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Abstract
Whereas selenium was found to act as an insulin-mimic and to be anti-diabetic in earlier studies,
recent animal experiments and human trials have shown unexpected risk of prolonged high Se
intake in potentiating insulin resistance and type 2 diabetes. Elevating dietary Se intakes (0.4 to
3.0 mg/kg of diet) above the nutrient requirements, similar to overproduction of selenoproteins,
led to insulin resistance and(or) diabetes-like phenotypes in mice, rats, and pigs. Although its
diabetogenic mechanism remains unclear, the high Se intake elevated activity or production of
selenoproteins including GPx1, MsrB1, SelS, and SelP. This up-regulation diminished
intracellular reactive oxygen species (ROS) and then dys-regulated key regulators of β cells and
insulin synthesis and secretion, leading to chronic hyperinsulinaemia. Over-scavenging
intracellular H2O2 also attenuated oxidative inhibition of protein tyrosine phosphatases and
suppressed insulin signaling. High Se intake might affect expression and(or) function of key
regulators for glycolysis, gluconeogenesis, and lipogenesis. Future research is needed to find out if
certain forms of Se metabolites in addition to selenoproteins and if mechanisms other than
intracellular redox control mediate the diabetogenic effect of high Se intakes. Furthermore, a
potential interactive role of high Se intakes in the interphase of carcinogenesis and diabetogenesis
should be explored to make the optimal use of Se in human nutrition and health.
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Introduction
Selenium (Se) was discovered in 1817 and reported in 1818 by Jöns Jacob Berzelius [1]. It
was initially found as a toxic element because of Se poisoning in animals and humans [2].
However, Se deficiency was later shown to be more practically problematic and deleterious
or fatal in animals [3,4] and humans [5]. In 1957, Se was recognized as an essential nutrient
for animals [6] and 15 years later cellular glutathione peroxidase (GPx1) became the first
identified Se-dependent enzyme [7,8]. Another landmark of Se biology was seen in 1996
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when Clark and colleagues reported a striking effect of Se supranutrition on decreasing
mortality of three types of human cancers [9].

Diabetes mellitus is one of the most costly chronic diseases, with an estimated worldwide
prevalence of 366 million in 2011 and an expected rise to 552 million by 2030 [10]. In 2007,
the prevalence of diabetes in the USA was 7.8% [11]. Meanwhile, China has the largest
diabetic population in the world, accounting for 92.4 million adults in 2007–2008 [12].
There are four types of diabetes: Type 1 diabetes, Type 2 diabetes, gestational diabetes, and
maturity onset diabetes of the young (MODY). Type 2 diabetes accounts for 90% of all
diabetes and is characterized by peripheral insulin resistance, with an insulin-secretory
defect that varies in severity. Although mechanisms for insulin resistance and diabetes are
not fully understood, a growing body of evidence suggests that oxidative stress plays an
important role in both of their onset and progress [13,14]. While there was a high hope for
using antioxidants including Se to prevent and treat diabetes and its complications, a number
of recent human trials have actually shown an alarming correlation between high Se intake
or body Se status and diabetic risks [15–21]. Before this revealing, overexpression of GPx1,
the “oldest” and most abundant Se-dependent protein, was shown to induce type 2 diabetes-
like phenotypes in mice [22–24]. After this initial linking of selenoprotein to glucose and
lipid metabolism, several new animal studies have provided compelling evidence and
mechanism for the pro-diabetic potential of prolonged high Se intakes in different species.

Two tales of Se on diabetes
Se as an insulin mimic

Early studies indicated that inorganic Se acted as an insulin-mimic [25]. High doses of
sodium selenate (0.1 to10 mM for 10 or 20 min) stimulated glucose uptake in isolated rat
adipocytes through enhancing translocation of glucose transporters to plasma membrane,
and activating serine/threonine kinases including p70 S6 kinase [26, 27]. Moreover, sodium
selenate also produced dose-dependent stimulation of glucose uptake in dissected skeletal
muscle of rats with the maximal response reached at 100 mM (60 min) [28]. Intraperitoneal
injection or oral administration of sodium selenate improved glucose homeostasis in Type 1
and Type 2 diabetic animals [29–33]. Similarly, the insulin-like and anti-diabetic effects of
sodium selenite and selenomethionine were also observed in diabetic animals [34–39],
although their effects were shown to be weaker than sodium selenate. Mechanisms
underlying differentiated effects of various selenium compounds have been reviewed [40].
However, all these insulin-like effects were mainly observed at high Se doses (0.9–4.5 mg/
kg body weight) [29–39].

