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Abstract
This review examines the involvement of the motor cortex in Parkinson’s disease (PD), a
debilitating movement disorder typified by degeneration of dopamine cells of the substantia nigra.
While much of PD research has focused on the caudate/putamen, many aspects of motor cortex
function are abnormal in PD patients and in animal models of PD, implicating motor cortex
involvement in disease symptoms and their treatment. Herein, we discuss several lines of evidence
to support this hypothesis. Dopamine depletion alters regional metabolism in the motor cortex and
also reduces interneuron activity, causing a breakdown in intracortical inhibition. This leads to
functional reorganization of motor maps and excessive corticostriatal synchrony when movement
is initiated. Recent work suggests that electrical stimulation of the motor cortex provides a clinical
benefit for PD patients. Based on extant research, we identify a number of unanswered questions
regarding the motor cortex in PD and argue that a better understanding of the contribution of the
motor cortex to PD symptoms will facilitate the development of novel therapeutic approaches.
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1. Introduction
The pathological hallmark of Parkinson’s disease (PD) is the death of dopamine (DA) cells
in the substantia nigra pars compacta (SNc), which causes bradykinesia, akinesia, resting
tremor, rigidity and postural instability (Dauer and Przedborski, 2003; Jankovic, 2008).
Treatment with L-DOPA or synthetic DA receptor agonists relieves PD symptoms, but often
causes drug-induced dyskinesias (Ahlskog & Muenter, 2001; Stowe et al., 2009). Likewise,
deep brain stimulation (DBS) with the electrode placed in either the subthalamic nucleus
(STN) or the globus pallidus pars interna (GPi) improves movement in PD patients, but
concerns about surgical complications such as hemorrhages or infection can limit their
widespread use (Bronstein et al., 2011; Follett et al., 2010).
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In devising new therapeutic approaches to PD, the motor cortex has been gaining
momentum as a potential target. Evidence for motor cortex involvement in PD
pathophysiology and treatment is strong as dynamic changes in motor cortex function are
seen in PD patients and in animal models of PD (Lefaucheur, 2005; Ceballos-Baumann,
2003; Goldberg et al., 2004). According to accepted cannon, PD symptoms are thought to
result from degeneration of DA-secreting SNc neurons, which synapse in the striatum to
facilitate controlled movement (Dauer and Przedborski, 2003). However, this nigrostriatal
pathology causes functional alterations in a variety of structures connected to the striatum
including the motor cortex (Obeso et al., 2008). At the same time, DA projections from the
midbrain directly to the motor cortex are reduced in PD patients, providing a second source
of dysfunction (Gaspar et al., 1991). Convergent evidence suggests that the motor cortex is a
therapeutic target in PD: direct motor cortex stimulation can reduce the symptoms of PD and
L-DOPA-induced dyskinesia (LID; Elahi et al., 2009) while antiparkinsonian therapy
modulates the activity of the motor cortex (Lefaucheur, 2005).

Given increasing evidence that abnormal motor cortex function is an important component
of PD pathophysiology, this review outlines critical findings while identifying key
unanswered questions for the research field. This review will first highlight the intrinsic
connectivity of the motor cortex and the basal ganglia before turning to motor cortex
pathology in PD. Functional changes in the motor cortex of PD patients before and after
treatment will be covered from a “top-down” perspective by examining, in order: regional
blood flow and metabolism, gross excitability, plasticity, motor maps, oscillations and
synchrony, and lastly, individual cellular activity. For the purposes of this review, the term
“motor cortex” is defined as including the primary motor cortex (M1), the supplementary
motor area (SMA), and the premotor cortex (PMC).

2. Motor Cortex – Basal Ganglia Connectivity
2.1. Motor Cortex Afferents

The ventrolateral nucleus of thalamus constitutes most thalamocortical input to the motor
cortex, innervating M1, the posterior SMA (SMA proper), the ventral PMC (PMCv) and
parts of the dorsal PMC (PMCd) (Geyer et al., 2000; see Figure 1). The ventroanterior
thalamic nucleus projects to the anterior SMA (pre-SMA) and parts of the PMCd (Geyer et
al., 2000; Martin, 2003). In parts of the anterior motor cortex, these thalamocortical
connections synapse in layer IV, following the general pattern for neocortex (Martin, 2003).
However, much of the posterior motor cortex (including all of M1) has no anatomically
distinct layer IV and thalamocortical connections synapse in layers III and V (Geyer et al.,
2000; Keller, 1993). The cerebellum provides inputs to the PMC via a polysynaptic route
that relays at the ventrolateral thalamus (Martin, 2003). High order control of movement
relies on intracortical connections feeding into the motor cortex from sites including the
prefrontal, somatosensory and posterior parietal cortices (Geyer et al., 2000). The motor
cortex is also innervated by serotonin (5-HT) from the raphe nuclei (Tork, 1990),
norepinephrine (NE) from the locus coeruleus (Lindvall and Bjorklund, 1974) and
acetylcholine from the nucleus basalis of meynert (Mesulam et al., 1983).

In primates, the supply of DA to the motor cortex is more dense than in any other area of the
cortical mantle, with innervation distributed among three midbrain DA nuclei: the SNc,
ventral tegmental area (VTA), and retrorubral area (RRA; Gaspar et al., 1992; Williams and
Goldman-Rakic, 1998). All cortical layers receive DA although layers I and II are the most
densely suppliedwhile layer IV receives the least DA innervation (Goldman-Rakic et al.,
1989). D1 receptors are distributed across the cortical layers and found on asymmetrical
(excitatory) synapses, while D2 receptors are specifically localized to layer V and form
symmetrical (inhibitory) synapses (Lidow and Goldman-Rakic, 1994; Smiley et al., 1994).
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In contrast to primates, rodents have relatively less DA in the motor cortex than they do in
the prefrontal cortex, the DA innervation is preferentially in the deep cortical layers and the
fibers originate mostly from the VTA (Berger et al., 1991). Further, a proportion of the SNc
neurons that supply the striatum with DA also extend projections to the motor cortex
(Debier et al., 2005).

2.2. Motor Cortex Anatomy and Microcircuitry
Layer V of the motor cortex is thicker than in other cortical regions and contains Betz cells,
a unique type of pyramidal cell distinguished by their large soma and dendrites that emerge
from the soma in all directions (Martin, 2003; Rivara et al., 2003). Betz cells are highest in
density in the ventral region of layer V, accounting for about 12% of all pyramidal cells in
this area (Rivara et al., 2003). They are most common in the medial region of M1, which is
principally responsible for foot and leg movements (Rivara et al., 2003). Betz cells are much
less common in the SMA and the PMC, and are primarily observed near the anatomical
boundaries of M1 (Geyer et al., 2000).

Within the subregions of the motor cortex, there is elaborate interconnectivity. The pre-
SMA, SMA proper, PMCd and PMCv all provide inputs to M1; however, M1 provides
reciprocal feedback only to the SMA proper and the PMCd (Geyer et al., 2000). While the
SMA proper and pre-SMA have monosynaptic reciprocal connections, the PMCd and PMCv
are connected only disynaptically (Geyer et al., 2000).

