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Abstract
A critical question about the nature of human learning is whether it is an all-or-none or a gradual,
accumulative process. Associative and statistical theories of word learning rely critically on the
later assumption: that the process of learning a word's meaning unfolds over time. That is, learning
the correct referent for a word involves the accumulation of partial knowledge across multiple
instances. Some theories also make an even stronger claim: Partial knowledge of one word–object
mapping can speed up the acquisition of other word–object mappings. We present three
experiments that test and verify these claims by exposing learners to two consecutive blocks of
cross-situational learning, in which half of the words and objects in the second block were those
that participants failed to learn in Block 1. In line with an accumulative account, Re-exposure to
these mis-mapped items accelerated the acquisition of both previously experienced mappings and
wholly new word–object mappings. But how does partial knowledge of some words speed the
acquisition of others? We consider two hypotheses. First, partial knowledge of a word could
reduce the amount of information required for it to reach threshold, and the supra-threshold
mapping could subsequently aid in the acquisition of new mappings. Alternatively, partial
knowledge of a word's meaning could be useful for disambiguating the meanings of other words
even before the threshold of learning is reached. We construct and compare computational models
embodying each of these hypotheses and show that the latter provides a better explanation of the
empirical data.
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Since its empirical beginnings, the study of human memory has been a study of graded,
rather than binary, phenomena. Ebbinghaus's (1913) early work on savings in memory
showed that information remains in the system, and influences future learning, even when it
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can no longer be recalled. Subsequent studies have provided a wealth of further evidence for
both the positive (Bentin, Moscovitch, & Heth, 1992; Nelson, 1978; Nissen & Bullemer,
1987; Wixted & Carpenter, 2007) and negative (Anderson, 1995; Bouton, 1993; Shiffrin &
Schneider, 1977) effects on learning of information that is not directly accessible. In a
similar vein, theories of associative learning in both humans (Gluck & Bower, 1988;
Kruschke, 2001; Shiffrin & Schneider, 1977) and animals (Le Pelley, 2004; Mackintosh,
1975; Rescorla & Wagner, 1972) have taken as their central thesis that learning is a gradual,
accumulative process and that the accumulation of past learning changes future learning.

But Gallistel, Fairhurst, and Balsam (2004) have recently questioned this idea of incremental
learning, arguing that the learning curves found in classic associative learning experiments
may have been an artifact of group averaging. Instead, they suggest that individual learners'
behavior may be better explained by all-or-none step functions. This type of learning
appears to be particularly likely in the face of surprising or highly consequential outcomes,
as in the case of “flashbulb memories” (Brown & Kulik, 1977) or taste aversion (Garcia,
Kimeldorf, & Koelling, 1955). Distinguishing these two fundamentally different
characterizations of the learning process is at the heart of understanding the way that
humans learn about their world. Here, we consider this question in the context of word–
referent learning in language acquisition.

Partial knowledge in word learning
Many discussions of children's early word learning suggest a form of one-shot, all-or-none
learning called fast-mapping (Carey & Bartlett, 1978; Heibeck & Markman, 1987; Houston-
Price, Plunkett, & Harris, 2005; Markson & Bloom, 1997; Woodward, Markman, &
Fitzsimmons, 1994). In one variant of these studies, the experimenter presents one novel and
one known object to the child and then provides a novel spoken label (e.g., “blicket”).
Children consistently map the novel label to the novel object and, given this single trial,
consistently treat that name as referring to that object. This suggests one-shot learning
(Markson & Bloom, 1997; Woodward, Markman, & Fitzsimmons, 1994). But the everyday
visual world is much more complex than laboratory experiments, with potentially many
more referents. Consequently, determining which words in an utterance refer to which
objects is nontrivial. How do children resolve this ambiguity? One possibility is that they
avoid the problem altogether, ignoring any utterances or scenes that are too complex,
learning only from less ambiguous naming instances. For example, children could wait until
some cue—whether social (Baldwin, Markman, Bill, Desjardins, & Irwin, 1996; Brooks &
Meltzoff, 2005; Kuhl, 2004) or linguistic (Bloom & Markson, 1998; Gleitman, 1990)—
made an instance more favorable to fast-mapping. By this view of learning, either a single
naming event gives all of the information necessary for mapping a word to an object, or it is
thrown away.

But there are reasons to doubt the interpretation of fast-mapping as all-or-none learning even
in simplified learning situations. First, although some experimental studies support a within-
experiment fast-mapping phenomenon, retention across even short time spans turns out to be
quite fragile. Horst and Samuelson (2008) showed that children could succeed in the fast-
mapping task—demonstrating one-shot learning of a word's referent—but fail to retain this
mapping after a 5-min delay. Indeed, in the paper in which the term fast-mapping was
coined, Carey and Bartlett (1978) considered the initial learning to be partial and incomplete
and to be only the beginning of an accumulative learning process (Swingley, 2010). Second,
a large literature of indirect evidence suggests that adults and children aggregate information
about words and their meanings over many encounters, amassing statistical evidence about
the latent structure underlying not just pairs of words and referents, but the whole system of
words (Bowers, Davis, & Hanley 2005; Gershkoff-Stowe, 2002; Landauer & Dumais, 1997;
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Ratcliffe & McKoon, 1978; Seidenberg, 1997; L. B. Smith, Jones, Landau, Gershkoff-
Stowe, & Samuelson, 2002; Xu & Tenenbaum, 2007; Yoshida & Smith, 2003; Yu, 2008; Yu
& Smith, 2007). If information is accumulated, the highly ambiguous learning instances that
do not support fast-mapping may still be of use. Statistical learners would seem to benefit
from not throwing data away, even if the data are incomplete or ambiguous (Recchia &
Jones, 2009).

This idea—that words can be learned by combining information across situations (Gleitman,
1990; Pinker, 1994; Yu & Smith, 2007)—is central to all associative (e.g., McMurray,
Horst, & Samuelson, 2012; Plunkett, 1997; Rogers & McClelland, 2004; L. B. Smith et al.,
2002;) and statistical (e.g., Frank, Goodman, & Tenenbaum, 2009; Siskind, 1996; Yu, 2008)
models of language acquisition. Words should not go from unlearned to learned in one fell
swoop, but should pass through a state of partial knowledge. Indeed, the existence of such
partial states is both critical for these models and the source of some of their most interesting
predictions. For instance, children's word learning is known to accelerate prodigiously
during their second year of life. Previous theories have taken this to be evidence of a change
in learning mechanism. In a computational model, McMurray (2007) showed that no change
in mechanism is necessary to explain a “vocabulary explosion” as long as words vary in
difficulty and are learned through the accumulation of partial knowledge.

However, although contemporary statistical learning models are built on the assumption of
partial knowledge, a plausible alternative method might be to aggregate information across
only learned words and referents, with no partial knowledge entering into the statistical
calculations. While work in categorization suggests that partial knowledge should play a key
role in such learning (Billman & Knutson, 1996; Kellog, 1980; Rosch & Mervis, 1975;
Trabasso & Bower, 1966), there is significant controversy on this question in the
contemporary word-learning literature.

Cross-situational word learning
Although cross-situational word learning accounts appeared in the literature earlier
(Gleitman, 1990; Pinker, 1994; Siskind, 1996), Akhtar and Montague (1999) reported the
first empirical demonstration that children could learn words by intersecting evidence across
multiple individually ambiguous situations. They showed that 2-, 3-, and 4-year-olds could
determine whether a novel adjective referred to shape or texture by observing a series of
back-to-back labeling events (e.g., “this is a modi one”) in which multiple objects were
similar on one of these dimensions and different on the other. However, the recent explosion
of interest in cross-situational word learning and, consequently, partial knowledge was
kindled by a set of papers from Yu and Smith (2007; Smith & Yu, 2008). In their cross-
situational word-learning paradigm, learners are exposed to series of trials in which they
hear a number of words and see an equal number of objects. On each trial, the mapping
between words and objects is ambiguous; words co-occur with many potential referents.
However, because words co-occur much more often with their correct referents than with
other objects, learners can discover the correct word–object mappings by tracking co-
occurrence information across trials. These papers extended Akhtar and Montague's (1999)
results in several directions. First, they showed that learning was robust to significantly
greater ambiguity on individual learning trials. Second, they showed that significantly more
time could pass between learning trials. Third, they showed that multiple words could be
learned at once from the same set of ambiguous naming events. Fourth, they showed that at
least rudimentary cross-situational learning abilities were present in 12- and 14-month-old
infants. All of these extensions increased the plausibility of cross-situational word learning
as an important process in early language learning.
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Subsequent papers have explored the relationship between cross-situational word learning
and other language-learning mechanisms (Suanda & Namy, 2012; Yoshida, Rhemtulla, &
Vouloumanos, 2012; Yurovsky, Yu, & Smith, in press), the possibility of learning other
classes of words through cross-situational statistics (Scott & Fischer, 2012), and the impact
of natural language statistics on cross-situational word learning (Monaghan & Mattock,
2012; Vogt, 2012; Yurovsky, Yu, & Smith, 2012). However, the most contentious questions
have concerned the representational basis and mechanistic underpinnings of cross-situational
learning (Kachergis, Yu, & Shiffrin, 2012; Medina, Snedeker, Trueswell, & Gleitman, 2011;
K. Smith, Smith, & Blythe, 2009, 2011; Trueswell, Medina, Hafri, & Gleitman, 2013;
Vouloumanos, 2008; Yu & Smith, 2011, 2012; Yu, Zhong, & Fricker, 2012; Yurovsky,
Smith, & Yu, in press). One of the central issues in this debate, and the focus of this article,
is the role of partial knowledge in word learning.