Deficiencies of Se and selenoprotein on diabetes
Data from earlier epidemiologic investigations showed correlations between abnormal
glucose or lipid metabolism and decreased plasma Se concentrations or selenoperoxidase
activity in diabetic subjects [41–48]. Likewise, there were also similar correlations or
associations in animals. Thompson et al [49] reported that feeding chicks with Se-deficient
diet (< 0.02 mg Se/kg of diet) for 3–5 weeks resulted in poor growth, poor feathering,
atrophy of the pancreas, and impaired lipid absorption, compared with Se-supplemented
controls. Souness et al [50] showed that rats fed a Se-deficient diet (Se content was too low
to be detected) for 7–8 weeks had lower insulin-stimulated glucose oxidation in adipocytes
compared with that of control rats fed the same diet supplemented with 0.5 mg Se/kg of diet
as sodium selenite. Asayama et al [51] reported that Se deficiency impaired islet function
and free radical scavenging systems in rats, resulting in decreased insulin secretory reserve.
Furthermore, feeding both normal and diabetic rats [52] with a Se-deficient diet (< 0.025 mg
Se/kg of diet) for 10 weeks elevated their plasma glucose concentrations and induced
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albuminuria and glomerular sclerosis, compared with those fed 0.27 or 0.78 mg Se/kg of
diet. While Se deficiency caused renal oxidative stress, Se supplementation to diabetic rats
prevented not only oxidative stress but also renal structural injury. Thus, supplementing Se
was perceived as an effective strategy to prevent and treat diabetes.

Likewise, two groups have recently suggested that selenoprotein deficiency in mice was
closely associated with diabetes or metabolic syndrome. Labunskyy et al [53] reported that
reducing selenoprotein synthesis by overexpressing an i(6)A(−) mutant selenocysteine tRNA
promoted glucose intolerance and led to a type 2 diabetes-like phenotype in mice. Seale et al
[54] showed that knockout (KO) of selenocysteine lyase (Scly) in mice affected hepatic
glucose and lipid homeostasis. Mice lacking Scly and raised on a Se-adequate diet exhibited
hyperinsulinemia, hyperleptinemia, glucose intolerance, hepatic steatosis, and increased
hepatic oxidative stress, but maintained selenoprotein levels and circulating Se status. Upon
dietary Se deficiency, Scly KO animals developed several characteristics of metabolic
syndrome, such as obesity, fatty liver, and hypercholesterolemia, with aggravated
hyperleptinemia, hyperinsulinemia, and glucose intolerance. Altogether, these findings
suggest a dependence of glucose and lipid homeostasis on Scly activity.

Elevations of Se intake and selenoprotein expression on diabetes
As mentioned above, a number of animal studies have been conducted to determine impacts
of high Se intakes or overexpression of selenoprotein on glucose and lipid metabolism in
mice, rats, and pigs. The main findings are summarized in Table 1.