Within a cortical column, information tends to flow into the superficial layers and propagate
ventrally. In cats, the apical dendrites of M1 pyramidal cells in all layers extend dorsally
with most reaching layer I (see Figure 1; Ghosh et al., 1988). By contrast, only layers II and
layer V have ventrally projecting basal dendrites, each of which travel down one layer
(Ghosh et al., 1988). Innervation by intrinsic motor cortex axon collaterals is most extensive
in layers II, III and V (Aroniadou & Keller, 1993; Keller, 1993). By stimulating individual
M1 neurons in a known layer and measuring the response in other layers, Weiler et al.
(2008) showed that the strongest signal propagation occurred in layer V when layers II/III
were stimulated. By contrast, the strongest ascending pathway was from layer V into layers
II/III. Top-down information flow is also commensurate with the observation that the motor
cortex has a large number of output structures despite having comparatively fewer input
nuclei.

From a functional perspective, complex movements tend to recruit anterior motor cortex
regions first and the chain of activation moves in a posterior direction. The PMCd seems to
be important for guiding movements using available sensory information (Abe and
Hanakawa, 2009). By contrast, many PMCv neurons fire in response to visual or
somatosensory stimuli or when an organism is manipulating an object directly (Luppino and
Rizzolatti, 2000). The SMA is considered to be key for movement planning (Goldberg,
1985) and while simple movements require only the SMA proper, more complex motor
tasks activate the pre-SMA as well (Luppino and Rizzolatti, 2000). M1 is critical for fine
motor control, such as the independent use of digits among primate species (Canedo, 1997;
Geyer et al., 2000).

2.3. Motor Cortex Efferents
Motor cortex output is almost exclusively glutamatergic and occurs mainly via the deepest
two layers. The bottom layer, layer VI, sends projections back to the ventrolateral and
ventroanterior thalamus (Martin, 2003). Layer V projects to a diversity of structures in the
brain stem involved in movement execution and postural stability including the red nucleus,
reticular formation, SNc, substantia nigra pars reticulata (SNr) and the hypoglossal nucleus
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(Canedo, 1997; Martin, 2003). Motor cortex outputs bound for the cerebellum first synapse
in the pontine nuclei of the pons (Martin, 2003). The corticospinal tract also emanates from
layer V and while most of these neurons terminate in the cervical spinal cord, some axons
travel as far as the lumbar region (Canedo, 1997).

The efferent connections to the basal ganglia are somatotopically organized and form three
distinct pathways, known as the direct, indirect and hyperdirect pathways (Ebrahimi et al.,
1992). Motor cortex neurons that connect with the direct and indirect pathways synapse on
distinct sets of striatal neurons: striatal output neurons of the direct pathway project to the
SNr and GPi while other neurons follow the indirect pathway synapsing at the globus
pallidus pars externa (GPe) and STN en route to the GPi (Obeso et al., 2008). Almost all of
these corticostriatal neurons emanate from layer V; however, a subset of direct pathway
neurons have cell bodies in the deep part of layer III (Lei et al., 2004). Motor cortex layer V
also projects to the STN, comprising what is known as the hyperdirect pathway, so named as
these signals have the shortest latency to travel from the cortex to the GPi.

Alterations in corticostriatal signaling may be a primary cause of both PD and LID (Braak
and Del Tredici, 2008; Calabresi et al., 1996; Cenci, 2007). These heterosynapses contain
axoaxonal connections between corticostriatal and nigrostriatal neurons, which in turn make
axodendritic contacts with striatal medium spiny neurons (Wilson, 1987). Nigrostriatal DA
release activates D2 receptors at these synapses to reduce corticostriatal glutamate release,
thus serving as a feedback loop to filter cortical inputs to the striatum (Bamford et al., 2004).

The GPi is the convergence point for the direct, indirect and hyperdirect pathways. The net
result of these initially divergent pathways is that cortical stimulation evokes four
temporally distinct GPi responses, with early and late excitation mediated through the STN,
punctuated by inhibition from the striatum through the direct and indirect pathways (Kita
and Kita, 2011; Ryan and Clark, 1991). GPi neurons project to the ventrolateral thalamus,
providing inhibitory GABAergic input to thalamic cells partly responsible for glutamatergic
excitation of motor cortex neurons.

3. Motor Cortex Pathology in Parkinson’s Disease
3.1. Brainstem Neurotransmitter Innervation

Generally, PD patients have reduced motor cortex neurotransmitter innervation from
brainstem nuclei as a result of disease progression. At autopsy, patients generally have lost
more than 75% of locus coeruleus NE neurons and SNc DA neurons (Dauer and
Przedborski, 2003; Zarow et al., 2003). At the same time, DA-secreting cells in the VTA
and RRA, acetylcholine neurons of the nucleus basalis of meynert and 5-HT cells of raphe
nuclei are all pathologically affected to some extent although average cell death is probably
less than 50% (Braak et al., 2003; Zarow et al., 2003). Thus, neurochemical signaling in the
motor cortex of PD patients is disrupted as a direct result of brainstem nuclei cell death, but
few studies have been conducted which quantify the nature and severity of motor cortex
pathology. Perhaps the most comprehensive study on this topic was performed by Gaspar
and colleagues (1991) who used post-mortem tissue to examine catecholamine loss in PD
patients. The researchers found that the number of fibers staining positively for tyrosine
hydroxylase (TH) (almost exclusively DA neurons: see Hokfelt et al., 1977) was reduced by
around 70% in layers I and III (where DA innervation is relatively high) and reduced by 25–
30% in layer VI (where DA density is lower). Relative to DA, NE terminals were more
severely affected with reductions of 80–90% with no layer-specific differences. For both DA
and NE, the authors did not find differences in deafferentation severity between M1, the
SMA and the PMC (Gaspar et al., 1991).
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The two most popular animal models of PD recapitulate some level of motor cortex DA
pathology. In a widely-used model of PD where the neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) is delivered systemically, primate studies have shown that the
toxin causes long-term reductions in tissue concentrations of DA, 5-HT and NE (Elsworth et
al., 1990; Pifl et al., 1991). These studies demonstrate that MPTP causes the most severe
reduction in striatal DA supply (>90%), but that motor cortex DA levels are also affected
(~50–85%).

The other popular model of PD utilizes the catecholamine neurotoxin 6-hydroxydopamine
(6-OHDA), delivered intracerebrally to the SNc, the striatum or the tract that connects the
two structures, known as the medial forebrain bundle. The medial forebrain bundle lesion
produces the most severe striatal DA lesion (>99%: Francardo et al., 2011) and was shown
to reduce M1 TH fibers by 93% (Halje et al., 2012). Even if 6-OHDA is injected directly
into the striatum, there is still some reduction in TH-positive fibers innervating the motor
cortex (Debier et al., 2005). Thus, each of the two most widely-used toxin-based animal
models of PD disturb motor cortex DA supply. While the construct validity for the MPTP
and 6-OHDA models is therefore high, it may be difficult to dissociate the contribution of
striatal versus motor cortex DA loss to the symptoms of PD.

3.2. Lewy Bodies
The histological hallmark of PD is the presence of Lewy bodies, which are cytosolic protein
inclusions dense in E3 ligases and alpha-synuclein and are toxic to cells in high
concentrations (Moore et al., 2005). By analyzing post-mortem tissue from PD patients at
various disease stages, Braak et al. (2003) determined that frontal cortex Lewy body
inclusions are first evident in prefrontal areas; as the disease progresses, Lewy bodies appear
in the PMC, then in the SMA and finally in M1. Abnormal aggregation of alpha-synuclein in
the motor cortex without classical Lewy bodies has also been observed, suggesting that this
may occur during earlier disease stages (Caviness et al., 2011). At this point, how motor
cortex Lewy bodies influence cortical function remains unknown.