In particular, Yu and Smith's (2007; L. B. Smith & Yu, 2008) original papers explicitly
propose that learners accumulate an approximation to the co-occurrence structure in their
input by remembering the words and objects that co-occur on each trial. Consequently, this
hypothesis predicts that learners' representations at any point in time contain not just a set of
word–object mappings (highest co-occurrence word–object pairs), but also some partial
knowledge of how often other objects have occurred with each word. This prediction was
confirmed by Vouloumanos (2008), at least for low-ambiguity learning trials. In these
experiments, learners saw a single object on each trial, but a number of different words co-
occurred with each object across trials, each with a different frequency (1×, 2×, 6×, 8×, or
10×). After training, adults showed fine-grained sensitivity to this statistical structure,
discriminating between each of these frequencies of co-occurrence.

K. Smith et al. (2011) asked about the fidelity of learners' approximations to word–object
co-occurrence distributions over the course of learning as they programmatically varied the
ambiguity of individual learning trials. They asked learners to indicate which object they
believed to be the most likely referent for each word on each of its 12 occurrences. These
guesses were then used to determine which of four learning models best accounted for
participants' behavior: (1) perfect memory for all co-occurrences, (2) noisy approximate
memory for all co-occurrences, (3) memory for only a single co-occurring object, or (4)
random selection. K. Smith et al. (2011) found that as ambiguity increased, participants were
less likely to have perfect memory for cooccurrence frequencies but that they nonetheless
accumulated an approximate co-occurrence distribution rather than a single guess. Their
data thus support accumulative accounts of word learning and, by extension, an important
role for partial knowledge.

However, it is possible that even the highest levels of ambiguity in K. Smith et al. (2011)
underestimate the levels of ambiguity relevant for real-world word learning. Medina et al.
(2011) recorded natural parent-child interactions, extracted the ambiguous object-labeling
events, and presented these to adult learners in a cross-situational version of the human
simulation paradigm (Gillette, Gleitman, Gleitman, & Lederer, 1999). In their analyses of
learning trajectories, Medina et al. found no evidence that learners were accumulatively
tracking co-occurrence distributions. They concluded that their data were more consistent
with learners storing and tracking only a single guess for the referent of each word. Thus,
they argued that in the ambiguous environments that characterize the natural world, word
learning is a step function and there is no partial knowledge.

In response, Yurovsky Smith, and Yu (in press) argued that Medina et al. (2011)
mischaracterized the ambiguity of natural labeling events. These authors replicated Medina
et al.'s experiments, recording parent–child interaction not only from a third-person
perspective, but also from a camera placed on each child's forehead. They then analyzed the
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learning trajectories observed for cross-situational learners from each perspective.
Yurovsky, Smith, and Yu found that participants who observed ambiguous naming events
from a “child's-eye” view did accumulate co-occurrence distribution information, showing
indirect evidence of partial knowledge even in learning from natural naming events.

Finally, the most recent data on partial knowledge come from Trueswell et al. (2013), who
applied the analysis used by Medina et al. (2011) to learning trajectories observed in a task
very much like that used by K. Smith et al. (2011). Adult learners saw a series of trials in
which they heard a novel label and were asked to guess which of the objects they saw on the
screen was its most likely referent. In contrast to K. Smith et al. (2011), however, Trueswell
et al. found no evidence of accumulative learning, even at very low levels of ambiguity.
Unfortunately, this discrepancy is difficult to interpret for several reasons. First, Trueswell et
al. asked participants to learn novel names for familiar objects (e.g., cats, doors) rather than
novel names for novel objects. Second, in Trueswell et al., words referred to categories of
objects, the exemplars of which were different on each occurrence. This is a departure from
the cross-situational learning paradigms used in previous work (e.g., Kachergis et al., 2012;
K. Smith et al., 2011; Yoshida et al., 2012; Yu & Smith, 2007; Yurovsky, Yu, & Smith, in
press). Third, participants' final word–object mapping accuracies were significantly lower in
Trueswell et al. than in previous cross-situational learning experiments. Altogether, it is thus
difficult to know whether the absence of evidence for partial knowledge in these data should
count as evidence of absence.

In order to move toward a resolution to these discrepancies, we address the question of
partial knowledge in statistical word learning through a combination of experiments and
computational models. These experiments provide a more direct, and perhaps more
sensitive, measure of partial knowledge than those used in previous work, and the models
provide insight into the role of this partial knowledge in bootstrapping subsequent learning.

Measuring partial knowledge
In the experiments to follow, the role of partial knowledge in word learning was examined
directly in adult learners engaged in the cross-situational word-learning task (Yu & Smith,
2007). In the task, learners are exposed to a series of trials in which they are asked to learn
the correct words for a set of novel objects. To simulate ambiguous word-learning
environments, each individual training trial contains multiple words and multiple candidate
referents. At the end of training, learners select a referent for each word and typically
demonstrate knowledge of a statistically significant proportion of the mappings. In contrast
to previous studies, however, we focus not on the correctly selected referents, but, instead on
the words for which participants give incorrect answers. If the accumulative theories of
word learning are correct, some proportion of these words are neither learned nor unlearned
but, rather, exist in an in-between state of partial knowledge. The crucial manipulation in the
present experiments was to expose participants to a second block of learning in which half
of the stimuli were drawn from this set of incorrectly associated words and objects. If word
learning is all-or-none, participants should not benefit from seeing these items again. In fact,
learning might be impaired by the formation of incorrect all-or-none hypotheses about these
word–object mappings in Block 1 (Yurovsky, Yu, & Smith, in press). In contrast, if word
learning proceeds by the accumulation of partial, incomplete, and ambiguous knowledge,
learning should be significantly improved by earlier experience with these mappings, even if
that experience did not yield measurable knowledge of the correct word–referent mappings.

In addition to testing for partial knowledge in this new, potentially more sensitive paradigm,
we also address a further question about the role of partial knowledge. One way in which
partial knowledge could benefit later learning is through item-by-item savings (McMurray,
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2007). That is, partial knowledge of one word–referent pair could mean faster learning of
that one pair from future experiences. Alternatively, partial knowledge could be an effective
bootstrapping mechanism not just for one partially learned word, but for the whole set of to-
be-learned words: partial knowledge of one word–object mapping could facilitate the
learning of other words and objects with which it appears (Fazly, Alishahi, & Stevenson,
2010; Regier, 2005; Siskind, 1996; Yu, 2008). That is, partial knowledge could accelerate
learning the latent structure of the whole system of words and referents. To study these
issues, we developed two computational models, each embodying one of these hypotheses
and asked which provided a better account of the empirical data. We focused particularly on
the role of learning-by-exclusion mechanisms (e.g., Markman, 1990) in driving system-wide
acceleration. We begin by presenting the empirical work.

Experiment 1
To determine the role of partial knowledge in statistical word learning, we followed Yu and
Smith's (2007) cross-situational word-learning paradigm. In this task, participants are
exposed to a series of individually ambiguous learning trials, each of which contains
multiple co-occurring words and potential referents. While each trial is individually
ambiguous, words always co-occur with their correct referent. Thus, participants who
correctly track co-occurrence frequencies between words and objects across trials can learn
the correct pairings. In Experiment 1, adult participants were exposed to two consecutive
blocks of cross-situational word learning. At the end of training in Block 1, participants
selected the referent that they believed was correct for each word. Each participant then
engaged in a second block of cross-situational word learning, but the stimuli to which they
were exposed varied by condition.

In the All New condition, each of the 18 words and objects seen in the second block of
learning was completely novel. In contrast, in the Partial condition, half of the words and
objects seen in the second block were drawn from the words and objects that participants
had incorrectly mapped in the previous block. If word learning is all-or-none, participants'
incorrect selections in Block 1 should be the result of either an incorrect hypothesis or
random guessing. Consequently, one would expect participants in the Partial condition to
perform no better than participants in the All New condition in Block 2. In contrast, if
participants encoded some of the distributional information in Block 1 even for those words
that they mapped incorrectly, one would expect learning in the Partial condition to be
significantly better than that in the All New condition.

The training trials in Block 2 were designed to be identical across the two conditions except
for the substitution of nine incorrectly mapped words and objects for new words and objects
in the Partial condition. This allowed us to test one further hypothesis. If participants had
encoded partial knowledge of the incorrectly mapped words, it could be useful in one of two
ways. First, partial knowledge of the distributional information encoded for a particular
word in Block 1 could be useful for learning that same word in Block 2; learning an
individual word might be accumulative (McMurray, 2007). But, that knowledge could be
useful in a further way. Not only could partial knowledge of a word speed learning of that
same word, it also could aid in the acquisition of novel word–object mappings through
reduction of ambiguity in training (Siskind, 1996; Yurovsky, Yu, & Smith, in press). We
thus ask not only whether learning is improved in the Partial condition relative to the All
New condition, but also whether it improved for both the nine repeated pairs and the nine all
new pairs.
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Method
Participants—Eighty undergraduate students at Indiana University received class credit in
exchange for volunteering. Forty of these students participated in the Partial condition, and
40 participated in the All New condition. Because the Partial condition required at least nine
items to be mis-mapped in Block 1, not all of these participants could be included in the
final sample. To ensure a fair comparison across conditions, a similar inclusion criterion was
applied to participants in both conditions. The final sample included 18 participants in the
Partial condition and 20 in the All New condition. The criterion for inclusion is described
fully in the Stimuli and Design section below.