Mice—The GPx1 overexpressing (OE) mice became obese at 6 months of age, and
developed hyperglycemia, hyperinsulinemia, hyperlipidemia, and insulin resistance, along
with elevated pancreatic β cell mass, islet insulin secretion, plasma leptin concentration, and
hepatic lipogenesis [22–24]. Diet restriction (3 vs. 5 g of feed/day) of OE mice from 2 to 6
months of age [55] prevented all their phenotypes except for fasting hyperinsulinemia and
hyper-secretion of insulin after glucose stimulation [55]. While dietary Se deficiency [23]
did not rescue these two primary phenotypes of GPx1 overproduction in the feed-restricted
OE mice, it exerted a strong effect on mRNA and(or) protein levels of 14 molecules
involved in islet insulin synthesis and secretion and hepatic lipogenesis [23]. Dietary Se
deficiency exhibited a hypoinsulinemic trend in OE mice and a strong hypolipidemic effect
in the liver of WT mice. Because the overwhelming metabolic effect of diet restriction and
the relatively short length of Se deficiency might preclude further benefit of dietary Se
depletion in this study [23], a consecutive study [56] was conducted by Yan et al to explore
whether dietary Se deficiency in the full-fed OE mice could completely rescue their
phenotypes. While dietary Se deficiency (<0.02 mg of Se/kg of diet from 1 to 5 months of
age) indeed precluded the GPx1 overproduction in the full-fed OE mice, 3 of their
phenotypes, including hyperglycemia, insulin resistance, and elevated hepatic lipid profiles
[22], were nearly rescued. Meanwhile, their hyperinsulinemia and aggravated glucose
stimulated insulin secretion (GSIS) were also improved by dietary Se deficiency [56].
Mechanistically, this alleviation resulted from modulating the expression and/or function of
proinsulin genes, lipogenesis rate-limiting enzyme genes, and key glycolysis and
gluconeogenesis enzymes in islets, liver, and muscle. Taken together, these findings suggest
that GPx1 was an important regulator of energy metabolism and insulin synthesis, secretion,
and function. The C57BL/6 J mice fed a Torula yeast-based diet supplemented with Se at
0.4 mg/kg of diet for 3 months developed hyperinsulinemia and had decreased insulin
sensitivity, compared with those fed a Se-deficient diet and the diet supplemented with 0.1
mg of Se/kg of diet [53].
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Rats—Rasekh et al. [57] showed that acute intraperitoneal administration of sodium
selenite to the rats (1.6 mg/kg of body weight or more) caused hyperglycemia in a time- and
dose-dependent manner. While sodium selenite did not change plasma insulin levels in
either fasted or fed animals, increases in corticosterone levels of the rats suggested the
involvement of gluconeogenesis in this hyperglycemic response. In contrast to the nearly
toxic doses of Se used in the above-mentioned study, Mueller et al [58] reported that rats
received diets supplemented with sodium selenate to obtain final Se concentrations of 75 or
150 μg Se/kg of diet for 8 weeks had markedly elevated body weight, higher liver protein
tyrosine phosphatase 1b (PTP1b) activity and higher liver triglyceride concentrations than
the control group fed a Se-deficient diet. It is now well recognized that protein tyrosine
phosphatases (PTPases) counteract insulin signaling and that maintaining the reduced state
of PTPases supports this effect. They [59] also found that rats fed diets containing Se as
selenite or selenate (final Se concentrations of 0.2, 1 and 2 mg/kg diet) for 8 weeks featured
a higher body weight compared to their Se-deficient controls. In another recent study [60],
female Wistar rats were fed a Se-deficient (0.01 mg/kg of diet) corn–soy basal diet (BD) or
BD+Se (as Se-yeast) at 0.3 or 3.0 mg/kg of diet from 5 weeks before breeding to day 14
postpartum, and offspring of the 0.3 and 3.0 mg Se/kg of diet dams were fed with the same
respective diet until age 112 days. Compared with the 0.3 mg Se/kg of diet, the 3.0 mg Se/kg
of diet induced hyperinsulinemia, insulin resistance, and glucose intolerance in the dams at
late gestation and/or day 14 postpartum and in the offspring at age of 112 days. Furthermore,
plasma triglyceride levels in the dams were increased by the high dietary Se intake on day
19 of gestation. This hyperlipidemic effect of the high-Se diet in the gestating dams was also
similar to the data from the above studies by Mueller et al [58,59].

Pigs—As a better model than rodents for human nutrition and medicine, pigs share with
humans a greater metabolic similarity and disease susceptibility to develop type 2 diabetes
or metabolic syndrome [61]. Feeding pigs with 3.0 mg of Se/kg of diet for 16 weeks induced
hyperinsulinemia compared with those fed 0.3 mg of Se/kg of diet [62]. More specifically,
the Se-overdosed pigs had >50% plasma insulin levels than the Se-adequate pigs to maintain
similar plasma glucose concentrations, indicating an early sign of insulin resistance. Unlike
rats [58–60], pigs fed the high-Se diet (3 mg of Se/kg of diet) did not develop
hyperlipidemia compared with those fed 0.3 mg of Se/kg of diet. Meanwhile, Pinto et al [63]
reported that after 16 weeks of intervention, fasting plasma insulin and cholesterol levels
were increased in pigs fed 0.50 mg of Se/kg of diet (as Se-yeast) compared with those fed
0.17 mg of Se/kg of diet, although fasting glucose concentrations did not differ between the
two groups.

Other models—Past studies using high Se intakes not designed for diabetes research, but
for cancer chemoprevention or selenium toxicity research, have often overlooked or ignored
glucose homeostasis or energy metabolism. However, there was at least one study
illustrating such link. That study was aimed at characterizing Se action on normal rat heart
function [64] and showed that sodium selenite administration to the normal rats (5 μmol or
0.86 mg/kg of body weight per day) for 4 weeks caused a slight but significant increase in
blood glucose level, and a significant decrease in plasma insulin level.

Putative mechanisms of high Se on diabetes
ROS on islet insulin synthesis and secretion

Compared with liver, islets contain only 1% catalase, 2% GPx1, and 29% SOD1 activities
[65–67]. Accordingly, β cells are considered to be low in antioxidant defense and
susceptible to oxidative stress. In diabetic subjects, the β cell apoptosis seems to be a more
deciding factor than replication in controlling the cell mass compared with control subjects
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[68]. Thus, maintaining pancreatic islet β cell mass is recognized as a pivotal prevention
from pathogenesis of both types 1 and 2 diabetes [69]. The β cell apoptosis can be triggered
by high glucose [70] and cytokines that elevate ROS production [71]. Furthermore, the key
regulators of β cells and insulin synthesis are responsive to ROS, such as mitochondrial
uncoupling protein 2 (UCP2), and the transcriptional factors, pancreatic duodenal homebox
1 (PDX1) and forkhead box A2 (FOXA2). In general, elevated ROS contribute to β cell
apoptosis and defective insulin synthesis via affecting expression and function of these
transcriptional factors. Although being considered to be wasteful and deleterious, ROS,
especially H2O2, function as important factors in normal cellular signal transduction [72,
73], although contradictory results have been published regarding their impacts on acute
glucose exposure and roles in GSIS. While numerous studies have described the negative
effects of ROS generation in β cells including attenuation of GSIS [74], emerging evidence
indicates that ROS derived from glucose metabolism, in particular H2O2, serve as additional
metabolic signals to elicit GSIS [75–78]. This view has been reviewed elsewhere [79, 80].