3.3. Gray and White Matter Abnormalities
When the motor cortex of PD patients and healthy controls are examined with structural
imaging, there are minor differences between PD patients and controls. In M1, reduced gray
matter has been correlated with increased bradykinesia (Lyoo et al., 2011). In the SMA, PD
patients showed gray matter reductions compared to controls though cortical thinning was
not significantly correlated with PD symptom severity (Jubault et al., 2011). This cell loss is
not neccesarily caused by Lewy bodies as one study found that intra-cortically projecting
pyramidal cells in the anterior SMA were reduced by 45% relative to controls without the
presence of cortical Lewy bodies or the loss of other types of neurons (MacDonald and
Halliday, 2002). A decrease in fractional anisotropy (a marker for white matter patency)
around the SMA has been reported, indicative of reduced coherence of white matter tracts
entering or exiting the structure (Karagulle Kendi et al., 2008). At the same time, this study
and others failed to find any changes in overall gray and white matter density in any motor
cortex region of PD patients compared to age-matched controls (Karagulle Kendi et al.,
2008; Cerasa et al., 2011). The fact that many of the aforementioned studies observed
minimal effects with large samples (up to 142 individuals) suggests that differences in gray
and white matter between PD patients and controls are not major contributors to PD
symptoms.
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4. Functional Changes in the Motor Cortex in Parkinson’s Disease
4.1. Regional Blood Flow and Metabolism

Advances in medical imaging have allowed for the non-invasive visualization of blood flow
changes in the motor cortex of PD patients, first with positron emission tomography (PET)
or single photon emission computed tomography (SPECT) and later with functional
magnetic resonance imaging (fMRI). The use of fMRI provides high spatial resolution, but
safety concerns often preclude scanning PD patients with implanted DBS electrodes
(Ceballos-Baumann, 2003). Importantly, most imaging studies have been conducted on
patients with early to moderate PD who respond well to therapeutic intervention with DBS
or DA replacement.

During resting conditions, PD patients show activation patterns that are equivalent to healthy
controls in all regions of the motor cortex (Berding et al., 2001; Hilker et al., 2004; Playford
et al., 1992; Rascol et al., 1992; Samuel et al., 1997). When participants are asked to move,
differences emerge between age-matched controls and PD patients who are OFF treatment
(Table 1A). Evidence suggests that, during movement, M1 activity is increased in PD
patients OFF medication. Relative to healthy controls, PD patients show increased M1 blood
oxygen level-dependent (BOLD) fMRI signal during the performance of motor tasks based
on timing (Haslinger et al., 2001; Yu et al., 2007) or sequence repetition (Sabatini et al.,
2000). This has been interpreted to suggest that M1 hyperactivity represents an attempt to
compensate for striatal pathology. In contrast to fMRI data, two studies using PET/SPECT
scans on PD patients performing hand movements have shown reductions in primary
sensorimotor cortex blood flow compared to age-matched controls (Catalan et al., 1999;
Rascol et al., 1992). The lower spatial resolution of PET scans necessitates grouping larger
cortical areas together, so it is possible that overall decreases in primary sensory cortex
blood flow masked increased M1 blood flow, leading different researchers to draw opposing
conclusions.

The SMA displays reduced activity in most untreated PD patients. This change may relate
directly to the available supply of DA since, among healthy humans, a diet deficient in DA
precursors reduced the BOLD signal from the SMA and impaired the ability to judge
stimulus timing (Coull et al., 2012). Early studies using radioisotope scans showed an
overall decrease in SMA blood flow during movement compared to age-matched controls
(Playford et al., 1992; Rascol et al., 1992). Subsequent studies utilizing fMRI more
conclusively distinguished that it is the pre-SMA that displays a reduction in cerebral blood
flow (Haslinger et al., 2001; Yu et al., 2007). One study even found that while the pre-SMA
had a reduced BOLD signal, the BOLD for the SMA proper was increased relative to
controls (Sabatini et al., 2000). Although a direct link between behavioral phenotype and
SMA hypoactivity remains speculative, it is interesting to note that the SMA is responsible
for internally-generated movements (Goldberg, 1985) and this type of movement is
particularly difficult for PD patients to perform (Jankovic, 2008).

During movement, the PMC has increased blood flow among PD patients relative to healthy
adults, as assessed using PET for detection of H2

15O as well as fMRI (Catalan et al., 1999;
Sabatini et al., 2000; Samuel et al., 1997). This region is responsible for integrating sensory
information and for performing externally-guided movements (Abe and Hanakawa, 2009).
The fact that PD patients have relatively preserved motor responses when cued by their
environment (Rubinstein et al., 2002) suggests that PMC function may be relatively spared
in PD.

Pharmacotherapy with L-DOPA or the non-specific DA agonist apomorphine tends to
reverse metabolic deficits seen in primary PD (Table 1B). PD patients who respond well to
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L-DOPA show decreased M1 metabolic rate (assessed by 18F-fluorodeoxyglucose uptake)
and reduced BOLD activation in the ON state relative to the OFF state regardless of whether
or not they are moving (Asanuma et al., 2006; Haslinger et al., 2001). Interestingly, in a
study where PD patients OFF medication showed decreased sensorimotor cortex blood flow
during movement, administration of apomorphine still led to a reversal of the observed
deficit by increasing sensorimotor cortex activity (Rascol et al., 1992). Regional cerebral
blood flow in the SMA is increased by both L-DOPA and apomorphine during movement as
assessed with PET, SPECT and fMRI (Haslinger et al., 2001; Jenkins et al., 1992; Martinu
et al., 2012; Rascol et al., 1992). DA-replacement therapy does not seem to change PMC
metabolic rate or blood flow when the patient is at rest (Berding et al., 2001; Jenkins et al.,
1992). Data on activity changes caused by L-DOPA during movement are somewhat
inconsistent: one study reported a global increase in PMC BOLD response (Martinu et al.,
2012) while another found that specific voxel clusters within the PMC showed increased or
decreased BOLD response as a result of L-DOPA treatment (Haslinger et al., 2001).

Unfortunately, there are few studies that investigate drug-induced dyskinesias using
neuroimaging techniques since peripheral body movements can disrupt brain scans or
confound interpretations of blood flow changes in the motor cortex. When imaging is used
to study patients with LID, they are usually given a subclinical threshold dose of L-DOPA to
avoid provoking involuntary movements. Using PET for H2

15O, it was shown that patients
with LID had reduced M1 blood flow after L-DOPA, just as is seen in patients without LID
(Hershey et al., 1998). However, another PET study using a tracer that binds to activated
NMDA receptors found that giving L-DOPA to patients with LID caused an increase in
NMDA receptor activation in M1 compared to patients without LID (Ahmed et al., 2011).
Thus, abnormal NMDA signaling in M1 may predict the manifestation of LID in PD
patients.

