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Summary
The literature on potential outcomes has shown that traditional methods for characterizing
surrogate endpoints in clinical trials based only on observed quantities can fail to capture causal
relationships between treatments, surrogates, and outcomes. Building on the potential-outcomes
formulation of a principal surrogate, we introduce a Bayesian method to estimate the Causal
Effect Predictiveness (CEP) surface and quantify a candidate surrogate’s utility for reliably
predicting clinical outcomes. In considering the full joint distribution of all potentially-observable
quantities, our Bayesian approach has the following features. First, our approach illuminates
implicit assumptions embedded in previously-used estimation strategies that have been shown to
result in poor performance. Second, our approach provides tools for making explicit and
scientifically-interpretable assumptions regarding associations about which observed data are not
informative. Through simulations based on an HIV vaccine trial, we found that the Bayesian
approach can produce estimates of the CEP surface with improved performance compared to
previous methods. Third, our approach can extend principal-surrogate estimation beyond the
previously-considered setting of a vaccine trial where the candidate surrogate is constant in one
arm of the study. We illustrate this extension through an application to an AIDS therapy trial
where the candidate surrogate varies in both treatment arms.
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1. Introduction
The ethical and practical advantages of evaluating clinical trials on the basis of surrogate
markers instead of difficult-to-obtain clinical outcomes have led to substantial research on
the statistical requirements of valid surrogate endpoints. The majority of research regarding
whether a surrogate predicts treatment effects on clinical outcomes builds on the criteria
formulated in the seminal work of Prentice (1989). While statistical validation of candidate
surrogate markers has progressed since then, most formulations rely on adjustment for an
observed surrogate quantity that is measured after randomization (Weir and Walley, 2006).
Dating back to ideas presented in Cochran (1957), adjustment for an observed posttreatment
concomitant variable has been shown to obscure estimation of causal treatment effects.
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Recognized for its relevance in settings susceptible to posttreatment selection bias, the
potential-outcomes framework of principal stratification (Frangakis and Rubin, 2002)
(henceforth FR) has recently motivated definition of a principal surrogate based on
potential outcomes and causal effects as an alternative to standard definitions based only on
observed outcomes. The goal of this approach is to determine whether knowledge of the
treatment effect on the surrogate confers knowledge of the treatment effect on the primary
outcome. Towards this end, principal surrogates are predicated on the definition of exactly
two causal effects: the causal effect of the treatment on the candidate surrogate and the
causal effect of the treatment on the primary outcome. The extent to which the former causal
effect can be used to reliably predict the latter will be the basis for establishing surrogate
value. Note that the principal-surrogate perspective does not involve definition of a causal
effect of the surrogate on the outcome, which would require assumptions about a
hypothetical intervention that acts directly on the surrogate response. This is an important
distinction between establishment of a principal surrogate endpoint and the types of
information delivered by related notions of direct and indirect effects (VanderWeele, 2011).

Most of the work on evaluating principal surrogates appears in the context of a vaccine trial
and focuses on whether effects of the vaccine on a surrogate immune biomarker reliably
predict effects of the vaccine on infection outcomes (Follmann, 2006; Gilbert, Qin, and Self,
2008; Gilbert and Hudgens, 2008; Qin, Gilbert, Follmann, and Li, 2008; Wolfson and
Gilbert, 2010). Of particular importance is Gilbert and Hudgens (2008) (henceforth GH),
which reframes the original definition of a principal surrogate and introduces a causal
estimand for evaluating surrogate value called the causal effect predictiveness (CEP)
surface. Because potential outcomes under treatments not received are unavailable,
estimation of the CEP surface relies on strategies for imputing unobserved potential
surrogate responses and modeling primary outcomes conditional on “complete” data. This
differs from ignorable missing data problems because the data lack information on
relationships among quantities that are never jointly observed. For example, surrogate
responses to both treatment and control are never observed for any individual, so the data
cannot reliably inform about the correlation between these responses.