ROS on insulin sensitivity
In insulin-responsive tissues, actual roles of ROS in insulin signaling depend on the balance
of ROS production and antioxidant defense. Excessive ROS is involved in the multifactorial
etiology of insulin resistance, and the subsequent development of type 2 diabetes [13,14].
Meanwhile, elevating ROS may activate a variety of serine/threonine kinases that in turn
phosphorylate multiple targets, including the insulin receptor (IR) and the insulin receptor
substrate (IRS) proteins [81]. In consequence, increased serine phosphorylation of IRS-1
decreases insulin-stimulated tyrosine phosphorylation of the protein, leading to insulin
resistance. On the other hand, H2O2 may prolong phosphorylation of key proteins in the
insulin signaling cascade by an oxidative inhibition of PTP1b [82–85].

Selenoproteins and antioxidant enzymes on tissue ROS tone and related signaling
Overexpression or knockout of GPx1 altered intracellular ROS status and subsequent redox
regulation of key events in insulin synthesis, secretion, and function, resulting in dys-
regulated glucose and lipid metabolism [22, 24]. More specifically, GPx1 overproduction
up-regulated PDX1 mRNA and protein levels and attenuated degradation of PDX1 protein
in islets [55]. The decrease in phosphorylated PDX1 protein was likely due to a reductive
environment in islets, and the decreased phosphorylation of AKT at Thr 308 [86, 87], in line
with the idea that phosphorylation of PDX1 is required for degradation by the proteasome
machinery. An elevated functional PDX1 protein in islets resulted in hypertrophy of β cell
mass, and subsequent increased pancreatic and plasma insulin concentrations [88–90]. In
contrast, the reverse was induced by the GPx1 knockout [24]. Furthermore, GPx1
overexpression resulted in hyperacetylation of histone 3 and 4 (H3 and H4) in the PDX1
gene promoter [55] that may help explain in part the increased islet PDX1 mRNA levels.
However, GPx1 overproduction had no significant effect on islet FOXA2 mRNA levels.
Unlike the GPx1 overproduction, the GPx1 knockout did not affect islet PDX1 mRNA and
H3 and H4 acetylation [24]. GPx1 overproduction down-regulated islet UCP2 protein and
elevated mitochondrial membrane potential, contributing to the accelerated GSIS and
hyperinsulinemia [55]. In contrast, knockout of GPx1 alone or together with SOD1 up-
regulated UCP2 protein in pancreas and decreased islet ATP content [24]. Both changes
could contribute to the attenuated GSIS in these mice. In the GPx1 overexpressing mice,
insulin resistance was associated with an attenuated insulin-stimulated phosphorylation of
IR β subunit and AKT at Ser 473 and Thr 308 in liver and muscle [22]. These decreased
phosphorylations were presumably caused by the diminished intracellular H2O2, which
lifted the oxidative inhibition of protein tyrosine phosphatases. In contrast, knockout of
GPx1 resulted in enhanced phosphorylation of AKT in muscle [24], and rendered mice
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resistant to a high fat diet induced-insulin resistance via an enhanced oxidation of
phosphatase with tensin homology (PTEN) selectively in muscle tissue [91].

SelP (in humans encoded by the Sepp1 gene), a secretory protein primarily produced by the
liver [92, 93], contains ten selenocysteine residues and functions as a Se transporter [94]. A
pioneer study by Walter et al [95] reported the stimulation of the Sepp1 promoter activity by
the forkhead box transcriptional factor FoxO1a in hepatoma cells and its attenuation by
insulin. Moreover, the production of SelP was regulated similarly to that of the
gluconeogenic enzyme glucose-6-phosphatase, by concerted action of peroxisome
proliferator-activated receptor-γ coactivator 1α (PGC-1α) and the transcriptional factors
FoxO1a and hepatocyte nuclear factor-4α (HNF-4α) [96]. They also found that treatment of
rat hepatocytes with high glucose resulted in increased Sepp1 mRNA expression and
secretion. Furthermore, the treatment with metformin induced dose-dependent down-
regulation of Sepp1 mRNA expression and secretion, and suppressed glucocorticoid-
stimulated production of SelP [97]. Recently, Misu et al [98] found a positive correlation
between hepatic Sepp1 mRNA levels and insulin resistance in humans, along with a positive
correlation between serum SelP levels and both fasting plasma glucose and hemoglobin A1c
(HbA1c) levels. Administration of purified SelP impaired insulin signaling and dysregulated
glucose metabolism both in vitro and in vivo. In contrast, genetic deletion and RNA
interference-mediated knockdown of SelP improved systemic insulin sensitivity and glucose
tolerance in mice. The metabolic actions of SelP were mediated, at least partly, by
inactivation of adenosine monophosphate-activated protein kinase (AMPK). Accordingly,
the metabolic effect of SelP on insulin sensitivity was similar to that of GPx1. However,
SelP did not show effect on β cell mass or insulin synthesis and secretion.