When PD patients are moving, the effects of STN DBS on motor cortex activation are
similar to those seen with L-DOPA (Table 1C). Thus, in moving patients, turning ON an
STN stimulator decreases M1 blood flow (Ceballos-Baumann et al., 1999) while increasing
blood flow in the SMA (Limousin et al., 1997) and the PMC (Ceballos-Baumann et al.,
1999). A region-specific increase in the pre-SMA and a decrease in the SMA proper has
been reported, which is noteworthy since this is the precise opposite of what is observed in
PD patients OFF treatment (Ceballos-Baumann et al., 1999). Curiously, when a patient is at
rest, STN DBS decreases regional blood flow in the SMA and the PMC (Haslinger et al.,
2005; Hershey et al., 2003; Limousin et al., 1997). The fact that STN DBS always reduces
motor cortex activity when patients are at rest provides evidence for the emerging
hypothesis that the therapeutic mechanism of action is an antidromic modulation of the
motor cortex via axonal feedback in the corticosubthalamic pathway (Gradinaru et al., 2009;
Li et al., 2012).

There are fewer studies examining GPi DBS, but these stimulators appear to increase
anterior motor cortex activity (Table 1C). A reduction in sensorimotor blood flow (using
PET detection of 15O-butanol) with GPi DBS has been reported during movement (Valalik
et al., 2009), but was not found during rest or movement in M1 by itself (Limousin et al.,
1997). An increase in SMA blood flow is seen when the GPi electrode is turned ON and this
increase is observed whether or not the patient is moving (Davis et al., 1997; Valalik et al.,
2009). Along the same lines, turning ON a GPi electrode increases PMC blood flow during
movement (Valalik et al., 2009).

When the neuroimaging studies are examined as whole, several patterns emerge (see Table
1). First, increases in M1 blood flow are generally associated with an akinetic PD state, and
a subsequent decrease in blood flow after intervention coincides with a decrease in PD
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symptoms. The SMA displays the opposite pattern: it is hypoactive when PD symptoms are
present and shows increased activity when treatment is applied. Changes in the PMC are a
mix of both patterns. PD patients OFF-treatment show greater blood flow in the PMC
relative to healthy controls (similar to M1) while antiparkinsonian interventions lead to
further increases in regional blood flow (similar to the SMA). The fact that region-specific
increases and decreases in blood flow and metabolic rate are seen within the motor cortex of
PD patients may suggest that some of these changes are compensatory for subcortical DA
depletion.

A second possibility is that PD causes reduced motor cortex firing among neurons that are
targets of the ventroanterior nucleus (pre-SMA and parts of the PMCd), which relays
information from the caudate while increasing the firing of neurons that are innervated by
the ventrolateral thalamus (M1, SMA proper and the rest of the PMC), which relays
information from the putamen and pallidum (Geyer et al., 2000). Still a third possibility is
that DA terminal loss in PD alters the balance of glutamatergic and GABAergic signaling.
Since DA receptors are found at both excitatory and inhibitory synapses in the motor cortex
(Goldman-Rakic et al., 1989; Smiley et al., 1994), a preferential reduction in activity of
either synapse type could cause region-specific increases or decreases in neuron firing rates.

4.2. Gross Excitability
Individuals with PD show abnormal electrophysiological responses to motor cortex
stimulation. In a typical experiment testing motor cortex excitability, transcranial magnetic
stimulation (TMS) is applied to M1 in order to stimulate a motor-evoked potential (MEP) in
a particular hand muscle. In “paired-pulse” TMS, two electrical pulses are applied in
sequence (separated by 1–200 ms) and the magnitude of the second MEP is inhibited or
facilitated by the presence of first pulse (presumably through activation of GABA or
glutamate currents). Differences in inhibition/excitation seen in PD patients versus healthy
controls are assumed to reflect global changes in the balance of GABA and glutamate
signaling within M1 of PD patients (Lefaucheur, 2005).

Among PD patients, paired-pulse TMS research indicates that GABAergic tone in M1 is
reduced. Short-interval intracortical inhibition (SICI) refers to a reduction in the amplitude
of the second MEP when two pulses are separated by 1–6 ms (Chen, 2004). SICI is GABAA
receptor-mediated and since PD patients typically display a smaller SICI than controls, this
suggests that their GABAA currents are diminished (Ridding et al., 1995). Alleviation of the
behavioral symptoms of PD using treatment with L-DOPA, direct DA receptor agonists or
DBS all normalize SICI relative to controls (Cunic et al., 2002; Pierantozzi et al., 2001,
2002; Strafella et al., 2000; Ziemann et al., 1996). These convergent findings suggest that
restoration of inhibition in the motor cortex is critical to alleviation of PD symptoms.
Indeed, DA has been shown to be critical for activating cortical interneurons and increasing
the signal-to-noise ratio in other cortical regions (Kroener et al., 2009). Thus, enhancement
of DA signaling in the motor cortex may facilitate movement execution in PD patients.

Further evidence for reduced tonic inhibition in PD is shown by a reduction in the cortical
silent period (CSP). The CSP appears dependent on GABAB receptor activation and refers
to a period of time after muscle contraction during which M1 stimulation cannot produce a
MEP in the contracted muscle (Bagnato et al., 2006; Cantello et al., 1991). L-DOPA tends to
normalize (prolong) the CSP duration (Lefaucheur et al., 2004; Ridding et al., 1995) but not
among patients with LID (Morgante et al., 2006). STN DBS alone has been shown to
increase the CSP among most, but not all, PD patients (Baumer et al., 2009; Fraix et al.,
2008). In one study, GPi DBS at a therapeutic intensity both reduced dyskinesia and
normalized the CSP relative to healthy controls, suggesting that this GABAB receptor
population in M1 may be involved in dyskinesia expression (Chen et al., 2001a).

Lindenbach and Bishop Page 8

Neurosci Biobehav Rev. Author manuscript; available in PMC 2014 December 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The body of electrophysiological data indicate that GABAergic inhibition is impaired in the
motor cortex, which may prevent proper selection of desired motor programs. Conventional
models of PD pathophysiology predict a reduction in motor cortex glutamatergic excitation,
but make no predictions about changes in GABA signaling (e.g. Obeso et al., 2000;
Wichmann and DeLong, 1996). If this classical model is correct, the reduced GABAergic
inhibition seen in PD patients may reflect a compensatory adjustment based on a lack of
glutamatergic drive. Alternatively, the increase in motor cortex excitability could be due to a
reduction in DA innervation: TH-positive synapses with pyramidal cells tend to be
symmetric (inhibitory) and the application of DA reduces the firing rates of motor cortex
cells (Awenowicz and Porter, 2002; Bernardi et al., 1982; Goldman-Rakic et al., 1989).
Further investigations are required to determine if the increase in M1 excitability seen in PD
patients is compensatory for striatal DA loss or if it is directly related to DA deafferentation.

4.3. Plasticity
A key role for DA in the motor cortex is to facilitate motor learning; thus it is not surprising
that the ability to learn new motor tasks is impaired in PD patients (Doyon, 2008; Floel et
al., 2005). In humans, motor cortex plasticity can be experimentally induced and studied
using the paired associative stimulation (PAS) protocol (Stefan et al., 2000). In this
paradigm, baseline cortical excitability is established by quantifying the magnitude of a
MEP evoked by TMS at a site in M1 (typically a hand muscle is used). Subsequently,
electrical stimulation of a sensory nerve is continuously paired with M1 stimulation using
TMS. This pairing causes a transient increase in the MEP amplitude evoked by a single
pulse of M1 TMS. The magnitude of the increase is then used as a marker of M1 plasticity
(Stefan et al., 2000). Using the PAS paradigm, mid-stage PD patients did not show any MEP
facilitation as a result of conditioning, indicating a lack of cortical plasticity (Ueki et al.,
2006). By contrast, early-stage PD patients showed no plasticity-like effects on their more
affected bodily hemisphere, but showed relatively normal plasticity on their less affected
side (Kojovic et al., 2012). Importantly, L-DOPA was shown to restore PAS-induced
plasticity in patients without LID, but not among patients with LID (Morgante et al., 2006),
indicating that dysfunctional M1 plasticity is a persistent and disruptive factor in dyskinesia.

