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Abstract

Membrane current through voltage-sensitive calcium ion channels at the postsynaptic density of a
dendritic spine is investigated. To simulate the ion channels that carry such current and the
resulting temporal and spatial distribution of concentration, current, and voltage within the
dendritic spine, the immersed boundary method with electrodiffusion is applied. In this simulation
method a spatially continuous chemical potential barrier is used to simulate the influence of the
membrane on each species of ion. The amplitudes of these barriers can be regulated to simulate
channel gating. Here we introduce this methodology in a one-dimensional setting. First, we study
the current-voltage relationship obtained with fixed chemical potential barriers. Next, we simulate
stochastic ion-channel gating in a calcium channel with multiple subunits, and observe the
diffusive wave of calcium entry within the dendritic spine that follows channel opening. This work
lays the foundation for future three-dimensional studies of electrodiffusion and advection
electrodiffusion in dendritic spines.
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1. Introduction

Dendritic spines are small protrusions in the dendritic trees of neurons. Many synapses are
made onto dendritic spines (Shepherd, 1996), which function as diffusively isolated
chemical compartments. Calcium dynamics within dendritic spines are important in learning
and memory (Harris and Kater, 1993;Brunig et al., 2004; Sheng and Kim, 2002; Yasuda et
al., 2003; Bloodgood and Sabatini, 2007a). The influx of calcium occurs through voltage-
sensitive calcium ion channels as well as through NMDA and AMPA receptors (Sabatini
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and Svoboda, 2000; Bloodgood and Sabatini, 2007b). It is the voltage-sensitive calcium ion
channel that is the focus of the present work. These channels are few in number (about 5-20
per spine). Thus, the stochastic opening or closing of any one of these channels is a
significant event. Spatial localization of the calcium signal near an open channel is also
important. These features of Ca2* channels are not restricted to dendritic spines, but occur
elsewhere, e.g., in the neuronal presynaptic terminal, and in the cardiac diadic cleft (Langer,
1996). Thus, the modeling methodology introduced here may have broad applicability.

lonic species of importance within dendritic spines include Na*, K*, CI~, and Ca2* (Kandel
et al., 2000). These four ions will be called “bio-ions” (Eisenberg, 2012, 2013). Each ionic
species is transported across the membrane by a specific type of ion channel in a selective
way (Hille, 2001). In the present work, ion selectivity is a consequence of an assumed
chemical potential barrier across the membrane for each of the different ionic species that
may be present. Electroneutrality is explicitly enforced only at the initial time; at later times
we observe local electroneutrality as a consequence of the electrodiffusion equations, except
in the space charge layers that arise adjacent to membranes (Lee, 2007; Lee et al., 2010).

The modeling described in this paper proceeds in two stages. First, we study the current-
voltage relationship of a membrane permeable to Ca2* in a one-dimenstional setting by
applying electric fields to a system comprised of a pair of membranes. We consider the four
ionic species mentioned above together with background charge. The initial concentrations
are chosen to satisfy electroneutrality, with each species having an (intracellular)
concentration between the two membranes different from its (extracellular) concentration in
the regions outside of the two membranes. The chemical potential barriers are chosen so that
the membranes are permeable to Ca2* but effectively impermeable to Na*, K*, and CI~.

The next model employs the same one-dimensional setting as before, with a pair of
membranes. This time, however, only one of the two membranes contains a Ca?* channel,
which is voltage-sensitive and stochastic. The opening and closing of the channel are
modeled by lowering and raising the height of the chemical potential barrier according to a
continuous-time Markov process. The channel has four independent subunits, and three
states of inactivation, two of which are related to fast and slow voltage sensitive
inactivation, and the other with the inactivation from the intracellular local calcium
concentration (Findlay, 2003; Imredy and Yue, 1994; Stotz and Zamponi, 2001; Yue et al.,
1990). The channel is open only when all four subunits are in the open state. The transitions
between the open and closed states of the subunits are governed by voltage sensitive rate
constants, and the transitions to and from inactivated states are governed either by voltage or
by calcium concentration (Bondarenko et al., 2004). This model was developed for the L-
type calcium channel of the cardiac myocyte; our use of it here is for illustrative purposes
only. When detailed kinetic information becomes available for postsynaptic voltage-
sensitive calcium channels, it will be a simple matter to substitute those kinetics for the ones
used here.

This kind of stochastic ion channel gating modeling has been done previously (Faber et al.,
2007; Tanskanen et al., 2005; Geneser et al., 2007). Here, however, we study such stochastic
ion channel gating in the context of electrodiffusion. This allows us to study the spatial
consequences of stochastic channel gating.