Walder and colleagues showed that Tanis (in humans encoded by the Sels gene) was
regulated by glucose and altered in the diabetic state [99,100]. Furthermore, Tanis
overexpression in H4IIE cells reduced glucose uptake, basal and insulin-stimulated glycogen
synthesis, and glycogen content, attenuated the suppression of phosphoenolpyruvate
carboxykinase (PEPCK) gene expression by insulin, and had no effect on insulin-stimulated
IR phosphorylation or triglyceride synthesis [101]. These results suggested that Tanis might
be involved in the regulation of glucose metabolism, and increased expression of Tanis
could contribute to insulin resistance in the liver. Furthermore, emerging evidences suggest
that elevations of Sels [102–105] or Sepp1 [106,107] mRNA and protein expression were
observed in type 2 diabetic patients.

It has been widely accepted that catalase, GPx, and SOD represent the three most important
intracellular antioxidant enzymes. SOD1 (Cu,Zn-SOD) comprises over 90% of the total
cellular SOD activity, and functions upstream of GPx1 in catalyzing dismutation of
superoxide ion into H2O2. Catalase shares a common substrate of H2O2 with GPx1, but with
a lower affinity for H2O2. Altered expressions of SOD1 and catalase have produced variable
metabolic outcomes. Whereas β cell-specific or global overexpression of SOD1 enhanced
mouse resistance to alloxan-induced diabetes [108, 109], β cell-specific overexpression of
catalase aggravated onset of type 1 diabetes in nonobese diabetic mice [110]. It seems that
the role of catalase in glucose metabolism is similar to that of GPx1, but different from that
of SOD1. A comprehensive review of this topic can be found elsewhere [48].

High Se intake on tissue redox status and selenoprotein expression
High dietary Se intake may induce the generation of superoxide radicals and/or other ROS
[33,111–115]. This type of ROS elevation is implicated in the molecular mechanisms for the
insulin-like effects of Se, as elevated H2O2 may activate insulin signaling by an oxidative
inhibition of PTP-1b [82–85]. Meanwhile, a high selenite diet (1.0–2.0 mg of Se/kg of diet)
[59] resulted in a lower GSSG/GSH ratio in the rat liver, compared with a Se adequate diet
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(0.2 mg of Se/kg of diet). This antioxidant effect was in accordance with increased plasma
GPx3 activity by high Se over adequate Se supplements, although the high selenite diet had
no effect on the activities of GPx1 and SOD in the liver, and even decreased catalase
activity. Using the Se-enriched yeast [116], Zhou et al. have demonstrated that 3.0 mg of Se/
kg of diet enhanced (43–88%) GPx activity among four tissues of pigs (liver, testis, thyroid,
and pituitary) compared to those fed 0.3 mg of Se/kg of diet. However, the high Se diet did
not affect activities of plasma GPx3 and other three antioxidant enzymes in any of the four
tissues. The increased GPx activity was in accordance with data from another pig study [63].
Moreover, similar increases in hepatic or erythrocyte GPx activity by high Se diets over
adequate Se supplements have also been seen in mice [117], rats [118], and fish [119]. Thus,
the increases in liver and erythrocyte GPx activity seem to be a plausible mediator for the
high Se intake to disturb glucose and lipid metabolism.