Previously-proposed estimation methods for the CEP surface in vaccine trials (Follmann
2006; Qin et al. 2008; GH) have been shown in simulation studies to yield poor estimates of
the CEP surface absent very specialized study designs (as in Follmann (2006)) that replace
unobserved potential surrogate responses with data obtained at another point in time. One
common feature of these estimation methods is that they are sequential in the sense that they
rely on separate modeling stages to first estimate missing potential immune responses (the
imputation stage) and then model infection outcomes conditional on complete principal
strata (the risk model stage). In this paper, we propose a Bayesian method for estimation of
the CEP surface that considers the full joint distribution of all potentially-observable
surrogate and clinical outcomes. Unlike previously-used sequential methods, our Bayesian
approach models the imputation and risk model stages simultaneously. Through detailing
the Bayesian method, we illuminate that the sequential nature of previously-used strategies
obscures implicit assumptions about important nonidentifiable associations in the full joint
distribution of the data. We argue that these implicit assumptions result in bias. One
advantage of the Bayesian method is that it facilitates natural incorporation of scientifically-
interpretable prior information about key nonidentifiable associations that can avoid the
more restrictive assumptions implicit in previous methods. Through simulations mimicking
those of GH, we show that our Bayesian approach can yield posterior estimates of the CEP
surface that improve upon estimates from previously-used sequential methods.

One key feature of HIV vaccine trials that is central to existing methods is the justification
of the “constant biomarker” assumption that potential surrogate responses to control
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treatment take on the same value for all patients. This simplifies estimation of the CEP
surface because of the reduced the number of missing potential outcomes that need to be
imputed, but it is of interest to the research community to allow surrogate responses to vary
in both treatment arms. For example, we explore in this article a data analysis of an HIV/
AIDS clinical trial of antiretroviral therapies where the change from baseline CD4
lymphocyte count is a natural candidate surrogate that varies in both treatment arms (i.e., no
constant biomarker). Through incorporation of both prior information and a sensitivity
parameter to characterize nonidentifiable associations, our Bayesian approach extends
estimation of the CEP surface to such a setting that does not assume a constant biomarker.
To our knowledge, the only previously-described approach to principal surrogate endpoints
that relaxes the constant biomarker assumption appears in Li, Taylor, and Elliott (2010) for a
specific setting that assesses the surrogacy of a binary outcome for predicting the same
outcome at more distant follow up. In contrast, we explore a setting with a continuous
surrogate and a binary outcome, and we evaluate surrogacy from a perspective that
coincides more closely with GH.

Section 2 of this paper reviews previous development of principal surrogate endpoints and
the CEP surface. Section 3 discusses estimation of the CEP surface, including a transparent
assessment of the assumptions implicit in previously-used methods and the development of
our Bayesian approach. Section 4 evaluates the performance of our Bayesian method in a
simulation study paralleling the one in GH. In Section 5, we extend estimation to settings
with varying control-group response through an application to an AIDS clinical trial that
does not support the constant biomarker assumption. We conclude with a discussion.

2. Principal Stratification for Evaluating Surrogate Endpoints
2.1 Notation and principal strata

Following development in FR and GH, we first define the potential-outcomes notation
relevant to our setting. Let Zi indicate assignment to treatment, for i = 1, … n patients.
Denote the potential primary outcome under treatment z with the indicator Yi(z) = 0, 1, for z
= 0, 1. We assume that all surrogate responses are measured at a specified time, t, after
baseline, and denote the ith patient’s potential surrogate response under treatment z with
Si(z), for z = 0, 1. In many settings, experiencing the outcome before time t precludes
definition of Si(z). Let Vi(z) = 1 indicate that patient i would not experience the primary
outcome before t and thus have a defined value of Si(z) measured, with Vi(z) = 0 otherwise.
Implicit here is the stable unit treatment value assumption (SUTVA) to clarify that there is
no interference between units (Rubin, 1978). We denote pretreatment covariates by Xi and
use mis and obs to denote missing and observed potential outcomes, respectively. Unless
otherwise noted, we henceforth omit the i subscript to simplify notation.