Stimuli and design—Participants were exposed to a series of trials consisting of multiple
referents and multiple words. Referents were represented by pictures of unusual objects that
were easy to distinguish from each other but difficult to name. Words were one- and two-
syllable pseudowords constructed to be phonotactically probable in English and synthesized
using the AT&T Natural Voices® system. All words and objects have been used in previous
cross-situational learning experiments (Kachergis et al., 2012; Yu & Smith, 2007; Yurovsky,
Yu, & Smith, in press). Forty-two unique words and objects were used in total—24 in Block
1 and 18 in Block 2.

Training trials for Block 1 presented two pictures—one on each side of the screen—and
played two labels, following Yu and Smith's (2007) 2×2 condition. Training trials for Block
2 presented four objects—one in each corner of the screen—and played four labels,
following Yu and Smith's (2007) 4×4 condition. The 2×2 condition was used in Block 1
because it minimized variance in accuracies and, thus, minimized the number of participants
excluded from the final sample (see the inclusion criterion explanation below).

Trials in both conditions were designed such that each was individually ambiguous: word
order did not correlate with referents' on-screen positions. However, words always co-
occurred with their correct referents. In Block 1, each of the 24 words appeared 5 times with
its correct referent and 2 or fewer times with each of the other 23 referents. In Block 2, each
of the 18 words appeared 4 times with its correct referent and 2 or fewer times with each of
the other 17 referents. Thus, participants could, in principle, determine correct word–object
mappings by tracking co-occurrence information across trials. In total, training in Block 1
consisted of sixty 2 word × 2 object training trials, and training in Block 2 consisted of
eighteen 4 word × 4 object training trials. Word–object pairings and trial orders were
selected randomly for each participant and were yoked across conditions.

After each block of training, participants were tested for their knowledge of word–object
mappings. Each test trial presented all of the referents seen in that block of training and
played one label word. Because all referents were present on each test trial, participants
could not learn word-object mappings from co-occurrence at test. Participants received one
test trial for each word in the training set. The order in which words were tested and the
screen positions of referent objects on each test trial were random across participants.

The critical manipulation in this experiment was the connection between Blocks 1 and 2. In
the Partial condition, 9 of the words for which each participant selected an incorrect referent
at test in Block 1 were heard again by that participant in Block 2. The correct referents for
these repeated words were also carried over into Block 2, and the mapping between them
remained the same. This allowed us to test the hypothesis that participants had acquired
partial knowledge of these mappings despite their incorrect answers in Block 1. Each of the
18 individual training trials in Block 2 contained 2 repeated words and objects carried over
from Block 1 and 2 novel words and objects. In the All New condition, no words or objects
were carried over into Block 2, and thus each participant in this condition was exposed to 18
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novel words and objects in Block 2. Critically, half of the items on each training trial in
Block 2 were identical—and novel—for participants in both conditions. The other half were
repeated items for participants in the Partial condition but novel for participants in the All
New condition. Figure 1 shows a schematic of this design. In the results, these items will be
referred to as repeated versus new mappings. To recapitulate, a comparison of repeated
items between conditions refers to a comparison between items that were repeated for
participants in the Partial condition but novel for participants in the All New condition. A
comparison of new items refers to a comparison between items that were new, and identical,
for participants in both conditions.

Since nine of the items in Block 2 of the Partial condition were those that participants had
mapped incorrectly in Block 1, each participant in the final sample was required to mis-map
at least nine words in Block 1. However, learning ability varies across participants; some
learn all of the mappings in a cross-situational learning task. Thus, all participants who
learned more than 15 of the word–object mappings in Block 1 were excluded from the final
sample. Since cutting off only the right tail of the distribution of learners would produce a
biased estimate of learning abilities, we also excluded participants who learned fewer than 9
of the word–object mappings in Block 1. To ensure accurate comparison between the All
New and Partial conditions, this sampling was performed on participants in both conditions.
Thus, the final sample in each condition consisted only of participants who learned between
9 and 15 of the 24 word– object mappings in Block 1. Pilot studies showed that learning
scores vary less across participants in a 2 word × 2 object design than in a 4 × 4 design, and
thus each trial of Block 1 contained two words and two objects. This increased the
proportion of participants included in the final sample.

Procedure—Participants were told that they would be seeing a series of slides consisting
of multiple words and multiple objects and that they would be subsequently tested on their
knowledge of which word referred to which object. At the beginning of the test portion, they
were told that they should click on the on-screen object that they believed was the correct
referent for each word they heard. At the end of Block 1, participants were asked to step out
of the testing booth for a moment while the experimenter set up the second block of training.
After the participant had left the booth, the experimenter ran a Python script that determined
which words and objects the participant had mis-mapped and set up the second block
appropriately. The participants were then invited back into the booth and completed the
training and testing portions of Block 2. If participants had learned too many or too few
items in Block 1, they were run in a dummy Block 2.

Results
Since only a subset of the participants was included in the final sample, we first demonstrate
that the full samples were similar across conditions. Figure 2 shows histograms of
participants' accuracies in Block 1, with lighter bars indicating participants who were
included in the final sample. All of the following analyses were performed on this final
sample of participants.

Participants in both conditions experienced identical training trials in Block 1. An
independent samples t-test analysis showed that accuracy on this block did not differ
significantly between conditions, t(36) = 0.32, n.s., licensing comparison of Block 2 learning
scores between conditions. Participants' test accuracies in Block 2 were submitted to a 2
(condition) × 2 (word type) mixed design ANOVA. For participants in the Partial condition,
word type was coded as either new or repeated (previously encountered in Block 1). All
words and objects were novel for participants in the All New condition. However, since
training trials in the Partial condition each contained two repeated and two new words, the
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items in those same slots were coded as repeated and new for participants in the All New
condition (see Fig. 1). The new items were identical for participants in both conditions. The
ANOVA showed a significant main effect of condition, F(1, 36) = 13.92, p < .001,η2 = .20,
but no effect of word type F(1, 36) = 1.46, n.s., and no interaction between word type and
condition, F(1, 36) = 1.46, n.s. Thus, participants in the Partial condition outperformed
participants in the All New condition not only for the subset of repeated words that they had
experienced, but also for the words that were novel to participants in both conditions.1

Figure 3 below shows mapping accuracies for participants for both word types in both
conditions.

Discussion
Experiment 1 was designed to answer two questions: (1) do statistical word learners store
and accumulate partial knowledge across learning situations, and (2) if so, does partial
knowledge of one word lead to accelerated acquisition of other co-occurring words? To
answer these questions, participants in the Partial condition were re-exposed to words and
objects that they had previously mis-mapped. Because participants in the Partial condition
significantly outperformed participants in the All New condition in Block 2, we can
conclude that they must have stored some partial information about words and objects they
mis-mapped in Block 1. Furthermore, this increased performance was seen not only for
repeated words encountered previously in Block 1, but also for novel words. Thus, in answer
to the second question, statistical learners can recruit partial knowledge of some word–
object mappings to learn other word–object mappings at a faster rate (Siskind, 1996). We
investigate the potential mechanistic underpinnings of this bootstrapping in the
Computational Model section below.

But perhaps this conclusion is premature. The results of Experiment 1 are certainly
consistent with the claim that participants acquire and use partial knowledge of word–object
mappings, but there is an alternative explanation. Each trial of Block 2 for participants in the
Partial condition consisted of two repeated pairings and two new pairings. If participants had
encoded no mapping information for the repeated items but only had previously seen and
heard these items, they could have outperformed participants in the All New condition by
treating the 4 word × 4 object trials as two 2 word × 2 object training trials. That is, they
could have partitioned the words and objects into two sets: familiar and new. They could
then have mapped familiar words only onto familiar objects and new words only onto new
objects. Experiment 2 was designed to rule out this partitioning explanation.

Experiment 2
In Experiment 1, participants in the Partial condition could have entered Block 2 with two
potentially beneficial sources of information: knowledge of which words and objects were in
Block 1, and knowledge of the mapping structure between these words and objects. In order
to claim that partial knowledge of word–object mappings drives the learning benefit for
these participants, we must determine that mere exposure does not produce an equal benefit.
Thus, Block 1 of Experiment 2 was designed to give learners identical exposure to the
individual words and objects but to none of the mapping structure.

1An alternative possibility is that participants became fatigued over the course of two blocks of training and that the benefit observed
in the Partial condition was due to buffering fatigue, rather than accelerating learning. To rule out this possibility, an additional group
of 20 participants was run in a Control condition in which they saw only Block 2 of training. These Control participants selected the
correct referent for 2.88(SD = 1.61) of the words, performing significantly better than chance, t(19) = 2.85, p = .01, but also
significantly worse than participants in the All New condition, t(38) = 2.48, p < .05. Thus, rather than depressing performance,
exposure to Block 1 facilitated learning in Block 2, consonant with other learning-to-learn results (e.g., Ahissar & Hochstein, 1997).
Exploring this phenomenon in cross-situational word learning will be an interesting project for future research, but for the present
purposes, these data rule out the possibility that partial knowledge of word–object mappings was only buffering fatigue.
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Method
Participants—Twenty undergraduates at Indiana University received class credit for
volunteering. None had previously participated in Experiment 1 or any other cross-
situational learning experiments.