While Zhou et al [116] found little effect of dietary Se concentrations (0.02, 0.3, and 3.0 mg/
kg diet) on mRNA levels of 12 selenoprotein genes in thyroid, pituitary, liver, or muscle,
Liu et al [62] reported that mRNA expression of the remaining 13 selenoproteins in 10
tissues of pigs responded to dietary Se in three patterns. But, there was no common
regulation for any given gene across all tissues or for any given tissue across all genes [62].
Dietary Se affected 2, 3, 3, 5, 6, 7, 7, and 8 selenoprotein genes in muscle, hypothalamus,
liver, kidney, heart, spleen, thyroid, and pituitary, respectively. Protein abundance of GPx1,
Sepp1, Selh, and Sels in 6 tissues was also regulated by dietary Se concentrations in three
ways. The high Se diet (3.0 mg of Se/kg of diet) resulted in greater protein levels of GPx1 in
heart and testis, Sepp1 in thyroid and testis, Selh in liver and kidney, and Sels in thyroid
compared with Se adequate diet (0.3 mg of Se/kg of diet). As reported previously, these
selenoproteins have the biochemical potential to be involved in glucose metabolism. In the
rat study [60], dietary Se produced dose-dependent increases in GPx1 mRNA or GPx
activity in pancreas, liver, and erythrocytes of dams. The 3.0 mg of Se/kg of diet decreased
Selh, Sepp1, and Sepw1, but increased Sels mRNA levels in the liver of the offspring,
compared with the 0.3 mg of Se/kg of diet. Expression of 6 selenoprotein genes, in
particular Gpx1, was linked to gestational diabetes and insulin resistance. Likewise,
Labunskyy et al showed that high-Se diet (0.4 mg/kg of diet), compared with the diet
containing 0.1 mg of Se/kg of diet, resulted in slight elevation of GPx1 and MsrB1 protein
levels in mice [53]. In contrast, protein expression of mitochondrial thioredoxin reductase 3
(TrxR3) in livers and kidneys was less responsive to changes in dietary Se levels. Moreover,
Pinto et al [63] observed an increase in GPx activity in the skeletal muscle of pigs fed a high
Se diet compared with the controls. However, the protein expression of GPx1 and
thioredoxin reductase 1 (TrxR1) was not altered by Se supplementation. No significant
changes in mRNA levels of any of the selenoproteins assayed in liver, skeletal muscle or
visceral adipose tissue (VAT) were found in the pigs fed the high Se diet over the Se-
adequate diet.

High Se intake on key regulators of beta cells and insulin
Given the positive effect of GPx1 overproduction on beta cell mass and insulin synthesis
and secretion [22–24], the above-mentioned elevated tissue GPx activity by the high Se diets
compared with the Se-adequate diets in various species might represent one of the pathways
for the high Se intake regulation of insulin levels. While the elevated tissue GPx activity
could attenuate insulin sensitivity by diminishing oxidative inhibition of PTP1b, Mueller et
al [59] reported a high Se diet (1.0–2.0 mg of Se/kg of diet as selenite or selenate) markedly
elevated liver PTP1b activity in rats through reduction of glutathionylation of PTP1b,
compared with the Se adequate diet (0.2 mg of Se/kg of diet). Apparently, this elevation of
PTP1b activity attenuated insulin-stimulated tyrosine phosphorylation of IRS, resulting in
impairment of insulin signaling. Moreover, insulin resistance induced by the high Se diet in
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the dams and offspring of rats was associated with down-regulation of mRNA levels of
hepatic Insr, Irs1, and Akt2 genes and/or hepatic IR and AKT protein levels [60]. The high
Se intake also reduced mRNA levels of hepatic Irs2 in the dams as well as those of muscle
Irs2 in the offspring. Because these genes code for key insulin signal proteins [120],
downregulation of their mRNA expression or protein production may compromise insulin
sensitivity. The high Se diet-induced porcine hyperinsulinemia was concurrent with Akt
protein decreases in liver and other tissues [62].

High Se intake on key regulators of glucose and lipid metabolism
The altered expression and function of key enzymes and factors for glucose and lipid
metabolism is also implicated in the mechanisms for the pro-diabetic potential of high Se
intake. This notion is supported by the finding that high Se diets increased gene expression
of forkhead box O1 and PGC-1α, and reduced gene expression of the glycolytic enzyme
pyruvate kinase in skeletal muscle of pigs [63]. Moreover, high Se diets enhanced mRNA
expression of sterol regulatory element-binding transcription factor 1 and lipoprotein lipase
(LPL) (1.90 fold, P = 0.17), decreased mRNA levels of PGC-13 (55%, P = 0.27), and
affected the phosphorylation of AMPK and mitogen-activated protein kinases in visceral
adipose tissue [63]. The elevated expression of SREBP-1c was in accordance with data from
a rat study in which high Se diet elevated liver PTP1b activity, possibly by activating
lipogenic mechanisms involving the activation of SREBP-1c [59]. Likewise, high Se intake
reduced mRNA levels of hepatic FoxO1 and muscle Pgc-1 in the rat offspring [60].

Perspective and conclusion
Feeding mice, rats, and pigs with high Se diets containing 0.4 to 3.0 mg of Se/kg of diet for
extended periods of time induced hyperinsulinemia, hyperglycemia, insulin resistance,
glucose intolerance, and altered lipid metabolism. This type of effect seems to be
independent of different forms of Se sources, compositions of basal diets, and physiological
stages. Thus, it is hard to deny a causative relationship between prolonged high Se intakes
and pro-diabetic potential.