The computer simulation methodology of this paper is based on the immersed boundary
method with advection-electrodiffusion (Lee, 2007; Lee et al., 2010); but here the membrane
is fixed in place and fluid flows are not considered. The focus is on the temporal and spatial
consequences of stochastic ion channel gating, which was not included in our previous
papers. However, a significant feature in our approach is that the proposed method can
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seamlessly extend to the mechanisms of membrane movement such as osmotic volume
swelling, cell contraction, and migration.

The paper is organized in the following way; in Section 2, the mathematical formulation of
electrodiffusion of ion species, ion-channel gating as a continuous-time Markov process, and
the resulting regulation of the chemical potential barriers that model ion-channel selectivity
are described. In Section 3, the two stages of modeling (one-dimensional study of the
current-voltage relationship of the model calcium ion channel, one-dimensional study of
stochastic calcium ion-channel gating) are carried out, and the results are presented. In the
appendix, a numerical algorithm for the continuous-time Markov process that governs
channel gating is briefly described.

2. Mathermatical Formulation

In this section we consider a fixed one-dimensional computational domain with dissolved
ions. Immersed within the domain is a pair of membranes, which are fixed in place. The
membranes may be permeable or impermeable to each ion species, the permeability being
controlled in a graded manner by its chemical potential barrier. We use the following
notation:

D;: diffusion coefficient of the it ion species

qg: the elementary electrical charge (charge on a proton)

qz: charge of the ith species

Kg: Boltzmann constant

T: absolute temperature (degrees in Kelvin)

& dielectric constant

(x, 1): chemical potential of the it ion species

U(X): chemical potential kernel with the influence range 4w
A(t): contribution of membrane to chemical potential of it ion species
ci(x, t): concentration of the it ion species

Fi(x, t): flux per unit area of the i ion species

(X 1): electrical potential

E(x, t): externally applied electrical field

o(X): background electrical charge density

2.1. The chemical potential

The chemical potential is expressed in the following way:

iz, )=, (z — X,) A2 (1) + T, (x — Xp) AP (1) ()
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The left and right membranes are placed at positions X, and Xp. The chemical potential

amplitude in each membrane is denoted by A?(¢)and A (t), respectively. The chemical
kernel W, defines how the contribution A;(t) is to be spread out in space in the neighborhood
of the membrane.

In general, any bell-shaped function with compact support could be used for the chemical
potential kernel. Here, we make use of the smoothed Dirac delta function of the immersed
boundary method (Peskin, 2002), which is defined as follows:

0, > 2
Ls—2p|— v=TH2[[=42), 2 > ||
p(r)=q = L @
-2+ VIHIT=42), 1 > |
> 0,

Vu(@)=0(0) @

where w is a scaling factor such that ¥, has a support of width 4w.

2.2. The electrostatic potential: the Poisson equation

The electrical potential is a solution of the Poisson equation:

82
—T;ﬁ:(zqzicﬁ-m)ﬁ (4)

i

where pp represents the background electrical charge density. The background charges
reside on large molecules such as proteins or nucleic acids, and the net background charge is
typically negative. The background charge density is assumed constant intracellularly and
constant extracellularly, but these two constants are different. This equation is to be solved
on a periodic domain. Because of this it is necessary for the existence of a solution that the
integral of the right-hand side over the domain is zero, i.e., that the system as a whole is
electrically neutral (even though electroneutrality can be violated locally.) In practice,
electroneurality is also satisfied locally to a good approximation except in the space charge
layer near the membrane (Lee, 2007). Eq.(4) defines ¢ uniquely up to an additive constant.
The choice of this constant has no significance since only potential difference has physical
effects.

For output purposes we define transmembrane voltages V, and V,, as follows:

Va:‘»Oa,R —Par Az, E (5)

Vb:‘/)’b,L —p,ptAzLE (6)

where
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P, =X, )=p(Xat282), ¢, =¢(X,,)=p(Xa — 582) @)

A A
Qob,R,:SD(Xb,R):(p(Xb—F%)? Sob‘quo(Xb,L):@(Xb - %) 8)

Here, Ax, is the distance between X, | and X, g. In the same way, Ax, is the distance
between Xp, | and Xy, g. The computational electrode positions of X, |, Xa r, Xp,L, and Xp R
are chosen in a symmetric way with respect to the center line of the dendritic spine. They are
outside the domains of the space charge layers and the support of the chemical potential, but
close to the membranes. Their sign conventions are chosen so that they measure intracellular
potential with respect to extracellular potential, where the space between the two membranes
represents the intracellular space, and the rest of the domain represents the extracellular
space.