Basic principal strata in this setting are defined by the vector of potential surrogate values,
S(z), and potential risk-set indicators, V(z), denoted {S(0), S(1), V(0), V(1)}. A patient’s
principal stratum captures information on how that patient’s surrogate response would
respond to treatment, that is, the individual-level causal effect of the treatment on the
surrogate. In strata with V(0) = V(1) = 1, patients with S(1) > S(0) would experience a
positive causal treatment effect on the surrogate, those with S(1) < S(0) would experience a
negative causal treatment effect on the surrogate, and those with S(1) = S(0) would
experience no causal treatment effect on the surrogate. No analogous classifications can be
made for strata with V(0) = 0 or V(1) = 0 because these strata contain at least one undefined
value of S(z). Average treatment effects on primary outcomes within basic principal strata or
unions of these strata constitute principal effects that permit causal interpretation as average
comparisons between comparable sets of units. Estimating principal effects will guide our
assessment of whether S is a useful surrogate.
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2.2 Principal surrogate endpoints
As in GH, we assume ignorable treatment assignment (Rubin, 1978), which holds when
treatments are randomized. We also follow GH in assuming equal individual clinical risk up
to time t, stating that V(1) = 1 if and only if V(0) = 1. Equal individual clinical risk stipulates
that the treatment does not affect which patients remain at risk for the primary outcome
before time t, and hence precludes principal strata with V(0) ≠ V(1). For simplicity, we
henceforth omit reference to V(z) and assume that probability statements involving S(z) are
conditional on V(0) = V(1) = 1. This assumption is not innocuous in general, but is often
made in practice when t is close to baseline (Wolfson and Gilbert, 2010).

Principal effects compare the probability of the outcome under competing treatments within
principal strata. These can be denoted as comparisons between:

for z = 0, 1. Determining whether an intermediate response qualifies as a principal surrogate
involves definition of causal effects of the treatment on the outcome as being associative or
dissociative with causal effects of the treatment on the surrogate. Associative effects are
causal treatment effects on Y in strata with S(0) ≠ S(1) and represent causal effects of Z on Y
that are associated with causal effects of Z on S. Dissociative effects are causal treatment
effects on Y in strata with S(0) = S(1) and represent causal effects of Z on Y that exist in the
absence of a causal effect of Z on S. A principal surrogate is one for which associative
effects exist for changes in the surrogate in excess of some threshold and for which there is
no dissociative effect, i.e., r1(s1, s0) ≠ r0(s1, s0) for all |s1 − s0| > CA and r1(s1, s0) = r0(s1, s0)
for all s1 = s0. Both FR and GH suggest evaluating surrogate value by quantifying
associative effects relative to dissociative effects; large associative effects relative to small
dissociative effects indicate that the effect of Z on Y is most pronounced in strata with an
effect of Z on S, which may imply value in using the latter effect to predict the former. On
the contrary, when associative effects and dissociative effects are both large (or both small),
the effect of Z on S cannot reliably predict the effect of Z on Y because the treatment effect
on the outcome would be similar regardless of whether there is a treatment effect on the
surrogate. Note that an associative effect should not be interpreted as an indirect effect or as
an effect of S on Y; associative effects capture the extent to which an effect of Z on S is
associated with an effect of Z on Y. Furthermore, note that a nonzero dissociative effect
implies that Z affects Y through pathways not involving S, but that absence of a dissociative
effect does not necessarily preclude the existence of such pathways (VanderWeele, 2011).

2.3 The Causal Effect Predictiveness (CEP) surface
GH proposed the CEP surface to measure causal effects of Z on Y across the surface defined
by all possible principal strata:

where h(x, y) is a specified contrast function satisfying h(x, y) = 0 for x = y. CEPr(s1, s0) = 0
for all s1 = s0 suggests no dissociative effect, and CEPr(s1, s0) ≠ 0 for some s1 ≠ s0
represents an associative effect when Z causes a change in S from s0 to s1. A useful
surrogate might not be a perfect principal surrogate, but should be one for which the sign
and magnitude of the effect of Z on S provides information regarding the sign and magnitude
of the effect of Z on Y. For example, CEPr(s1, s0) increasing with s1 − s0 and near 0 for s1 ≈
s0 would indicate a useful surrogate with large associative effects relative to dissociative
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effects; the larger the effect of Z on S, the larger the effect of Z on Y, and little or no effect of
Z on Y when there is little or no effect of Z on S.