As illustrated in Fig. 1, high Se intake may lead to elevated activity or production of GPx1
and other selenoproteins including MsrB1, SelS, ad SelP. This type of up-regulation
diminishes intracellular ROS and dys-regulates key regulators of β cells and insulin
synthesis and secretion, leading to chronic hyperinsulinaemia. Over-scavenging intracellular
H2O2 also attenuates oxidative inhibition of protein tyrosine phosphatases including PTP1b
or PTEN, suppressing insulin-stimulated IR/IRS/PI3-K/Akt signaling. At the same time, un-
inhibited PTP1b stimulates the lipogenic pathway [121–124], promoting lipogenesis and
further aggravating insulin resistance. High Se intake may affect expression and(or) function
of the key regulators for glycolysis, gluconeogenesis, and lipogenesis. These pathways
might contribute to the pro-diabetic potential of high Se intake cooperatively or
independently [40, 48, 125–127]. Although expression and activity of many selenoproteins
are saturated at the adequate Se intake, several selenoproteins or their mRNA levels are
affected by higher Se intake [128–130]. Because the low molecular weight Se metabolites
require a higher dietary selenium intake for their saturation [131–134], it is tempting to test
if those metabolites [135] mediate the pro-diabetic potential of high Se intake.

There are at least three reasons for the discrepancy on dietary Se role in diabetes between
the past and present experiments. First, many of the past animal studies used diabetic
animals [29–39], but the present studies have been conducted in normal animals [53,57–60,
62–63]. Second, the past experiments used high or nearly toxic doses of Se (0.9–4.5 mg/kg
body weight) [29–39], while recent experiments used Se levels not exceeding their maximal
tolerable limits (≤33.0 mg Se/kg diet). Finally, many of the past animal studies lasted only 2
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to 8 weeks, whereas in most of recent animal studies the duration of Se supplementation has
been 12 weeks or longer [53,57–60, 62–63].

The causative relationship between prolonged high Se intake and pro-diabetic potential in
different animal species was consistent with findings from several major human trials
including the Nutritional Prevention of Cancer (NPC) [15] and the Selenium and Vitamin E
Cancer Prevention Trial (SELECT) [16] trials. Most striking, Faghihi et al [136] have
recently conducted a randomized, double-blind placebo-controlled trial and assessed the
effects of supplemental Se (200 μg/day or placebo was administered orally for 3 months) on
blood glucose, lipid profile, and oxidative stress in 60 patients with type 2 diabetes. At
endpoint, plasma Se concentration reached to 71.98 (45.08) μg/L in Se recipients compared
with 45.38 (46.45) μg/L in placebo recipients (P < 0.01). Between-group comparison
showed that fasting plasma glucose, glycosylated hemoglobin A1c, and high-density
lipoprotein cholesterol were higher in the Se recipient arm. Apparently, the Se
supplementation in patients with type 2 diabetes was associated with adverse effects on
blood glucose homeostasis, although plasma Se concentration was raised from deficient
status to the optimal concentration of antioxidant activity. They suggested that until results
of further studies became available, indiscriminate use of Se supplements in patients with
type 2 diabetes should warrant caution. Caution should also be given to relate the animal
responses to high Se intake to human cases because many factors such as genetic variation,
living style, and environment could affect onset and development of diabetes and the
potential role of Se in this regard. At the mechanist level, many challenging questions
remain to be answered. It is important to find out if certain forms of Se metabolites or
selenoproteins mediate the diabetogenic effect of high Se intake. It is also imperative to
reveal if biochemical or molecular mechanisms other than modulating intracellular redox
status are also involved in the diabetogenic action of high Se intake. Lastly, it is most
important to elucidate the metabolic significance and mechanistic basis for a potential
interactive role of high Se intakes in the interphase of carcinogenesis and diabetogenesis.
This is because prolonged high Se diet induces hyperinsulinemia and insulin resistance in
insulin-responsive tissues, and insulin signaling is recognized for being pro-carcinogenic
[137,138]. Thus, it is tempting to speculate that high Se intake may suppress carcinogenesis
by inhibiting insulin signaling. However, several human cancer trials including the NPC
[9,15,139] and SELECT [16] have yielded inconsistent results in that regard. Seemingly, a
U-shaped relation exists between the dietary Se intake/body Se status and cancer risk. If the
body Se status reaches or rises above a threshold, higher Se intake may turn into potentiating
the cancer risk. Prudently, indiscriminant Se supplementation to healthy subjects with
adequate Se intake should not be recommended to avoid the possible double risks of
diabetogenic and pro-carcinogenic potential of excessive Se.
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GSIS glucose stimulated insulin secretion
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HNF-4α hepatocyte nuclear factor-4α
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KO knockout
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MAPK mitogen-activated protein kinase
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mTOR mammalian target of rapamycin
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PI3-K phosphatidylinositol 3-kinase
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PTP1b protein tyrosine phosphatase 1b