Stimuli and design—The individual words and objects and the manner of presentation
were identical to those of Experiment 1. However, word–object co-occurrence distributions
for Block 1 were different in one important way. Twelve of the words maintained identical
distributions to those in the previous experiment: co-occurring 5 times with their correct
referent and less frequently with each of the 23 incorrect referents. The other 12 words had
nearly flat co-occurrence distributions, appearing at most once with each of the 24 objects in
the set. Nine of these 12 flat-distribution words were then carried over into Block 2. In this
way, participants received five exposures to each word and object, just as in Experiment 1,
but received uninformative distributional information. In Block 2, these words and objects
had informative distributional structures identical to the corresponding words and objects in
the Partial condition of Experiment 1: each repeated word mapped onto its correct repeated
referent 4 times. Importantly, the correct referent for these words in Block 2 was never the
one that the participant had selected by chance at test in block 1. This ensures that any
potential learning at test would operate the same way as in the Partial condition of
Experiment 1. That is, participants who noticed a familiar item in Block 2 could potentially
have inferred that their previous guess was incorrect. Because the referent participants chose
for the flat-distribution words in Block 1 was never made the correct referent in Block 2, the
utility of this pragmatic inference would have been the same across experiments.

In the analyses that follow, the 12 flat-distribution items in Block 1 are labeled
uninformative, and the 12 learnable items are labeled informative. In Block 2, the repeated
items were those that had flat distributions in Block 1.

Procedure—Participants were given the same instructions as before. At the end of Block
1, they were again instructed to step out of the booth for a moment while the experimenter
set up Block 2. The Participants then completed training and testing for the second block as
before.

Results and discussion—Participants in Experiment 2 were exposed to 24 words and
objects. However, in contrast to the previous experiments, statistical information specified
correct referents for only 12 of the words. Of these 12 items, participants learned an average
of 5.05 (SD = 2.48). This proportion, along with the proportions from the Partial and All
New conditions of Experiment 1, were submitted to a one-way ANOVA for accuracy in
Block 1. Condition was not found to be a significant factor, F(2, 55) = 1.24, n.s. Since Block
1 accuracy was comparable across conditions, we analyzed accuracy in Block 2. Figure 3
shows accuracy for Block 2 of the Partial and All New conditions, as well as the new
Exposure condition.

In order to determine whether mere exposure to words and objects in Block 1 produces
comparable learning benefits to partial word–object mapping knowledge, accuracy for Block
2 was compared across all three experimental conditions—the Partial and All New data from
Experiment 1 and the Exposure data from Experiment 2. Proportion correct was submitted
to a 3 × 2 mixed ANOVA with a between-subjects factor of condition (Partial, All New,
Exposure) and a within-subjects factor of word type (repeated, new). Results again showed a
significant main effect of condition, F(2, 55) = 8.31, p < .001, η2 = .18, but not of word type,
F(2, 55) = 1.67, n.s., and no interaction between the two, F(2, 55) = 0.92, n.s. Bonferonni-
corrected t-tests showed that the Exposure condition was not significantly different from the
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All New condition, t(38) = 0.59, n.s., but was significantly different from the Partial
condition, t(36) = 3.73, p < .01, η2 = .28.

Thus, unlike participants who entered Block 2 with partial mapping knowledge, those who
were merely pre-exposed to the words and objects did not show accelerated learning. This
rules out the old/new partitioning hypothesis as a possible explanation for the difference
between the Partial and All New conditions. It also rules out the possibility that the benefit
observed in the Partial condition was due entirely to participants inferring that the answers
they gave at test in Block 1 were incorrect. However, participants in the Exposure condition
did show slightly lower accuracy in Block 1. If these participants noticed that a subset of the
words were unlearnable in the first block, they may have lost motivation to learn in Block 2.
That is, participants may have benefitted from prior exposure but suffered from learned
helplessness (Maier & Seligman, 1976). Experiment 3 was designed to rule out this
explanation.

Experiment 3
In Block 1 of Experiment 2, half of the word–object mappings were essentially unlearnable.
This could have reduced motivation to learn in the subsequent block and, thus, counteracted
the benefit of exposure to these repeated words and objects. If such an effect occurred,
however, it was not localized to the repeated words: Participants learned both repeated and
new words equally well in Block 2. Consequently, if the information structure of Block 1 led
to learned helplessness, it should have done so even if all of the items in Block 2 were novel.
This suggests a natural control condition.

Participants in Experiment 3 were again first exposed to a block of training in which half of
the items were unlearnable; Block 1 was identical to Block 1 of the Exposure condition
(Experiment 2). Then participants were exposed to a second block of training containing 18
new words and objects. Thus, Block 2 was identical to the All New (Experiment 1)
condition. If Block 1 of the Exposure condition induced learned helplessness, we should see
similar helplessness in Experiment 3. Consequently, if Block 1 induces learned helplessness,
learning in Block 2 of Experiment 3 should be less effective than in Block 2 of the All New
condition.

Method
Participants—Twenty undergraduate students at Indiana University received class credit
in exchange for volunteering. None had previously participated in Experiment 1 or 2 or any
other cross-situational learning experiments.

Stimuli, design, and procedure—The Learned Helplessness (LH) Control condition of
Experiment 3 was exactly Block 1 of the Exposure condition (Experiment 2) followed by
Block 2 of the All New (Experiment 1) condition. Participants received the same
instructions as in Experiments 1 and 2.

Results
As in Experiment 2, only 12 of the 24 items in Block 1 had correct referents. Of these 12,
participants in Experiment 3 learned an average of 4.85 (SD = 2.56). A t-test showed that
this number was not significantly different from the number learned by participants in the
Exposure condition, t(19) = 0.26, n.s. This indicates that the sample of participants in the LH
Control condition was not significantly different from the sample in the Exposure condition.

But did the information structure of Block 1 produce learned helplessness? If it did, learning
in Block 2 of the LH Control condition should have been reduced relative to learning in
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Block 2 of the All New condition. A t-test showed that this was not the case: learning rates
in Block 2 did not differ significantly across these conditions, t(19) = 0.32, n.s. Figure 4
shows learning scores in Blocks 1 and 2 and the relevant data for comparison from
Experiments 1 and 2. Thus, if uninformative mappings for some items in Block 1 did
decrease motivation to learn in Block 2, they did not do so to an extent sufficient to explain
the difference between the Partial and Exposure conditions.

Discussion
In Experiment 1, we demonstrated that even when participants do not show knowledge of
the correct referent for a word, they may nonetheless have encoded some information about
it. This information increases the probability of learning that word's correct referent from
subsequent exposure. What is the nature of this information?

In Experiments 2 and 3, we ruled out the possibility that the information is simple
familiarity. Participants who received equal exposure to the words and objects, but not their
mapping structure, did not show accelerated learning. Thus, since the benefit depends on
experience with the mapping structure, the useful information must be partial knowledge of
the correct referents of these words. We have thus provided direct empirical evidence for the
accumulation of partial information in word learning (cf. Medina et al., 2011; Trueswell et
al., 2013).

But more than this, the partial knowledge of some word– object mappings facilitated the
acquisition of other, wholly novel word–object mappings. This outcome indicates that cross-
situational word learning cannot be a process of merely tallying co-occurrences (cf. K.
Smith et al., 2011; Yu & Smith, 2012); word–object mappings cannot be learned by
independent accumulators (cf. McMurray, 2007). Instead, it must involve a kind of
leveraged learning (Mitchell & McMurray, 2009), in which information about the words and
objects encountered in a single instance interacts and competes (Yurovsky, Yu, & Smith, in
press). But by what mechanism does this interaction occur? To determine how partial
knowledge of words and referents facilitates learning new co-occurring words and referents,
we implemented two computational models designed to test competing hypotheses.

Computational models
How do cross-situational learners make use of partial knowledge of word–referent
mappings? The experiments above demonstrate a learning benefit not only for words and
objects for which partial knowledge exists, but also for wholly new words and objects. In
some way, then, partial knowledge accelerates learning the whole system of word–referent
mappings. One obvious candidate mechanism would be some kind of mutual exclusivity
(Golinkoff, Hirsh-Pasek, Bailey, & Wenger, 1992; Markman & Wachtel, 1988; Merriman &
Bowman, 1989) or highlighting (Kruschke, 2003). That is, learners who had mapped a word
to one object could have ruled out that object as a candidate referent for other words. But
one can imagine two kinds of mechanisms by which this could happen.

First, partial knowledge of a word–object mapping could reduce the time (and information)
required to successfully learn that mapping through exposure to statistics. Then, once that
specific mapping is learned, the correct referent of this word could be ruled out as a possible
referent of other words. We call this model the Full Knowledge Mutual Exclusivity model,
because the amount of knowledge required to correctly learn a word–referent mapping is the
same as the amount required to rule its elements out as candidates for other mappings. This
is a model in which the learning of individual word–referent mappings is incremental, but
only once a mapping is learned (all-or-none) can it benefit the learning of other words and
referents.
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Alternatively, as was suggested by Siskind (1996), the competition that gives rise to mutual
exclusivity may operate on partial knowledge (Yurovsky, Yu, & Smith, in press). That is,
partial knowledge of a word–object mapping may not only decrease the amount of
information required to learn that word, but may also limit that object from being the
referent of other words. On this account, mutual exclusivity operates at a lower threshold of
knowledge than does the ability to map a word to a referent at test, and thus partial
knowledge of a word–referent pairing is actively involved in learning even before it is fully
known. We will refer to this as the Partial Knowledge Mutual Exclusivity model.