High frequency theta burst stimulation (TBS) can also be used to measure cortical plasticity.
The TBS paradigm requires only M1 stimulation and can produce potentiation or attenuation
of MEP amplitude, which are used as proxy markers of long-term potentiation (LTP) or
long-term depression (LTD), respectively (Huang et al., 2005). Curiously, standard TBS
parameters that produce motor learning in healthy controls have failed to find any such
effects in PD patients either ON and OFF antiparkinsonian medication whether or not they
manifest LID (Eggers et al., 2010; Suppa et al., 2011). The fact that PD patients show
measureable plasticity with some protocols but not others indicates that specific types of
motor learning are impaired in PD and that only certain types of learning can be restored by
drug therapy. Determining the physiological correlates of each type of learning paradigm
will shed light on the specific impairments in PD.

A modified TBS protocol that produces plasticity-like effects in PD patients was recently
devised and this novel method provides support for the hypothesis that LID is associated
with a specific lack of synaptic depotentiation in M1. Using this new TBS paradigm, Huang
et al. (2011) demonstrated normal potentiation and depotentiation in M1 of patients without
LID who were given their full dose of L-DOPA. Importantly, neither plasticity-like effect
was seen if patients were given only half of their normal dose of L-DOPA. Among patients
with LID, half of their usual dose of L-DOPA restored LTP-like effects, but not LTD-like
effects. These findings suggest that an inability to initiate M1 LTD is implicated in LID
expression, paralleling previous findings in the striatum (Picconi et al., 2003).
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Data showing impaired motor cortex plasticity in PD may explain the widely-observed
finding that PD patients have a reduced ability to learn motor sequences, whether the
learning is implicit or explicit (Doyon, 2008). Moreover, the deficits in sequence learning
are accentuated in later disease states (Muslimovic et al., 2007). PD patients show reduced
activity in the pre-SMA during the acquisition of motor sequences and reduced SMA proper
activity during sequence retrieval, suggesting that deficient SMA processing contributes
directly to deficits in motor learning among PD patients (Nakamura et al., 2001).

In preclinipcal models, selective loss of motor cortex DA impairs motor cortex LTP and
skills learning, but doesn’t appear to contribute to PD symptoms. In rats, injection of 6-
OHDA into M1 produced an impairment in learning a skilled reach task; later, local delivery
of L-DOPA into M1 restored the ability to learn the task (Molina-Luna et al., 2009). The
same study showed impaired LTP in M1 slice preparations treated with either a D1 or D2
receptor antagonist, suggesting activation of both receptors in M1 is necessary for new
motor learning. Taken together, the available evidence suggests that motor cortex DA is
critical for normal motor learning and plasticity, but not necessary for normal motor
performance.

4.4. Motor Maps
In addition to blunting motor cortex plasticity, a reduction in the supply of DA causes a
reorganization of motor maps that blurs the normally discrete somatotopic organization of
M1 and the SMA. Mapping topographical motor representations through non-invasive
stimulation is possible in humans by using TMS. One such study investigated unilaterally
impaired PD patients without medication and found that imagining a finger movement
elicited an increase in the number of excitable cortical sites within the unaffected motor
cortex, but had no effect on the parkinsonian side (Filippi et al., 2001). Performing an actual
muscle contraction did elicit an increase in M1 excitability, but this increase was attenuated
in the affected hemisphere when compared to both the intact hemisphere and healthy control
participants.

In animal models, intracortical microstimulation has been used to map the size and location
of motor cortex representations by systematically stimulating regions of M1/SMA with an
intracortical electrode while observing the location of the motor response (Donoghue and
Wise, 1982; Neafsey et al., 1986). In macaques with 93% bilateral SNc DA cell loss from
MPTP treatment, microstimulation mapping revealed a decrease in the total size of the
motor map and an increase in the average current required to evoke a movement (Escola et
al., 2003). The finding that movements were more difficult to evoke with M1 stimulation
implicates this deficit as a physiological correlate of PD-induced akinesia.

Functional reorganization of the motor cortex likely depends on several features of the DA
lesion. A severe unilateral striatal DA depletion (99%) caused a bilateral reduction in the
number of motor cortex sites where electrical stimulation could evoke a motor movement
(Viaro et al., 2011). Interestingly, stimulation of the lesioned motor cortex often produced
ipsilateral motor movements, an effect which was rarely seen in the intact hemisphere or
amongst sham-lesioned animals. These ipsilateral movements signal a degree of
interhemispheric compensation, which may also be occurring in early-stage PD patients with
a unilateral motor impairment. The size of the motor map was smallest 15 days after DA
lesion, but then increased over the next 4 months (Viaro et al., 2011). Since cell death from
6-OHDA is complete three weeks post-injection (Jeon et al., 1995), these protracted changes
in motor map size indicate that plasticity in the motor cortex is ongoing when DA depletion
is stable.
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When using striatal 6-OHDA infusions that achieved approximately 60% SNc DA cell loss,
it was found that bilateral but not unilateral lesions reduced the size of cortical forelimb
representations (Brown et al., 2009). Striatal 6-OHDA injections may be a useful model of
early-stage PD since the magnitude of DA loss is less than with SNc or medial forebrain
bundle lesions (Francardo et al., 2011). Thus, the animal research supports clinical evidence
(e.g. Filippi et al., 2001) suggesting that motor maps are altered across disease stages in PD
patients. What has not been determined are the individual contributions of striatal and M1
DA depletion to cortical motor map alterations.

Antiparkinsonian therapy leads to a partial restoration of motor maps. Following 6-OHDA
lesions in rats, a single de novo dose of L-DOPA (6 mg/kg) increased the area of excitable
cortex close to the level of controls (Viaro et al., 2011). STN DBS has also been investigated
using microstimulation mapping and the results are similar to L-DOPA: 60 seconds of DBS
lead to a 12% increase in forelimb representation size among DA-lesioned rats, while
increasing the forelimb map of sham-lesioned animals by only 1.5% (Brown et al., 2011).
Therefore, at least functional restoration of motor maps in M1 and the SMA seems to be an
essential step towards relief of PD symptoms.

4.5. Oscillations and Synchrony
In healthy brains, at rest, local field potential recordings of M1 have revealed prominent
oscillations at beta frequency ranges (roughly 10–30 Hz; Schnitzler and Gross, 2005).
During movement, the power of the M1 beta band falls and is replaced by gamma range
oscillations (roughly 30–80 Hz), which are coherent with the basal ganglia and spinal cord
(Schoffelen et al., 2005). This smooth transition is thought to underlie controlled movement.
PD patients seem to have difficulty transitioning between the two cortical states as beta
oscillations actually increase in power during movement (Crowell et al., 2012; Engel and
Fries, 2010).