ROS reactive oxygen species
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SELECT Selenium and Vitamin E Cancer Prevention Trial

SelP selenoprotein P

SelS selenoprotein S

SelT selenoprotein T

SOD superoxide dismutase

SREBP-1c sterol regulatory element binding protein-1c
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TrxR1 thioredoxin reductase 1

UCP2 uncoupling protein 2

VAT visceral adipose tissue

WT wild type
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Figure 1.
Scheme of potential regulatory pathways and mechanisms for the diabetogenic potential of
high Se intake. ↑, Activation or increase; ↓, inhibition or decrease; Akt, protein kinase B;
FOXO1, forkhead box O1; GPx1, glutathione peroxidase-1; GSIS, glucose-stimulated
insulin secretion; H2O2, hydrogen peroxide; IR, insulin receptor; P, phosphorylation; PY,
tyrosine phosphorylation; PTEN, phosphatase with tensin homology; PTP1b, protein
tyrosine phosphatase 1b; SREBP1c, sterol regulatory element binding protein-1c; TC, total
cholesterol; TG, triglyceride.
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Table 1

Diabetogenic potential of elevated Se intakes or selenoprotein expression in animals

Treatment Finding Reference

The GPX1-overexpressing (OE) and wild type (WT) male mice
(n = 80) were fed a Se-adequate diet (0.4 mg/kg) from 8 to 24
weeks of age

Compared with the WT, the OE mice developed
hyperglycemia, hyperinsulinemia, increased β-cell mass,
hyper-secretion of insulin, insulin resistance, and obesity

22, 55

C57BL/6J mice (n = 6–7 per group) were fed either Se-deficient
Torula yeast-based diet or diets supplemented with Se at 0.1 and
0.4 mg (sodium selenite)/kg of diet for 3 months

Mice in the 0.4 mg Se/kg group showed decreased insulin
sensitivity and hyperinsulinemia compared to those fed the
Se-deficient diet and 0.1 mg of Se/kg of diet

53

Three groups of rats (n = 10) were fed either a Se-deficient diet
or diets supplemented with Se at 75 or 150 μg/kg of diet for 8
weeks

Rats in groups of 75 and 150 μg Se/kg diet had greater body
weight, liver PTP1b activity, and liver triglyceride
concentrations than the control group fed the Se-deficient
diet

58

Seven groups of rats (n = 7) were fed either a Se-deficient diet or
diets contained Se (as selenite or selenite) at 0.20, 1.0, and 2.0
mg/kg of diet for 8 weeks

All Se-supplemented animals featured a higher body weight,
elevated liver GPx1 expression and activity, increased liver
PTP1b activity, and reduced PTP1b glutathionylation,
compared to their Se-deficient controls

59

Female Wistar rats were fed a Se-deficient (0.01 mg/kg of diet)
corn–soy basal diet (BD) or BD+Se (as Se-yeast) at 0.3 or 3.0
mg/kg of diet from 5 weeks before breeding to day 14
postpartum. Offspring (n = 8/diet) born to dams fed 0.3 and 3.0
mg of Se/kg were fed with the same respective diet until age 112
days

Compared with the 0.3 mg of Se/kg of diet, the 3.0 mg of Se/
kg of diet induced hyperinsulinemia, insulin resistance, and
glucose intolerance in the dams at late gestation and/or day
14 postpartum and in the offspring at age 112 days

60

Weanling male pigs (n = 24) were fed a Se-deficient (< 0.02 mg
of Se/kg of diet) corn-soy basal diet supplemented with 0, 0.3, or
3.0 mg of Se/kg of diet as Se-enriched yeast for 16 weeks

Compared with those fed 0.3 mg of Se/kg of diet, pigs fed
3.0 mg of Se/kg of diet became hyperinsulinemic and had
lower tissue levels of serine/threonine protein kinase (Akt)

62

Male pigs were fed either a Se-adequate (0.17 mg of Se/kg of
diet) or a high Se (0.50 mg of Se/kg of diet) diet for 16 weeks

The fasting plasma insulin and cholesterol levels were non-
significantly increased in the pigs fed the high-Se diet,
whereas fasting glucose concentrations did not differ
between the two groups. Dietary Se oversupply affected
expression and activity of proteins involved in energy
metabolism in major was probably not sufficient to induce
diabetes

63

Rats were intraperitoneally injected with saline (control) or 1.3,
1.6 and 3.8 mg of Se/kg of body weight as sodium selenite

Sodium selenite administration caused hyperglycemia in rats
and elevated plasma corticosterone levels, but did not change
plasma insulin levels

57
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