders
than is splitting the data by covariates and testing the G×E term in each subset of the data.
Finally, investigators should be assuaged by the fact that if covariate interaction terms have
no true relationship with the G×E term, the G×E interaction estimate typically changes very
little, and is as likely to be strengthened as weakened by proper inclusion of covariate
interaction terms.

The recommendations of this manuscript extend to future genome-wide interaction studies
as well. For such studies, it is not sufficient to control for stratification, site, platform, and
plate effects as is done in traditional (main effect) genome-wide studies. Rather, all relevant
covariate-by-gene and covariate-by-environment interactions must also be included in the
model to eliminate artifactual genome-wide signals that may otherwise swamp what are
likely to be small true G×E signals.

In summary, G×E research has generated much excitement over the past decade. Findings
from the field suggest an appealing possibility: genes are not destiny—their effects depend
on environmental context. This may often be true, but to date, the field has not convincingly
demonstrated that any particular G×E finding is robust. This is not only because
investigators have failed to properly specify covariates in their models, but also because
sample sizes have typically been small, the appropriateness of multiple testing corrections
has been difficult to verify, and the unpublished ‘file drawer’ of negative findings may be
large. These issues have led to an erosion of confidence in published G×E findings. This
confidence will increase as investigators, reviewers, and editors acknowledge these issues
and take steps to rectify them.
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