Both of these accounts can, in principle, predict leveraged learning of new words in the
Partial condition as compared with the All New condition. However, they disagree about the
detailed mechanistic process through which this learning benefit occurs (Suanda & Namy,
2012; Yu & Smith, 2012). In the Full Knowledge ME account, participants enter Block 2
with partial knowledge of the repeated word–referent mappings. Over the course of several
trials, they learn about word–object mappings, independently, for both repeated and new
items. Then, at some point, the repeated mappings become fully learned, and their
component words and objects can be ruled out as contenders for mapping to new words and
objects. Because, at the beginning of Block 2, the repeated items are already partially
known, the number of trials to reach full knowledge of these mappings is lower than the
number required for new words and objects. Consequently, learning by exclusion would
happen faster in the Partial than in the All New condition, and thus the number of both
repeated and new items known at the end of Block 2 should be higher in the Partial than in
the All New condition. The Partial Knowledge ME account provides a different explanation
for the observed data. On this account, from the first trial of Block 2, participants already
know enough about the repeated words to begin leveraging them to learn by exclusion.
Consequently, participants in the Partial condition will be learning faster than participants in
the All New condition throughout the entirety of Block 2 and, thus, will know more of both
the repeated and new mappings by the end.

While these models make the same qualitative predictions, they can be discriminated
quantitatively. In particular, they make different predictions about the rate at which learning
will happen in Block 2 of the Partial condition, relative to the rate at which learning occurs
in Block 1 and Block 2 of each of the learning conditions. Formalizing these models allows
us to leverage all of the data from each of the conditions to constrain the predictions of both
the Full Knowledge ME and the Partial Knowledge ME models. In the section that follows,
we formalize both of these models, as well as a Baseline model without mutual exclusivity.
We show that the Partial Knowledge ME model provides the best account for the
experimental data.

Model framework
In formalizing the models, we make the following explicit assumptions. First, on the basis of
the data in the three experiments, we assume that learners are tracking and accumulating
statistical information across learning trials. We formalize this representation as a type of
associative matrix in which the value in each cell represents the strength of association
between a word and a corresponding object (see also Fazly et al., 2010; Frank, Goodman, &
Tenenbaum, 2009; Yu, 2008). In particular, A(w, o) maintains the strength of association
between word w and object o.

Second, we assume that a learner does not have direct access to the cells in this matrix.
Rather, the learning system uses a function, S(w, o), that evaluates the strength of evidence
for mapping w to object o. Intuitively, two factors should contribute to the strength of
evidence for such a mapping: (1) the strength of association between the word and object

Yurovsky et al. Page 13

Psychon Bull Rev. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[A(w, o)] and (2) the strengths of association between the word and other candidate referent
objects [A(w, o′)].

Third, when presented with a word at test, learners must select one of the objects as its
correct referent. We propose that they do so according to a simple rule: If the evidence for
mapping a word to one of the referents is above a threshold, the learner selects that referent
[S(w, o) > K]. If it is not, the learner selects randomly among the objects.

Finally, we must specify how the associative matrix A grows over the course of training. We
assume that on a given learning trial, for each word, the learner has a certain amount of
attention and doles it out among the set of available objects (see also Kachergis et al., 2012;
Kruschke, 2003; Mackintosh, 1975; L. B. Smith, 2000). The manner in which this attention
is distributed is the only difference among the proposed models. In the Baseline model,
attention is distributed randomly across all possible objects. The other two models modify
this distribution of attention as a function of the word–object mapping information already
acquired by the learner. In the Full Knowledge ME model, upon hearing a word w, if one of
the objects present (e.g., o) has already been learned as a referent for that word [S(w, o) >
K], all attention for the word is allocated to that object. If no object is already known to be
the correct referent, attention for the word is doled out randomly among all objects that are
not known to be referents of any other words [S(w′, o′)> K]. Thus, the model implements a
form of mutual exclusivity in which once a word–referent mapping is known, that referent is
not mapped to other words. The Partial Knowledge ME model operates identically, except
that the threshold for mutual exclusivity is lower. That is, the strength of evidence for a
word–referent mapping does not need to have crossed the high threshold (K) to induce the
use of mutual exclusivity. Rather, it must only cross a lower threshold (PK). Thus, the
Partial Knowledge ME model captures the idea that there may be interactions among
partially learned mappings even at low levels of partial knowledge that are not evident in
explicit tests of word–referent knowledge.

The learning model thus steps through training, trial by trial, just as do human learners. On
each trial, updates are made to stored associations between the words and objects present on
each trial as a function of prior knowledge. Then the model is tested via alternative forced
choice, as were human learners. The two block designs used in our experimental studies
were simulated by first training the model on the training input from Block 1 and then
testing the model for each of these words. After that, training trials for Block 2 were
constructed on the basis of the model's responses to these Block 1 test trials, just as they
were for human participants. Finally, the model was exposed to a second block of training
and tested again on the words from Block 2. Bayesian model comparison was used to
determine which model provided the best fit to the observed empirical data. In the next
section, we provide a formal specification of the models.

Critically, two assumptions—indirect access to cooccurrence information and thresholds of
knowledge—facilitate discrimination of the two different ways in which partial knowledge
can accelerate the learning of novel words. Thus, we developed the Full Knowledge ME
model to formalize an indirect role for sub-threshold knowledge. The Partial Knowledge
ME model was intended to be a direct contrast to this model and a strong test for the direct
role of sub-threshold knowledge. As such, we see the two-threshold model as the
appropriate stand-in for fully probabilistic models (e.g., Fazly et al., 2010; Frank, Goodman,
& Tenenbaum, 2009; McMurray et al., 2012; Yu, 2008) and see these models as falling into
the same class as the Partial Knowledge ME model; partial knowledge plays a direct role. In
brief, the present two models were developed to discriminate between two kinds of
mechanisms rather than their details. We also note that there are many other ways of
formalizing associative learning, some of which are significantly more flexible and more
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powerful (e.g., Kehoe, 1988; Kohonen, 1984; Kruschke, 2008). Because these models are
also in the same general class as the Partial Knowledge ME model, we use the simpler
formulation for clarity and as a more rigorous and fair test of our particular hypothesis.

Formal model
Each model learner begins training with a matrix in which each cell A(w, o) corresponds to
the strength of association between word w and object o. All entries were initialized to zero
before the first training trial was encountered. In order to determine whether the model has
learned to map a word onto an object, the associative matrix is passed through a function
S(w, o) that determines the strength of the evidence for mapping word w to object o. S(w, o)
compares the value in the associative matrix between w and o with the values for other
candidate objects o′. Formally, S(w, o) returns the average ratio between A(w, o) and each
other nonzero A(w, o′) divided by the number of nonzero A(w, o′):

(1)

That is, S(w, o) provides a measure of how much more evidence one has for mapping w to o
than to each other viable candidate o′. Note that, if we did not divide again by the number of
nonzero candidates, adding a new low-probability candidate would raise the average ratio
and, thus, increase the evidence. This function assumes that at some (perhaps implicit) level,
humans are sensitive to the entire distributional structure of a word, and not just the most
commonly co-occurring object. Evidence from other statistical learning paradigms (e.g.,
Perruchet & Pacton, 2006; Vouloumanos, 2008) suggests that this is a reasonable
assumption. This is certainly not the only possible function S(w, o), but it is the one that
provides the best fit to the empirical data. For a discussion of other alternatives (e.g.,
negentropy; Schrödinger, 1944), see the Appendix.

To connect this function to the learner's behavior at test, we propose that the learner knows
the referent for a word—and selects it at test—when the value of the function S rises above a
threshold K. Below this threshold, the learner does not yet know the correct mapping for a
word and will choose randomly among all available objects at test.

Formally, then, when a learner is tested with word w and a set of candidate objects O,

(2)

Finally, the association matrix A grows as the learner engages in cross-situational learning.
The nature of this growth is the feature on which the three models differ. In each, the learner
doles out a fixed quantity of associative strength for each word on each learning trial. In the
Baseline model, this associative strength is distributed randomly among all candidate objects
in the trial. Formally, random distribution among the referents is implemented by selecting a
random value I(w, o) for each word–referent mapping (w, o) and normalizing for each word.
Thus, if trial t contains the words Wt and objects Ot,
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(3)

In the other models, this distribution of attention is moderated by the learner's knowledge
(see also Kachergis et al., 2012). If the mapping strength between a word w and any of the
objects has passed threshold, that object receives all of the word's association for the trial.
Furthermore, if the strength between any other word w′ and any of the objects has reached
threshold, those objects receive none of w's association on this trial. The two models differ
in the threshold of knowledge necessary for both of these effects. In the Full Knowledge ME
model, the threshold for mutual exclusivity is the same as that for knowing the word: K. In
contrast, in the Partial Knowledge ME model, the threshold is a different, lower value PK.
We describe this rule below for the Partial Knowledge ME model:

(4)

We address two concerns before presenting the results. First, we present here a set of
process models but wish to establish an in-principle distinction between two-threshold and
one-threshold models. An alternative would be to begin with a Bayesian ideal observer
model. However, since normative models of cross-situational learning routinely outperform
participants by a large margin (e.g., Frank, Goodman, & Tenenbaum, 2009) and do not
address trial-by-trial learning, we believe the present process-oriented approach to be a more
direct and more transparent way to compare these two different mechanisms for using partial
knowledge. Nonetheless, the conclusions are certainly contingent on the assumptions we
have made in formalizing our models.