2.3. The electrodiffusion equations

The electrodiffusion equations are formulated in the following way:

aci + BFZ
ot Ox

=0 (9

o _qzii+quE)Ci (10)

F—_ D.—
¢ "oz KBT( ox ox

and the ionic currents from the electrodiffusion are the following:

Ii=qz F; (11)

Eq.(9) is the conservation law (continuity equation) for the it species of ion. In this equation
c;j is the concentration and F; is the flux per unit area of this ion species. Eq.(10) gives the
flux per unit area as a sum of three terms: diffusion, drift caused by chemical potential, and
drift caused by the electrical potential and by the externally applied electric field. In Eq.(11),
I; represents the current density (current per unit area) of it ionic species.

2.4. Continuous-time Markov process for stochastic ion channel gating

For the individual ion channel gating, a continuous-time Markov process is applied (Peskin,
2000). The ion channel is assumed to have 4 independent subunits; each of them has an open
and a closed state.

The channel as a whole is open only when all 4 subunits are in the open state, and when the
channel is not inactivated. The diagram for the Markov process is presented in Fig.(2). In the
discrete states labeled Cj, i — 1 represents the number of subunits in the open state. The state
with all 4 subunits open, however, is given the special symbol O. The ion channel is open
when all those subunits are open, i.e. when the channel is in the state O.

The transition between closed and open states of each subunit is expressed as follows:
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where Cg and Og represent closed and open states of a subunit. The rate constants a and S
are functions of membrane voltage V,. We describe the states of subunits and the ion
channel as a whole by the following random variables:

(13)

_J 1, if subunitsis open
Xs=9 o , if subunitsis closed

C; i — 1subunits are open
S=< O ion channel open (19)
I; inactivated j*® state
where y indicates the open/closed state of s subunit, and Sthe state of ion channel. When
we express the transition probability between open and closed state of each subunit based on
Eq.(12),

P(XS(H'dt):l‘XS(t):O):a(Vm)dt (15)
P(xs(t+dt)=0|xs(t)=1)=B(Vin)dt (16)

Vin+12.0 _ (Vin+40.0)2 _ (Vin+20.0)2
, age” 100 [1+0.7e 100 —0.75e 4000 17
O‘(‘ m): Vin £12.0 an
140.12e™ 100

Vin+12.0

B(Vim)=Boe™~ 130 (18)

where ap = 0.4 ms™ and /4 = 0.05 ms™1, and where V,, is in mV. Eq.(15) gives the
probability that the st subunit will make a transition from its closed state at time t to its
open state at time t+dt in the infinitesimal time interval dt. Similarly, Eq.(16) gives the
probability that the st subunit will make a transition from its open state at time t to its
closed state at time t + dt in the infinitesimal time interval dt.

In the reactions involving the inactivated states (See Fig.(2)), the [Ca2*] dependence and
membrane voltage dependence of the reaction rates are given by

Kpemax[ Ca"];

Ca?"))= !
7([ ]1) Kpc,half[caz+]i

(19)

_ (Vin+14.5)2

Kpet(Vin)=Kp[1 — e~ 100 ] (20)

pctf
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that are dependent on intracellular calcium concentration [Ca2*]; or membrane voltage Vi,

and Kgcf is 13.0 ms~1. The maximum rate constant, Kpe,max is 0.23324 ms~1, and the half-
saturation constant, Ky haif is 20.0:M for Ca?* induced inactivation. In the transitions from
Iy = Oand Iy — Cy4in Fig.(2), Kyep is the voltage-insensitive rate constant for recovery
from inactivation, 0.0005 ms~1. The numerical algorithm for the ion channel gating is
described in the Appendix.

2.5. Connection between the channel model and the electrodiffusion model

In one of the two studies reported here (see Results), we put a channel of the type described
above in the left membrane (denoted by the subscript “a”) of the two-membrane one-
dimensional electrodiffusion simulation. Such a channel feels a membrane potential V,, that
is equal to V;, as defined by Eq.(5), and its intracellular calcium concentration [Ca2*]; is the
calcium concentration of the electrodiffusion simulation evaluated at X; g (see Eq.(7)), that
is, on the right (intracellular) side of the left membrane. The output of the channel model is
its state, S and this controls the amplitude of the chemical potential barrier in the following
simple way:

A, ,S#0
Acaz+<t):{ AL se0 @

Ca2+ open

where 4. 2. ... is high enough that the membrane is essentially impermeable to calcium,
and Aca2+,opcni5 low enough that significant calcium flux can occur.