Some have argued that the transmission of these beta oscillations to the basal ganglia
promotes akinesia (Hutchison et al., 2004). There is a strong correlation between prominent
beta oscillations in the motor cortex and the symptoms of PD in both humans and animal
models (Fogelson et al., 2006; Mallet et al., 2008; Sharott et al., 2005; Silberstein et al.,
2005). Even early-stage PD patients (with a Unified Parkinson’s Disease Rating Scale
[UPDRS] score <10) who displayed only a unilateral impairment, showed increased beta
band activity in M1 compared to age-matched controls (Pollok et al., 2012). Since abnormal
M1 activity is present at the earliest disease states and is easily detectable with non-invasive
methods such as electroencephalographs, this raises the possibility that analysis of local field
potentials could be useful in diagnosing PD.

The cause of powerful beta oscillations in PD patients is not clear, but they may be driven
by deficits in synaptic DA or activated DA receptors. In an attempt to answer this question,
Costa and colleagues (2006) used a procedure to rapidly deplete synaptic DA: mice with a
genetic knockout of the dopamine transporter (DAT) gene were treated with alpha-methyl-p-
tyrosine to pharmacologically inhibit TH and thus prevent new DA synthesis. Within 15 min
of TH inhibitor injection, the power of M1 and striatal beta oscillations rose among DAT
knockout mice but not among controls. Critically, this effect was reversed by L-DOPA,
which can be converted to DA without TH availability. This finding demonstrated that rapid
DA depletion could produce PD-like field potential changes in M1 and the striatum, arguing
against the idea that beta oscillations emerge as a result of long-term plasticity. Along these
lines, acute pharmacological blockade of D1/D2 receptors that impaired movement in
healthy rats produced beta band oscillations in one study (Dejean et al., 2009) but not in
another (Mallet et al., 2008). Although these authors used the same drugs at the same doses,
Dejean et al. (2009) examined beta band activity on the rat’s second exposure to DA
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antagonists while Mallet et al. (2008) tested rats on their first drug injection; therefore, it is
possible that multiple exposures to DA antagonists are required for beta band M1
oscillations to emerge.

Despite the findings of rapid changes in beta oscillations, the time course of the emergence
of beta oscillations after DA lesion suggests that they are, in part, compensatory in nature.
Using the 6-OHDA rat model, the power of the beta band (and it’s coherence with the beta
band in the SNr) was increased one week after lesion (Brazhnik et al., 2012). At three weeks
post-lesion, the frequency with the greatest power in (and coherence between) the SNr and
M1 increased (from 31 to 34 Hz) suggesting that protracted changes occur in M1 as a result
of an acute DA lesion. Not only do beta band oscillations correlate with PD symptoms, but
artificially enhancing the power of beta oscillations in the motor cortex (by stimulating the
STN at 20 Hz) was capable of enhancing bradykinesia among PD patients (Chen et al.,
2007), suggesting that beta oscillations causally contribute to PD symptoms. This argument
is bolstered by the findings that antiparkinsonian treatment with L-DOPA or STN DBS
reduces the power of the beta band in the motor cortex of humans and in animal models of
PD (Brazhnik et al., 2012; Silberstein et al., 2005).

While M1 beta oscillations may be a biological signature of PD symptoms, recent evidence
suggests that abnormal high gamma band oscillations (~80 Hz) in M1 are implicated in LID.
Using the unilateral 6-OHDA rat model of PD, administration of L-DOPA caused an
increase in 80 Hz M1 oscillations that were temporally contiguous with the behavioral
manifestation of LID (Halje et al., 2012). Under normal circumstances, a rise in M1 gamma
band field potentials portends movement initiation (Schoffelen et al., 2005), but excessively
powerful 80 Hz oscillations may cause an inability to terminate movement. The motor
circuits of PD patients seem to have difficulty switching between akinetic (beta band) and
prokinetic (gamma band) oscillations (Schnitzler and Gross, 2005). Among PD patients who
manifest LID, L-DOPA may restore the ability to generate basal ganglia gamma range
oscillations without restoring the ability to transition smoothly between beta and gamma
oscillations, causing such patients to manifest persistent, stereotypic involuntary
movements.

While many argue that the frequency of the field potentials in the motor cortex and basal
ganglia leads to the symptoms of PD (Hutchison et al., 2004; Schnitzler and Gross, 2005),
others take the position that synchrony of neurons between the motor cortex and basal
ganglia is the essential feature that portends the symptoms of PD (Brown, 2007; Hammond
et al., 2007). Within a largely self-contained system such as the basal ganglia, neurons will
trend towards correlated firing patterns unless there is some mechanism that is designed to
block this type of emergent synchrony (Bergman et al., 1998). Computational modeling
suggests that increased synchrony within a neuronal network reduces the efficiency of
information processing by creating redundant circuits (Schneidman et al., 2003). In healthy
brains, the motor cortex and basal ganglia exhibit coherent oscillations while an animal is at
rest, but striatal DA breaks this synchronous activity while simultaneously facilitating
movement (Hammond et al., 2007). It is believed that DA regulates cortical inputs via
activation of D2 receptors on corticostriatal axons, which selectively inhibits certain
glutamatergic axons in order to focus excitatory inputs on a subset of striatal medium spiny
neurons (Bamford et al., 2004). In patients with PD, corticostriatal coherence at beta
frequencies is associated with PD symptoms; L-DOPA desynchronizes activity in this
frequency band and increases cortex-basal ganglia synchrony in the gamma band, which
coincides with symptom relief (Williams et al., 2002). Without DA to uncouple activity
between the cortex and striatum, the motor circuit begins to oscillate at the same
fundamental synchronous frequency, the net behavioral results of which are akinesia,
bradykinesia and potentially tremor.
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It has been challenging to determine the source of the pathological beta oscillations seen in
PD because many structures exhibit this phenotype following DA depletion including the
striatum, STN, GPi, SNr and motor cortex (Brazhnik et al., 2012; Brown et al., 2001;
Goldberg et al., 2004; Sharott et al., 2005; Williams et al., 2002). However, mounting
evidence suggests that the motor cortex generates these beta oscillations by slowly
entraining the basal ganglia in the absence of striatal DA, the presence of which normally
prevents excessive corticostriatal synchronization. Cortical neurons, even those outside the
motor cortex, often oscillate in the beta frequency range when the organism is engaged in
certain tasks and synchronized activity between cortical columns is considered to be
essential for organized behavioral outputs (Singer, 1999). Indeed, the level of M1 cortico-
cortical synchrony is increased after DA lesion (Goldberg et al., 2002). When corticostriatal
slices from a healthy rat brain were bathed in the glutamate agonist kainic acid and the
muscarinic agonist carbachol, M1 neurons showed oscillations in the high beta range,
around 28Hz (Yamawaki et al., 2008). Notably, this beta rhythm was most apparent among
layer V cortical neurons, which project to the basal ganglia, providing in vitro proof of
concept that M1 can generate beta band local field potentials.

A more recent in vivo study employed spike timing to show that M1 was driving beta
oscillations in the SNr. The experiment used unilaterally 6-OHDA-lesioned rats and showed
that coherent oscillations between M1 and the SNr were prominent only after DA depletion
(Brazhnik et al., 2012). Critically, analyses of the waveforms of the coherent local field
potentials between the cortex and SNr showed that the cortical peaks led by an average of 17
ms, consistent with the idea that the cortex is controlling SNr field potentials through the
direct pathway in the striatum from cortex→striatum→SNr. Furthermore, cortical ablation
almost completely abolishes STN oscillations in both intact and DA-lesioned animals
(Magill et al., 2001) providing additional evidence for the cortex as the rhythm generator for
the internally-projecting basal ganglia structures.