Second, all of these models use an associative representation—essentially, a matrix with
words along the rows and objects along the columns. Each cell represents the strength of the
association between the corresponding word and object. Use of this matrix need not be taken
as a commitment to an associative account of word learning. Rather, such a matrix is a
useful representational tool, commonly employed across both associative (Fazly et al., 2010;
Yu, 2008) and Bayesian hypothesis-testing (Frank, Goodman, & Tenenbaum, 2009) models
of word learning. For present purposes, the representation is a mathematical tool rather than
a theoretical commitment. We return to this point in more detail in the General Discussion
section.

Model results
Optimal parameters for each model were found by grid search on the parameter space from
0 to 20 in steps of .1, under the constraint that, for the Partial Knowledge ME model, the
partial knowledge threshold (PK) was lower than the full knowledge threshold (K). At each
parameter setting, 1,000 simulated participants were averaged together to produce model
predictions and to compute the sum of squared errors (SSE) between the model predictions
and the data. Optimal parameters were chosen to minimize the SSE across all blocks in all
conditions. The resulting SSEs were used to approximate the Bayesian information criterion
(BIC) for each model under the assumption of Gaussian errors (Schwarz, 1978). This
criterion trades off fit to the data with model parsimony, penalizing models both for
misprediction and for number of parameters. Since the Partial Knowledge ME model has an
additional parameter, it must provide a better fit to the data. The BIC allows one to
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determine whether the improvement in fit merits the additional complexity of the second
parameter. Table 1 lists optimal parameter values, SSEs, and BIC values for each of the three
models.

In BIC comparisons, the model with the lower value is preferred. Furthermore, the size of
the difference indicates the strength of evidence in favor of the better fitting model.
Although this difference can be interpreted directly as a continuous measure, it is useful, as
in null-hypothesis testing, to have a set of discrete values to act as heuristics for
interpretation. Kass and Raftery (1995) provide the most commonly used standard. On their
scale, a difference in BICs of 0–2 is “not worth more than a bare mention,” a difference of
2–6 is positive evidence, a difference of 6–10 is strong evidence, and a difference of more
than 10 is very strong evidence. We use this scale in interpreting the comparison between
the Baseline, Full Knowledge ME, and Partial Knowledge ME models.

Table 1 shows that the Full Knowledge ME model fit the data slightly better than the
baseline model but that the difference in BICs was small, “not worth more than a bare
mention” (Kass & Raftery, 1995). However, the Partial Knowledge ME model fit the data
much better than did both of the other models. Even after controlling for its greater
complexity, the difference in fits provides very strong evidence that it is a better account for
the data than either the Baseline or the Full Knowledge ME model (Kass & Raftery, 1995).

Thus, the Full Knowledge ME model does not provide a good account of the way in which
partial knowledge is used in cross-situational learning. At the setting of its parameters that
provides the best fit to the data, it does not perform much better than the Baseline model—a
model in which partial knowledge does not spread through the system at all. The Partial
Knowledge ME, in contrast, provides a convincing fit to the data, as can be seen in Fig. 5.
Thus, in order for partial knowledge of one word–object mapping to speed the acquisition of
other mappings, it must play a direct role prior to explicit knowledge of the mapping. Even
when an object has not yet been fully mapped to a word, its partial mapping to one word will
limit its mapping to another word. In other words, partial knowledge plays a role in
disambiguation and in finding the latent structure of word–referent pairings in a system of
words and referents (Siskind, 1996; Yurovsky, Yu, & Smith, in press).

Model discussion
The models developed and compared in this section were designed to discriminate between
two broad ways in which partial knowledge of some words could speed up the acquisition of
others. The Full Knowledge ME model embodied an indirect route: partial knowledge of a
given word might reduce time to acquire a high-fidelity mapping for that word, and this
strong mapping could subsequently help the acquisition of new mappings through mutual
exclusivity. Alternatively, mutual exclusivity could operate on partial knowledge, with an
object only weakly associated with a word already being less likely to be mapped to a
different word (Partial Knowledge ME). The model comparison showed a direct role for
partial knowledge to be much more likely than an indirect role.

Of course, the Partial Knowledge ME model formalized only one way of performing mutual
exclusivity through partial knowledge. This particular way makes a distinction between two
thresholds: threshold to give a correct response at test and threshold to direct attention for
exclusion. This distinction parallels work on low- and high-threshold theories of detection in
visual search (e.g., Palmer, Verghese, & Pavel, 2000). Alternatively, the whole system could
be probabilistic, with exclusion not operating on a binary threshold but being directly
proportional to the strength of a given word–object mapping (e.g., Fazly et al., 2010;
McMurray et al., 2012; Yu, 2008). Additionally, the mechanisms underlying mutual
exclusivity are also in debate, ranging from attentional explanations (e.g., Merriman &
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Bowman, 1989), to constraint-based explanations (e.g., Markman, 1990), to social and
pragmatic explanations (e.g., Diesendruck & Markson, 2001). We have formalized these
models in attentional language, but other implementations of the mechanistic basis of
competition are possible (see also McMurray et al., 2012). The critical point that the models
make is that partial knowledge is used directly. Even when words are not well known, they
already directly impact the learning of other co-occurring words and objects.

General discussion
Two critical assumptions of statistical and distributional approaches to language acquisition
are that information is accumulated over time (Gillette et al., 1999; McMurray, 2007;
Plunkett, 1997; Saffran, 2003) and that learning is principally about building not only
individual mappings, but also coherent systems of mappings (Frank, Goodman, &
Tenenbaum, 2009; Landauer & Dumais, 1997; Yu, 2008). However, the literature contains
no direct empirical evidence about how such accumulation works or how human language
learners bring about these system effects. Here, we presented evidence on one key issue: the
role of partial knowledge in statistical learning. Using the cross-situational word-learning
paradigm (Yu & Smith, 2007), the experiments in this article provide clear evidence of an
important role for partial knowledge in accelerating learning. When words and objects that
participants failed to learn in one block of cross-situational learning were re-encountered in
a second block, word–object mapping accuracy improved dramatically. Thus, while learners
had not encoded enough about word–object distributions to select correct mappings at the
initial test, they had nonetheless encoded some partial knowledge of these distributions, and
this partial knowledge sped up their word learning in Block 2. What's more, word-object
mapping accuracy in Block 2 was improved not only for these previously seen items, but for
wholly novel words and objects as well. Thus, partial knowledge of one mapping not only
sped up acquisition of that mapping, but also eased the acquisition of novel mappings
through mutual exclusivity (Golinkoff et al., 1992; Markman & Wachtel, 1988). Two
follow-up experiments ruled out an alternative explanation of these results as arising from
pure familiarity with items from block 1.

This key finding—that partial knowledge of a subset of the items in Block 2 sped up the
acquisition of correct mappings for new items—was consistent with two mechanistic
explanations. First, it was possible that partial knowledge played an indirect role. Partial
knowledge of a word–object mapping could have shortened the time to acquisition of
complete knowledge of that mapping, and mutual exclusivity could have supported learning
of new mappings only once this complete knowledge was acquired. Alternatively partial
knowledge could have played a direct role, with only partial knowledge of a word–object
mapping being necessary for the word and object to be ruled out as candidates for other
mappings (Siskind, 1996; Yu, 2008; Yurovsky Yu, & Smith in press). We formalized these
two explanations as computational models and showed that the second—mutual exclusivity
from partial knowledge—provided a significantly better quantitative fit to the empirical
data. Taken together, the empirical results and the model comparison provide evidence for a
word-learning process that is not only accumulative, but also self-bootstrapping (L. B.
Smith, 2000). Because language is learned as a system and not a series of individual
components, gaining even partial knowledge of one part can yield a benefit for learning
another (L. B. Smith & Yu, 2008).

Bootstrapping from partial knowledge
It may at first seem strange that the word-learning system could know enough about a word–
object mapping to limit consideration of its components as candidates for other mappings
but, at the same time, not know enough about them to reliably link them at test. However,
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this kind of learning mechanism is in line with the extant evidence about both adults' and
infants' language-processing systems. One of the most robust findings in the memory
literature is semantic priming (McRae & Boisvert, 1998; Neely 1977). In semantic priming
tasks, two words are presented to the participant in rapid succession. The first word, the
prime, is present for only a short duration—on the order of 150 ms. The target word is then
presented, and the participant makes a lexical decision judgment (for instance). Although the
prime is not present long enough to be identified at above-chance levels, it nevertheless
improves performance on identification of the target word. Thus, although the prime is
activated to only a low threshold, it still impacts the processing of a target word. Mani and
Plunkett (2010) have extended this finding, in a modified paradigm, to 18-month-old infants.

Such processing is also consonant with properties of the neural system. Although it is
common to abstract neural processing to a series of discrete firings, or action potentials, and
then to model the rate of such firing, neural processing is known to be significantly more
complex. For example, membrane potentials below threshold can modulate the release of
neurotransmitters—in effect, producing analog rather than digital changes (Alle & Geiger,
2006; Marder, 2006). The interaction of sub-threshold activations is also a cornerstone of
neurally inspired dynamic field theory models (e.g., Erlhagen & Schoner, 2002; Thelen,
Schöner, Scheier, & Smith, 2001). In these models, representations consist of patterns of
activation across a field of neuron-like units. Critically, items represented in similar parts of
the neural field can interact, such that if both are active at sub-threshold levels, their overlap
can push one over threshold. Spencer and colleagues have used these representations to
explain aspects of spatial (Schutte, Spencer, & Schöner, 2003) and visual (Johnson, Spencer,
& Schöner, 2008) cognition, as well as their interaction (Simmering & Spencer, 2008).