3. Results and Discussion

Two different studies are reported here. Both are one-dimensional and are conducted on a
periodic domain of length 4 microns, discretized by 512 equally spaced grid points. The
model dendritic spine is centered within the domain and is bounded by two membranes
which are 1.88 microns apart. We call these the “left” and “right” membranes of the model
dendritic spine. The space between the membranes is intracellular, and the rest of the
domain is extracellular.

In the first study, we investigate the current-voltage of Ca2* with fixed chemical potential
barriers. In this study, the two membranes are identical, and the chemical potential barriers
for all ions other than Ca2* are set high enough that essentially all of the transmembrane
current is carried by Ca2*.

In the second study, we put a Ca2* channel of the type described in Sec 2.4 in the left
membrane only, and we set the chemical potential barriers to CI™ at a low enough level that
both membranes have significant CI~ permeability. The remaining chemical potential
barriers are set high enough that both membranes are effectively impermeable to Na* and
K* ions, and the right membrane is effectively impermeable to Ca2* ions (as is the left
membrane when the Ca2* channel in the left membrane is closed). We do, however,
transiently lower the chemical potential barrier to Na* in both membranes in order to
produce a voltage change that may (or may not, since the channel is stochastic) initiate Ca2*
channel opening.

3.1. Current-voltage relationship of Ca2* with fixed chemical potential barriers

We consider four bio-ions, each with a different concentration between the two membranes
from its concentration in the regions outside the two membranes. The initial concentrations
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are shown in Table 1. Note that there is fixed negative background charge in each
compartment. The symbol X in the table denotes these background charges.
Electrodiffusion is applied to all four ionic species, in the presence of the background
charges.

In order to study Ca2*-selective ion channels, we assign a low chemical potential barrier
(0.15 KgT) to Ca2* and a high chemical potential barrier (52.5 KgT) to each of the other
ions, in both membranes. In real life, the height, and perhaps also the shape, of each
chemical potential barrier might well depend on the concentrations of the different ions in
the intracellular and extracellular domains, but we do not consider such complications here.
We allow the height of a chemical potential barrier to change to simulate gating, but we
assume that the chemical potential profile of the channel in any given state of its gating
variables is fixed.

An electric field is applied to drive a current through the system. Note that the two
membranes are identical and that the steady-state currents through both of them are
necessarily the same. One of their currents, however, flows from the extracellular to the
intracellular space and the other from intracellular to extracellular. Therefore, in any one
simulation, we get two data points on the current-voltage relation of the membrane, one
corresponding to the current I, and the other to -I. In this way, we can determine the entire
current-voltage relationship merely by considering applied electric fields of one sign.

The nonlinear relation between membrane voltage and current obtained from our simulation
is shown in Fig.(3), where it is compared to the result predicted by the Goldman-Hodgkin-
Katz (GHK) formula:

Coup€24Vim/ KT

o2aVi /KT _ |

— Cin

I(‘/ma Cout cin):2qa‘/m

In this formula, the ionic current | is expressed as a function of the concentration of the
permeant ion outside of the membrane ¢y, its concentration inside of the membrane c;,, and
the membrane voltage Vp,.

In applying the GHK formula to our data we evalulate all three variables (Vm, Cout, Cin) fOr
each applied electric field at the positions of the electrodes, which are placed close to the
membrane but outside the space charge layers, as discussed above. The constant @, which
merely scales the current is chosen to get a best fit to the slope of the current-voltage
relationship (i.e. to the conduntance of the channel) at 1=0.

The special case of zero current, which is obtained in our setup by setting the applied
electric field E=0, is of particular interest, since the membrane voltage in this case is
predicted by thermodynamics to be given the Nernst equation:

The Nernst equation Eq.(23) is easily derived from the GHK formula Eq.(22) by setting 1=0,
but it is important to remark that the Nernst equation actually holds under much more
general condition than the GHK equation, since it is thermodynamically derived and does
not depend on any specific mechanism of ion transport. Note in Fig.(3) that our
computational results are in quantitative agreement with both the Nernst equation and the
GHK equation. Note that we are here simulating only the current-voltage relationship of an
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open channel, in the absence of gating. Even with that restriction, we do not expect that the
GHK theory will be applicable to all channels. In particular, we do not expect it to apply to
situations in which there are binding sites within the channel that can become saturated by
the permeant ions. Nevertheless, it is of interest to know that our model does reproduce the
textbook nonlinear current-voltage relationship of the simplest kind of ion channel,
including the concentration dependence of that current-voltage relationship.