4.6. Cellular Activity
In the period before and after the onset of movement, PD patients show irregular electrical
activity in M1 (Chen et al., 2001b; Lefaucheur, 2005). Among healthy primates, in the 100–
200 ms before and after movement began, there was a sharp rise and fall in the number of
M1 action potentials with the peak occurring at movement onset (Watts and Mandir, 1992).
By contrast, when primates were rendered parkinsonian with the neurotoxin MPTP, the rise
and fall of M1 action potentials before and after movement onset was more gradual and the
peak number of neurons firing was reduced (Doudet et al., 1990; Watts and Mandir, 1992).
When primates were studied at rest, MPTP treatment still increased the number of bursting
cells in M1 without leading to an overall change in firing rate (Goldberg et al., 2002).
Increases in burst firing amongst motor cortex neurons in a PD state may be caused by a
reduction in the activity of GABAergic interneurons (as suggested by Lefaucheur, 2005),
which renders the motor cortex unable to select the appropriate motor circuit for movement
execution. Indeed, 6-OHDA lesions altered the activity of rat M1 interneurons, increasing
the number that were firing in-phase with a beta band local field potential (Brazhnik et al.,
2012). This aberrant activity is also detectable in muscles, as PD patients and MPTP
monkeys show irregular bursting in electromyograph recordings made during hand
movements (Doudet et al., 1990; Watts and Mandir, 1992).

Alterations in SMA single cell activity are particularly evident during movement
preparation. Under normal circumstances, SMA neurons often display peak firing rates just
prior to movement onset (Escola et al., 2003; Watts and Mandir, 1992). When primates were
treated with MPTP and trained to move a joystick in response to a cue stimulus, their SMA
cells showed reduced firing rates after the cue but prior to movement (Escola et al., 2003;
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Watts and Mandir, 1992). When a healthy primate’s limbs were moved by experimenters,
most SMA cells responded to the movement of only one joint; after MPTP administration,
more cells began to respond to multiple joint movements (Escola et al., 2002). Irregular
activity of SMA neurons may reflect difficulty in performing internally-guided movement
and thus contribute to akinesia.

The changes seen in motor cortex cellular activity after DA lesion may also depend on
which cell type is being recorded. Pasquereau and Turner (2011) recorded from M1 and
compared activity changes in corticostriatal and pyramidal tract neurons before and after
MPTP lesion in primates. Pyramidal neurons showed a decrease in basal firing rate and
increases in the time spent burst firing, the number of spikes per burst and the average burst
duration. MPTP lesion also increased the number pyramidal cells firing in the beta
frequency band. In contrast, corticostriatal neurons showed no significant lesion-induced
changes in activity state, which is surprising given the presumed importance of
corticostriatal connections in the pathophysiology of beta oscillations specifically and PD
generally.

Modulation of cellular activity in the motor cortex by pharmacotherapies that relieve PD
symptoms or provoke LID has not been sufficiently investigated up to this point. However,
administration of L-DOPA has been shown to increase c-fos expression within M1 of DA-
lesioned dyskinetic rats, but not in a normal intact M1 (Halje et al., 2012; Ostock et al.,
2011), suggesting that M1 hyperactivity is associated with LID. In these studies, dyskinesia
evoked by systemic L-DOPA was reduced by local M1 infusion of a 5-HT1A receptor
agonist (Ostock et al., 2011) or a D1 receptor antagonist (Halje et al., 2012). These results
indicate that LID may be exacerbated by hyperactivity of M1 and highlight the potential
usefulness of anti-dyskinetic compounds that target the motor cortex.

5. The Motor Cortex as a Therapeutic Target in Parkinson’s Disease
5.1. Transcranial Magnetic Stimulation

Given the evidence for pathological motor cortex activity in PD, there has been considerable
interest in electrophysiological therapies targeting this region. Bidirectional effects on
cortical activity can be produced in PD patients depending on the frequency of TMS
stimulation: cortical stimulation at 5 Hz or greater has a net excitatory effect while a
frequency of 1 Hz or lower reduces cortical excitability (Fitzgerald et al., 2006).
Measureable changes in cortical excitability generally subside within 30 min, but clinical
improvements from repeated stimulation sessions can be detected for several months after
stimulation, indicating a role for TMS in inducing therapeutic neural plasticity (Wu et al.,
2008).

Several dozen small clinical studies of TMS have been performed, and most have shown
improvements in PD symptoms, as assessed by changes in UPDRS motor scores. Two meta-
analyses have been conducted on the clinical TMS PD literature, finding an average effect
size (using Cohen’s d) of about 0.6, and a reduction in UPDRS motor scores by about 20%
(Elahi et al., 2009; Fregni et al., 2005). These analyses demonstrate that the most effective
antiparkinsonian effects from TMS are conferred by stimulation of M1 at frequencies
between 5 and 25 Hz. Lower frequency stimulation has been used, but UPDRS changes are
smaller and less consistent between studies (e.g. Filipovic et al., 2010; Lefaucheur et al.,
2004). If multiple sessions of TMS are performed, reductions in UPDRS motor scores can
last for over a month after the final session (Khedr et al., 2003).

While excitatory M1 TMS is most useful for PD symptoms, LID has been successfully
reduced by inhibitory TMS over M1 or the SMA. Application of 1 Hz TMS to M1 can
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reduce LID but clinical improvement has only been shown at 24 h post-stimulation and was
not seen when patients were tested two weeks later (Filipovic et al., 2009; Wagle-Shukla et
al., 2007). Likewise, 1 Hz stimulation of the SMA was capable of reducing apomorphine-
induced dyskinesia when assessed up to 30 min later (Koch et al., 2005). These data are
consistent with circuit models of LID that predict excessive glutamate release in the motor
cortex during LID as a result of thalamic disinhibition (e.g. Cenci, 2007; Obeso et al., 2008).
To date, there is no research showing a lasting reduction (>1 day) in dyskinesia symptoms
using TMS.

In order to provide more consistent motor cortex stimulation than is practical using TMS,
researchers have developed epidural and subdural electrodes that are implanted over the
motor cortex. The potential efficacy of this approach is bolstered by pre-clinical research
with MPTP-treated primates: 130 Hz epidural stimulation of M1 reduced behavioral
akinesia and bradykinesia, reduced hyperactivity in the STN and GPi, and increased
metabolism in the SMA (Druout et al., 2004). Most clinical studies using this approach have
shown some improvements in cardinal PD symptoms (Fasano et al., 2008; Gutierrez et al.,
2009), although some have only shown improvements in tremor (Moro et al., 2011). To the
authors’ knowledge, no studies have been conducted which compare the degree of clinical
improvement with motor cortex electrode stimulation versus that provided by DBS or TMS.

5.2. Therapeutic Mechanism of Cortical Stimulation
The therapeutic mechanism(s) of excitatory TMS applied to M1 may stem, in part, from an
enhancement of striatal DA signaling. In healthy rats, just 2 sec of 25 Hz frontal cortex
stimulation caused an increase in striatal DA concentration and a reduction in DA
metabolism as assessed by whole-tissue chromatography 10 sec later (Ben-Shachar et al.,
1997). Likewise, 20 min of intermittent 25 Hz frontal cortex stimulation enhanced striatal
DA release for the next three hours as measured by in vivo microdialysis (Kanno et al.,
2004). TMS-induced striatal DA release has also been shown in healthy humans using PET
to analyze radioligand displacement (Strafella et al., 2003). In human PD patients, it appears
that with increasing DA cell loss, the actual amount of TMS-evoked DA release is reduced
while the percent increase in DA release relative to basal conditions is increased (Strafella et
al., 2005).