This article extends these ideas beyond processing and memory and into language
acquisition (although see Samuelson, Schutte, & Horst, 2009). We show that even sub-
threshold knowledge of a word's referent can change the acquisition of new words. Although
McMurray (2007) showed that acceleration in rate of vocabulary acquisition should be
predicted even if words are learned independently, the quantitative pattern may require a
mechanism in which partial knowledge of words interacts. Taking this proposal seriously
suggests that, in fact, learning the whole system of language may be easier than learning the
independent parts. Recently, computational studies have shown this indeed to be the case.
For instance, Frank, Goodman, and Tenenbaum (2009) showed that learning the meanings
of words is more successful if learners perform joint inference over both meaning and
intention, rather than just meaning alone. Feldman, Griffiths, and Morgan (2009) modeled
phonetic category learning and showed the task to be easier if learners simultaneously try to
learn words and phonetic categories. Johnson, Frank, Demuth, and Jones (2010) similarly
showed that joint inference of words and syllables produces better speech segmentation than
does inference over syllables alone. Hidaka and Smith (2010) showed that learning the
features relevant for multiple natural language categories allows rapid acquisition of new
categories and may help to explain fast-mapping. Because language contains structure at
multiple levels and regularities are related across levels, learning something about one level
is informative about aspects at other levels. This idea is also key to both semantic (Pinker,
1994) and syntactic (Gleitman, 1990) bootstrapping.

Children are inundated with language. The average American child can expect to hear
between 10 and 33 million words in the first 3 years of life (Hart & Risley, 1995). This is a
tremendous amount of input, and most of it is likely to occur in noisy, ambiguous learning
environments. Finding the latent structure in such data may depend on using less than clear-
cut information and on representations that are not strong enough to show up as explicit
knowledge. If language learning is really about recovering structure from noisy statistics
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(Kemp, Perfors, & Tenenbaum, 2007), even the noisiest data may have an important role to
play (Kalish, Rogers, Lang, & Zhu, 2011; Recchia & Jones, 2009).

Partial knowledge and accumulative learning
While language acquisition is a problem of discovering of latent structure, it is only one
example of a general class of such problems (Kemp & Tenenbaum, 2008). In any domain
that contains structure, a learning system will benefit prodigiously from exploiting such
structure. The present experiments demonstrate that human learners can exploit a set of
partially learned word–object mappings to learn other word– object mappings, but similar
effects are seen across a variety of domains.

In memory, items related by semantic similarity (McRae & Boisvert, 1998), temporal
contiguity (Clayton & Habibi, 1991), and typical location (Estes, Verges, & Barsalou, 2008)
facilitate each others' processing. Also, when an item cannot be recalled, people can often
nonetheless retrieve partial information about that item (Brown & Kulik, 1977; Durso &
Shore, 1991; Hicks & Marsh, 2002; Koriat, 1993). Furthermore, when the partially retrieved
item is followed by a related item, complete retrieval is facilitated (Meyer & Bock, 1992).
All of this suggests that memory storage is highly interconnected and operates in a graded
manner.

In categorization, the relationship among features plays a significant role in the resulting
knowledge acquisition. For instance, irrelevant features encountered during learning in a
categorization task can alter subsequent generalization gradients (Little & Lewandowsky,
2009). This suggests that even when information does not directly impact learning of the
experienced correlations, it can nonetheless play a role in organizing future learning.
Consistent with this idea, a number of experimenters have demonstrated significant effects
of prior learning on future category learning. For instance, Heit (1994) showed that prior
knowledge of exemplars from a category in one condition affects the acquisition of
information about that category in a new condition. Billman and Knutson (1996) showed
that categories are easier to learn when the relational structure of their features follows two
principles: value systematicity and value contrast. High value systematicity occurs when
features that predict other features are likely to predict still other features. That is, features
that have been predictive in the past are given high weight when new categories are learned.
High value contrast occurs when, if one value that a feature can take is predictive, so are the
other values. In both of these cases, acquiring partial information about the feature structure
of categories bootstraps the acquisition of further information about related categories.
Further studies have confirmed these findings, showing that correlations are easier to learn if
they are embedded in a rich system of correlations than if they are experienced in isolation
(Kersten & Billman, 1997; Yoshida & Smith, 2005).

The experiments in this article add two novel contributions to this discussion. First, they
provide direct evidence of states of partial information on the trajectory between no
knowledge and complete knowledge (see also Bion, Borovsky, & Fernald, 2013). Second,
and most importantly, they provide evidence for a driving role of partial knowledge in a
system still in the process of learning. In the memory literature, information that has
previously been well learned is known to be interconnected with other previously well-
learned information. Similarly, in the categorization literature, well-learned prior knowledge
(e.g., Heit, 1994) is known to affect the acquisition of future knowledge, as is the static
relational structure of the knowledge to be acquired. The empirical and computational
evidence presented in this article shows that even if information was never well learned, it
can still play an important role in organizing future learning.
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None of this is intended to deny that significant learning can happen in a single trial (Brown
& Kulik, 1977; Gallistel et al., 2004; Markson & Bloom, 1997). Rather, the central claim is
that significant partial knowledge from related learning, accumulated over a series of past
experiences, plays a critical role in creating one-shot learning opportunities in noisy learning
environments. Once a learner has accumulated information about the structure of the
information to be learned (Kemp et al., 2007; L. B. Smith et al., 2002), the acquisition of
new knowledge can be quite rapid. It is the high degree of interactivity in the human word-
learning system, and in the learning system in general, that may help to explain its
remarkable success even when embedded in the complex environment of the natural world.

Scaling up: word learning in the world
Although we can ask many questions about word learning via laboratory experiments, the
laboratory is not the world. With any such endeavor, there is always a translational question:
Will this behavior scale? Previous demonstrations suggest that it may. For instance,
laboratory experiments investigating the operations of memory processes typically ask
participants to remember just a few or a few dozen objects. However, Brady, Konkle,
Alvarez, and Oliva (2008) showed that humans can rapidly learn to remember thousands of
objects. Similarly, short learning experiences in the laboratory can have striking
consequences for real-world learning. L. B. Smith et al. (2002) showed that 17-month-old
infants who were taught to categorize objects by shape in the lab subsequently showed a
prodigious acceleration in vocabulary development, learning many more words than infants
who did not receive such training.

In the present study, the input for word learning was simplified in a number of ways. Words
were presented in isolation rather than in sentential contexts, words referred to individual
objects rather than types, and potential referents were clearly individuated and available on-
screen. Clearly, this is a different problem from that faced in “the wild” (Medina et al.,
2011; Quine, 1960). Nonetheless, the core hypothesis in this article—that words are learned
through accumulation of partial knowledge, and that partial knowledge of some words can
accelerate the acquisition of other words—is likely to scale. This is because while the real
world is more complex than the lab, it is not uniformly and arbitrarily complex. In some
cases, this additional variability can be good for learning (Apfelbaum & McMurray 2011;
Hills, Maouene, Riordan, & Smith, 2010; Perry, Samuelson, Malloy, & Schiffer, 2010; Rost
& McMurray, 2010).

For instance, while words are often embedded in sentential contexts, a significant proportion
of speech to infants consists of isolated words (Brent & Siskind, 2001), and these isolated
words measurably improve statistical speech segmentation in 8- to 10-month-old infants
(Lew-Williams, Pelucchi, & Saffran, 2011). Furthermore, even when important words are
not produced in isolation, they are placed in sentence-final position and preceded by
determiners, making them more salient and easing their segmentation (Aslin, Woodward,
LaMendola, & Bever, 1996). Recent work shows that this structure also facilitates cross-
situational word learning (Monaghan & Mattock, 2012; Yurovsky et al., 2012).

Similarly, although objects that receive a given label are not identical, they typically vary
along predictable dimensions (Hidaka & Smith, 2010). Thus, even though L. B. Smith et al.
(2002) exposed children to mappings in which shape was identical across instances, the
acceleration in these children's real-world word learning was for categories whose exemplars
were not identical in shape. Furthermore, increasing the dissimilarity of the laboratory
training objects on other dimensions actually improves real-world word learning (Perry et
al., 2010).
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Understanding how learning words across ambiguous situations scales, thus, is surely more
than a matter of presenting learners with more and more words and objects per trial (cf K.
Smith et al., 2011). Making progress will involve documenting the statistical properties of
auditory and visual input to children and understanding how these interact with statistical
word learning (Blythe, Smith, & Smith, 2010; Vogt, 2012). It will also require caution:
assumptions may creep in that re-introduce arbitrary, rather than natural, complexity. For
example, although Medina et al. (2011) showed that cross-situational word learning fails to
cope with the ambiguity of natural naming events, Yurovsky, Yu, and Smith (in press)
showed that this conclusion resulted from an incorrect assumption. When identical natural
naming events were observed from a child's first-person perspective, cross-situational
learning succeeded. Thus, experiments designed to isolate a particular learning problem may
sometimes remove exactly the information that real children use in real learning (see, e.g.,
Bergelson & Swingley, 2012; Frank, Slemmer, Marcus, & Johnson, 2009; Shukla, White, &
Aslin, 2011; Thiessen & Saffran, 2009).