3.2. Stochastic ion channel gating

Here we consider the same configuration of two membranes separating an intracellular
space from an extracellular space as before, and also the same four ion species. In this case,
however, the membranes are almost impermeable (in their resting states) to Ca2*, Na*, and
K*, with a chemical potential barrier height of 40KgT, and the membranes are somewhat
permeable to CI~, with a chemical potential barrier height of 8.0KgT.

In the left membrane only, we incorporate a calcium channel, the dynamics of which is
described in Section 2.4. When the channel is open, the chemical potential barrier height for
Ca?" is lowered to 16KgT.

Two different timestep durations are used in this simulation: At = 3 ns for the
electrodiffusion process and At = 15.s for the Markov chain simulation of the calcium
channel. Thus, each random update of the channel state is followed by 5000 time steps of
electrodiffusion with the channel state held constant while the spatial profiles of the ionic
concentration and of the electrical potential evolve.

We manipulate the membrane potential to induce calcium channel opening by temporarily
lowering the chemical potential barrier for Na* on both membranes to 0.8KgT. This is done
during the time interval from t=0.75 ms to t=3.75 ms.

As a result of this increase in Na* permeability, both membranes depolarize; their
transmembrane potentials change from about -70 mV to nearly 0 mV. This depolarization
lasts as long as the increase in Na* permeability, i.e. for about 3 ms. During this time, the
calcium channel, which is located in the left membrane, may or may not open. An example
of each possibility is shown in Figure 4. In the case that the calcium channel does open, the
temporal progression of calcium wave is shown in Figure 5.

In the case in which the channel does open, note in particular the delay between channel
opening and the onset of significant Ca2* current. Even though the channel is open,
significant Ca2* current does not flow through it until the transmembrane voltage has
returned to near resting levels after the Na* permeability is turned off. This is because a
negative intracellular potential is much more favorable to the inflow of CaZ* ions than the
depolarized near-zero potential that caused the channel to open. This same phenomenon
occurs naturally in the presynaptic terminal of neurons, where it has the result that Ca2*
inflow, and hence the release of neurotransmitter, occurs on the downstroke of the action
potential, hence the synaptic delay (Sabatini and Regehr, 1996).

4. Conclusions

In three-dimensional simulations, boundary conditions on immersed interfaces of arbitrary
(and especially time-dependent) geometry are complicated to impose. The task is simplified
if the boundary conditions can be incorporated into the equations that hold away from the
boundaries, so that a uniform system of equations is solved everywhere. This is the
philosophy of the immersed boundary method (Peskin, 2002), which we apply here to
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electrodiffusion. In the present context, we replace interface conditions by spatially
continuous chemical potential barriers that have the same physical effect.

In the present paper, we try out this methodology in a one-dimensional setting. The goal is
to see whether we can construct chemical potential barriers that simulate membrane
physiology. This is accomplished in two examples, one involving fixed chemical potential
barriers, and another involving chemical potential barriers with heights that change in a
stochastic manner. In the first case, we find that we can reproduce the Goldman-Hodgkin-
Katz (GHK) current-voltage relationship, and in the second we find qualitatively reasonable
behavior for a voltage-sensitive calcium channel.

Although the motivation for this work comes from the dendritic spine, there are several steps
of future work needed before we can claim applicability to dendritic spine physiology. One
of these is to step up from one dimension to three, and to simulate the actual morphology of
dendritic spines. Another is to model the several different types of channels that actually
occur in dendritic spine membranes, including Na* and K* channels, and neurotransmitter-
gated calcium channels in addition to the voltage-gated calcium channel considered here.
For channels whose instantaneous current-voltage relationships are not of the GHK type, it
will be necessary to consider other chemical potential profiles besides the simple bell-
shaped one that is used in the paper, or perhaps to allow for reversible ionic binding sites
within the model channel. Finally, it will be important to model the shape changes of
dendritic spines that are a consequence of the calcium inflow. Fortunately, the immersed
boundary approach makes it possible to do this in a seamless way. Thus, the present paper
should be regarded as a small but important preliminary step towards the realistic modeling
of the electromechanical activity of dendritic spines, or indeed of other similarly small
electrophysiological systems in which space charge layers need to be resolved, ion
concentration changes are important, and electrodiffusion plays an important role.
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The numerical algorithm for the continuous-time Markov process in the ion channel gating
is based on the following transition probability.