Immediate DA signaling facilitation may account for the transient effects of single-session
TMS, but the fact that multiple sessions have greater antiparkinsonian effects over a longer
duration of time indicate that long-term changes in cortical electrophysiology are occurring.
It is likely that the protracted effects are due to an increase in basal excitability of certain
groups of cells. The inhibitory effects of low frequency TMS may result from activation of
low-threshold inhibitory interneurons, while the excitatory effects of high frequency TMS
may come from activation of large diameter axons of Betz cells in cortical layer V
(Lefaucheur, 2009).

5.3. Pharmacological Modulation of the Motor Cortex
A variety of compounds affecting the DA and glutamate systems are currently used to treat
PD and LID symptoms (see Cenci et al., 2011), but it remains an open question as to
whether any of these drugs have therapeutic or deleterious effects through their actions on
the motor cortex. At present, it is known that 5-HT1A receptor activation or D1 receptor
blockade within M1 reduces LID in animal models (Halje et al., 2012; Ostock et al., 2011).
When L-DOPA or a synthetic DA receptor agonist is given, it is unclear what effect
activation of motor cortex D1 or D2 receptors have on PD or LID symptoms. The NMDA
antagonist amantadine is the only drug with established anti-LID efficacy (Wolf et al., 2010)
and M1 NMDA receptor activation is increased in LID (Ahmed et al., 2011). Thus, it is
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possible that amantadine exhibits part of its therapeutic action by blockading receptors in
M1. In general, determining the contribution of motor cortex neurotransmitter signaling to
the pathogenesis of PD and LID will aid in the development of future therapeutics.

5.4. Deep Brain Stimulation and the Motor Cortex
The therapeutic benefit of STN DBS has been recognized since the 1990s (Limousin et al.,
1998). However, it was long speculated that it’s efficacy was due to a disruption of intrinsic
STN activity or orthodromic effects on the GPe (e.g. Garcia et al., 2005). Using
optogenetics, Gradinaru and colleagues (2009) showed that selective inhibition or excitation
of STN cells was not capable of modifying motor performance in 6-OHDA-lesioned
rodents. Instead, they demonstrated that high frequency stimulation (120 Hz) of STN
afferents had antiparkinsonian effects while low frequency stimulation (20 Hz) exacerbated
PD symptoms. These effects precisely parallel the clinical STN DBS literature which shows
that 120 Hz stimulation is antiparkinsonian (Follett et al., 2010) while 20 Hz worsens the
symptoms of PD (Chen et al., 2007). Gradinaru et al. (2009) also showed that 120 Hz
stimulation of M1 cells in layer V attenuated PD symptoms, which may be the mechanism
by which motor cortex electrodes are antiparkinsonian at 120 Hz (Gutierrez et al., 2009).

The importance of antidromic activity in the therapeutic effect of STN DBS was
demonstrated by Li and colleagues (2012) who implanted bilateral STN DBS electrodes in a
unilaterally 6-OHDA-lesioned rat. The authors stimulated the STN at a number of
frequencies and found that the frequency with the greatest antiparkinsonian properties (125
Hz) also caused the greatest number of antidromic spikes per second in M1
corticosubthalamic neurons. The firing rate of corticosubthalamic neurons was reduced by
6-OHDA lesion and 125 Hz STN DBS elevated the firing rate to the level of unlesioned
controls. Importantly, in the hemisphere contralateral to lesion, STN DBS did not affect M1
neuron firing rate and caused few antidromic spikes in M1, suggesting that STN DBS is
alleviating a pathological M1 state that is specific to PD rather than generally modulating
cortical activity. Emerging research thus supports the idea that modulation of M1
corticosubthalamic neuron activity is an important therapeutic target for the treatment of PD.

6. Conclusions and Future Directions
In summary, compelling evidence for pathological motor cortex activity in PD continues to
accrue. Despite such findings, several essential questions remain unanswered. For example,
it is not clear whether abnormal cortical activities are primarily attributable to striatal DA
depletion or whether motor cortex DA depletion also contributes. This remains an open
question since (at least in a rat) the same SNc cells which project to the striatum also project
to the motor cortex (Debier et al., 2005). Presumably, the three midbrain nuclei which
supply the motor cortex with DA (the SNc, VTA and RRA) have different functional roles
in modulating M1 physiology, but the unique contribution of each has yet to be dissociated.

In addition, accumulating research suggests that GABAergic interneurons of the motor
cortex are hypoactive in PD, perhaps as a result of altered frontal cortex DA supply (Gaspar
et al., 1991; Kroener et al., 2009). This is also demonstrated in paired-pulse TMS studies
demonstrating reduced GABAA and GABAB receptor mediated inhibition within M1
(Lefaucheur, 2005). Single cell recordings have also confirmed dysfunctional M1
interneuron activity in a PD model (Brazhnik et al., 2012). Thus, identifying methods that
enhance cortico-cortical inhibition may be constitute novel therapeutic approaches to PD.

From a treatment standpoint, divergent methods of antiparkinsonian therapy (e.g. DBS and
DA replacement) cause similar changes in motor cortex function, hinting that they work
through convergent, but under-explored mechanisms. Finally, electrical modulation of motor
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cortex activity using TMS, subdural electrodes and STN DBS has provided preliminary
evidence that the motor cortex represents a valid target for PD therapy. As yet, little is
known about the potential mechanisms through which these stimulators work, but basic
research may soon discover candidate pathways. Unearthing these mechanisms may shed
further light on the changes in the motor cortex that are desired to achieve a positive
therapeutic outcome.
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Highlights

• Parkinson’s patients have reduced monoamine innervation of the motor cortex

• Intracortical inhibition by motor cortex interneurons is reduced in Parkinson’s

• Impaired cortical plasticity leads to deficits in motor learning in Parkinson’s

• The Parkinsonian motor cortex is abnormally synchronized with the basal
ganglia

• Motor cortex stimulation is a potential therapeutic approach to Parkinson’s
disease
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Figure 1.
Layer-specific input and output model of the primate motor cortex. The neurotransmitter
released by a given nuclei is indicated by the color of the text box and the color of the line
emanating from it, with DA in green, glutamate in red an GABA in blue (Note: the reticular
formation uses acetylcholine, norepinephrine and serotonin and is in purple). For DA
projections from the midbrain, the thickness of the line indicates the relative density of the
DA fibers to each cortical layer. Arrows indicate the direction of information flow. Within
each layer, the location of pyramidal cells and the connections made by their dendrites and
axons are schematically represented. Dendrites are depicted in teal while the cell bodies and
axons are in red. Only the major synaptic connections are depicted in order to facilitate
clarity. Much of the posterior motor cortex does not have a layer IV and thalamocortical
axons synapse instead within layers III and V. Within each layer, the relative amount of TH,
DAT and D1 receptors in each layer is represented by one, two or three symbols (Note: D2
receptors exclusively localize to layer V).
Abbreviations used: DA = Dopamine; DAT = Dopamine transporter; RRA = Retrorubral
area; SNc = Substantia nigra pars compacta; SNr = Substantia nigra pars reticulata; STN =
Subthalamic nucleus; TH = Tyrosine hydroxylase; VTA = Ventral tegmental area.
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