By extension, we argue that even partial knowledge of sounds, words, objects, and mappings
may be critical for bootstrapping language acquisition. For instance, Bortfeld, Morgan,
Golinkoff, and Rathbun (2005) showed that 6-month-old infants could use words with which
they were familiar but for which they had, at best, partial knowledge of meaning as a wedge
into speech segmentation. In the other direction, Hochmann, Endress, and Mehler (2010)
pre-exposed 17-month-old infants to natural French speech and subsequently presented
these infants with a word–object mapping task in which words from the speech stream
served as labels. Infants associated objects more strongly with the nouns in this language
than the determiners. Why? The hypothesis is that even though these infants had not yet
learned much about syntax, they had already learned that very high frequency words do not
have referents. Thus, although our findings are in a setting very different from that in which
children and adults learn language, they may be at the core of understanding these
mechanisms.

Finally, the move to understand word learning at scale will require a serious investigation of
the role of time in encoding, remembering, and forgetting the meanings of words (Kachergis
et al., 2012; McMurray et al., 2012; Medina et al., 2011; Spencer, Perone, Smith, &
Samuelson, 2011; Vlach, Sandhofer, & Kornell, 2008).For instance, although children
sometimes fast-map words to objects after a single exposure, memory for these mappings
can be quite short-lived (Bion et al., 2013; Horst & Samuelson, 2008; Munro, Baker,
McGreggor, Docking, & Arciuli, 2012). Similarly, inferences that learners make about the
objects to which a word refers can be different when these objects are presented sequentially
versus simultaneously (Spencer et al., 2011). Thus, although one of the recent debates in the
word-learning literature has been whether the extant data is best explained by hypothesis
testing or associative learning (e.g., Colunga & Smith, 2005; Kemp et al., 2007; Medina et
al., 2011; Sloutsky, 2009; Waxman & Gelman, 2009; Yu & Smith, 2007), we join Yu and
Smith (2012) in advocating that it has not been productive. As models in both classes
become more complex, the differences between them become semantic rather than material.
Since hypothesized hypothesis-testers are allowed to entertain multiple, probabilistic
hypotheses (Frank, Goodman, & Tenenbaum, 2009; Xu & Tenenbaum, 2007) and
associative models incorporate competition, nonmonotonic learning rules, and complex
measures of association and uncertainty (Kachergis et al., 2012; McMurray et al., 2012;
Regier, 2005; Yu, 2008; Yu & Smith, 2011; Yurovsky, Yu, & Smith, in press), these classes
of models become difficult (or impossible) to discriminate (see also Shi, Griffiths, Feldman,
& Sanborn, 2010; Townsend, 1990; Townsend & Wenger, 2004). A more productive
modeling endeavor might be to work on understanding how statistical word learning unfolds
across multiple scales—from how information is selected in a single trial (Fitneva &
Christiansen, 2011; L. B. Smith & Yu, 2013; Yu & Smith, 2011; Yu et al., 2012), to how
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information is accumulated across multiple trials (as in this article) (K. Smith et al., 2011;
Trueswell et al., 2013; Yurovsky, Yu, & Smith, in press), how information is stored and
forgotten across days (Medina et al., 2011; Vlach & Sandhoffer, in press), and how learning
trajectories for large-scale lexicons ultimately unfold across months and years (Frank,
Tenenbaum, & Gibson, 2013). It may be that once models of both classes have grappled
with constraints from all of these levels, we will be able to tell them apart. Or it may be that
we decide they are truly indistinguishable. In either case, we will have made progress in
understanding how statistical word learning might scale. The experiments and models in this
article provide one such set of constraints.

Conclusion
Learning a language requires learning a massive set of word–object mappings. While some
words could be learned pedagogically, perhaps even from a single instance, this may leave
many words unlearned. Statistical and associative approaches suggest that children and
adults may solve this problem by tracking word–object co-occurrences across time,
gradually learning the meanings of many words over repeated exposures. The present article
provides support for these kinds of theories, demonstrating empirical evidence of partial
knowledge in ambiguous word-learning situations: words that are not yet learned to
criterion, but for which learners have nonetheless acquired some knowledge. Furthermore,
the experiments and models in this article show that partial knowledge plays a direct role in
bootstrapping future learning, accelerating the acquisition of novel words and objects. This
article thus makes three main contributions. First, it provides direct evidence of sub-
threshold knowledge in statistical word learning, an assumption made by many theories, but
not demonstrated directly (Medina et al., 2011; K. Smith et al., 2009). Second, it shows that
this partial knowledge plays an interactive, system-level role: partial knowledge of some
words accelerates the acquisition of other, co-occurring words. Third, the modeling results
indicate that partial knowledge plays this role quite early, with very little exposure needed to
potential mappings before they begin to bias the learning system. In addition, this article
also explores several possible representations of this partial knowledge (see the Appendix).
Together, these new results point to a framework that clarifies the origins of such
bootstrapping and the relationship between partial knowledge and vocabulary development.
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Appendix
In developing any computational model, one must make a decision about how to move from
the conceptual model to its implementation. In these models, we made just such a decision
about how the strength of evidence for a word-object mapping [S(w, o)] is derived from the
cells in the associative matrix (A). There were, however, a number of alternative possibilities
that we also considered but rejected due to poorer fits to the empirical data. Here, we present
those alternatives and their goodness of fit for the Baseline, Full Knowledge ME, and Partial
Knowledge ME models.

The most straightforward metric is to use pure frequency; once the cell in the associative
matrix [A(w, o)] crosses a threshold, the word is known. This takes into account what is
known about the co-occurrence of word w and object o but ignores information about w's
co-occurrence with other objects. One way of using the distributional information is to
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measure the proportion of associative strength for w and all objects accounted for by a
particular object o—that is, to normalize each cell by the sum of its row (Luce, 1959).

Third, because psychological distance is known to be an exponential function of true
distance (Shepard, 1987), it is reasonable to take an exponential transform of the proportion
of association computed in the previous metric. Exponentiated proportion is different from
proportion in two basic ways. First, the same amount of difference between two proportions
is treated as more significant in higher parts of the space (e.g., .9 vs. 8) than in lower parts of
the space (e.g., .4 vs. .3). Second, it assigns nonzero weight to zero-strength associations.
This encodes the idea that since there are more candidate referents, there is less certainty in
any individual referent.

Finally, a natural candidate for the strength function is the reciprocal of the entropy
(Shannon, 1948) of the proportion space, or negentropy (Schrödinger, 1944). Entropy is a
measure of the uncertainty of a distribution; in this case, setting a threshold on negentropy
requires there be a lower bound on uncertainty before a mapping is known. Table 2 below
presents BIC values for these metrics, as well as for the metric used in body of the article:
Average ratio. Since average ratio significantly outperforms several other plausible
candidate metrics, it was used in the models presented in the main text.
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Fig. 1.
A schematic of the design of Experiment 1's Partial and All New conditions. In the Partial
condition, nine items that participants incorrectly mapped at test in Block 1 were
subsequently repeated in the stimuli in Block 2. In the All New condition, all 18 words and
objects in Block 2 were new
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Fig. 2.
Accuracy histograms for all participants in Block 1 of both the Partial (left) and All New
(right) conditions. The lighter bars indicate the participants who were in the analyzed subset
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Fig. 3.
Mapping accuracy for Block 2 in the Partial and All New conditions (Experiment 1), as well
as the Exposure condition (Experiment 2). Error bars represent ± SE. Participants in the
Partial condition outperformed those in the All New and Exposure conditions both for the
items they had mis-mapped in Block 1 (repeated) and for items novel to all participants
(new). Thus, partial knowledge of word–object mappings from Block 1 facilitated not only
the acquisition of those mappings, but also the acquisition of new word–object mappings
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Fig. 4.
Mapping accuracy for Blocks 1 and 2 in the Learned Helplessness (LH) Control condition,
as compared with the relevant conditions from Experiments 1 and 2. Error bars represent ±
SE. a In Block 1, participants in the LH Control condition learned as many of the learnable
mappings as did participants in the Exposure condition. b In Block 2, participants in the LH
Control condition learned just as many mappings as those in the All New condition,
suggesting that statistical structure in which half of the distributions are flat does not induce
learned helplessness
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Fig. 5.
Mapping accuracy for all blocks of all conditions and the corresponding fits produced by the
optimal parameterization of the Baseline, Full Knowledge ME, and Partial Knowledge ME
models. Error bars represent ± SE. Markers indicate each model's performance
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Table 1
Parameters and fits for computational models

Model Parameters SSE BIC

Baseline K = 1.4 .152 −49.92

Full Knowledge ME K = 2.6 .149 −50.2

Partial Knowledge ME K = 13.5, PK = 1.0 .032 −66.2

Note. SSE, sum of squared error; BIC, Bayesian information criterion; ME, mutual exclusivity
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Table 2
Model BICs for alternative strength metrics

Metric Baseline Full Knowledge ME Partial Knowledge ME

Frequency −38.24 −38.07 −35.43

Proportion −34.44 −34.9 −38.53

Exp. proportion −34.49 −34.7 −39.03

Negentropy −34.49 −34.04 −38.67

Average ratio −49.92 −50.2 −66.2

Note. BIC, Bayesian information criterion; ME, mutual exclusivity; Exp., exponentiated
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