P (S (t+dt) =5;|S (t) = Si) =rijdt  (24)

where S(t) is the ion channel state at time t. The rate constant rj ; is the probability per unit
time of the transition from state § to §. In principle, Eq.(24) applies only to infinitesimal dt,
that is, one should divide by dt and then let dt — 0 to get a mathematically correct
statement. In practice, one gets an accurate result if dt is small enough that rj ;dt « 1 for all

(i.))-
{S=1.2, ..., Nstates}
{rates(j,k) = rate constant for j — k, rates(j,j) = 0}
for clock=1:clockmax do
t=clock * dt
rates = updaterates(S rates)

{updaterates(S, rates) updates row Sof the matrix rates, since that is the only row that will be used in the current
time step}
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ratesum = sum(rates(S :))
if rand < ratesum * dt then
cp = cumsum(rates(S:) / ratesum)
{cumulative summation of the rates in the state Sand its normalization}
r = rand {random number between 0 and 1 with uniform distribution}
forS= 1:Nstates do
if r <cp(S) then
break
end if
end for
end if

end for
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Figure 1. Chemcal potential distribution asa function of position

The support of the chemical potential kernel is 0.0625,m. In this example, the height of
each of the two chemical potential barriers is 40KgT. These heights can be stochastically
regulated to simulate gating.
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Figure 2.

Markov chain of calcium ion channel: The calcium ion channel has 4 subunits. In the state
Cj, i — 1 subunits are open. In the states Ij, the channel is inactivated and closed. The ion
channel is open only in state O. The rate constants for the opening and closing of each
subunit are denoted by @ and S. Courtesy of Rasmusson et al.(Bondarenko et al., 2004)
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Figure 3. Current-voltage relationship of CaZ*with fixed chemical potentials

The configuration of the simulation is described in the text. It involves two identical
membranes, with an intracellular space between them, and an extracellular space external to
them both. A uniform electric field drives current through the system. Since the two
membranes face in opposite directions, the steady-state current has the same magnitude but
opposite sign as measured through each of the membranes, thus providing two data points
(red circles) on the current-voltage relationship. Transmembrane current is here considered
positive when it flows from the extracellular to the intracellular space, and transmembrane
voltage is measured as the voltage on the intracellular side of the membrane minus the
voltage on the extracellular side. The blue curve is the prediction of the Goldman-Hodgkin-
Katz formula. The horizontal line indicates zero current, and the vertical line indicates the
transmembrane voltage (Nernst potential) at which zero current is expected to occur.
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Figure 4.

Stochastic calcium channel gating. Upper left panel shows chemical potential barriers for
Na* (black) and Ca2* (blue if channel did not open, red if it did) as functions of time. The
Na* channel barrier height as a function of time is prescribed, and is the same in both cases,
but the CaZ* channel opening and closing follows the stochastic process described in the
text. The remaining panels show the resulting transmembrane potentials (upper right),
transmembrane Ca2* currents, and Ca2* concentrations measured at the site Xa,r, Which is
near the membrane containing the calcium channel and on its intracellular side, all as
functions of time, with the same color code as in the upper left panel. Note in particular that
the onset of significant transmembrane Ca2* current (red curve in the lower left panel) is
delayed following channel opening (downward step of red curve in upper left panel) until
the membrane repolarizes (downward movement of red curve in upper right panel) because
of closure of the Na* channels (upward step of the black curve in the upper left panel).
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Calcium transient, zoomed in
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Figure5.

Ca®* concentration at selected times for a case in which the Ca2* channel opens. The times
shown are t = 3.6, 4.3, 5.0, 5.7 ms. The calcium channel opens at t = 2.07 ms and closes at t
= 4.26 ms, but significant Ca2* current does not begin to flow until the membrane
repolarizes at t = 3.75 ms. Note the wave of intracellular Ca?* concentration that progresses
from left to right. The extracellular Ca?* concentration is much too large to be seen on the
scale of this plot.

J Theor Biol. Author manuscript; available in PMC 2014 December 07.



Leeetal. Page 18

Table 1

Initial concentrations in all simulations. X~ denotes fixed background charge and the concentrations stated for

X~ refer to the concentration of background charges, not the concentration of the molecules that carry the
background charges.

lon species | exterior concentration | interior concentration
Ca%t 2.0mM 0.0002 mM
Cl- 150mM 13mM
Na* 150mM 15mM
K* 5mM 100mM
X~ ImM 102.0004 mM
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