Knowledge of the entire CEP surface would indicate the causal effect of Z on Y in any
region of the surface defined by particular values of (s0, s1). For example, interest my lie in
regions where s0 > 0 and (s1 − s0) > CA for the effect of Z on Y when S(0) is positive and the
causal effect of Z on S exceeds CA. In practice, however, researchers may be less focused on
isolated regions of the surface and more interested in, say, the effect of Z on Y when the
effect of Z on S is either zero, positive, or negative. To characterize such effects, GH
proposed several summary quantities for the CEP surface. The expected dissociative effect
(EDE) is defined as the expected value of the CEP surface in strata for which the effect of Z
on S is below a certain threshold: E[CEPr(S(1), S(0))||S(1) − S(0) | ≤ CD], for CA ≥ CD ≥ 0.
The constant CD might be 0, as in GH, or some threshold below which a change in S is
deemed clinically irrelevant. For areas of the surface where the effect of Z on S is positive
(s1 > s0), we adapt definitions in GH to define the positive expected associative effect
(EAE+) to summarize the expected value of the CEP surface among strata for which the
treatment induces S to increase in excess of CA: E[CEPr(S(1), S(0))|(S(1) − S(0)) > CA)].
Analogously, we define the negative expected associative effect (EAE−) to summarize the
average effect of Z on Y in areas of the surface where the treatment causes a decrease in S:
E[CEPr(S(1), S(0))|(S(1) − S(0)) < −CA)]. For an overall measure of associative effects, we
define EAE = EAE+ − EAE−. To summarize the magnitude of associative effects relative to

dissociative effects, the proportion associative effect (PAE), can be defined as ,
where PAE ∈ (0.5, 1] indicates that associative effects are larger in magnitude than
dissociative effects. Analogous definitions of PAE+ and PAE− could be obtained by
replacing EAE with its positive or negative component.

No single summary quantity can be used to completely characterize surrogate value, but
used in combination, these quantities could provide evidence as to whether a treatment
effect on the surrogate could be used to reliably predict a treatment effect on the outcome.
For example, a small EDE, positive EAE+ (negative EAE−), and PAE ∈ (0.5, 1] would
indicate, respectively, that: 1) little or no effect of Z on S is associated with little or no effect
of Z on Y; 2) a positive (negative) effect of Z on S is associated with a positive (negative)
effect of Z on Y; and 3) effects of Z on Y are most pronounced when Z affects S.

3. Estimation of the CEP Surface
For each patient, potential outcomes are observed for either Z = 0 or Z = 1, but never for
both. As a result, neither of {Y(0), S(0)} is ever jointly observed with either of {Y(1), S(1)},
and the data lack information regarding associations between potential outcomes under
competing treatments. Thus, further assumptions are required to estimate the full joint
distribution of the data. As in GH, we assume Y(0) ⫫ Y(1)|S(0), S(1), X and focus on average
comparisons within principal strata. The data also lack information regarding associations
between:

(1)

(2)

Note that specification of these pairwise components is not sufficient for characterizing the
entire joint distribution, but the estimation strategies detailed below require assumptions
regarding these associations. The primary difference between our proposed Bayesian
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approach and previously-used strategies lies in the assumptions regarding these associations.
We examine the differences in the following sections.

Following GH, we parameterize the risk distributions with the following probit regressions
that condition additionally on covariates, X:

(3)

where Φ is the standard normal cumulative distribution function, gz(s1, s0, x; βz) is a
specified form of the relationship between S(0), S(1), X and Y(z) as a function of parameters
βz, and z = 0, 1. Furthermore, we consider settings with a single continuous pretreatment
covariate, and assume that {S(0), S(1), X} ~ MV N3(μ, Σ).

3.1 The constant biomarker special case
GH and other previous research (Follmann, 2006; Qin et al., 2008) only illustrate estimation
of the CEP surface in a placebo-controlled HIV vaccine trial where an immune-response
biomarker is analyzed as a candidate surrogate for infection. Because of the lack of HIV
specific immune response mounted under placebo, these settings permit the constant
biomarker assumption that S(0) = c (e.g., the lower limit of detection of an antibody assay)
for all patients. In simplified settings with a constant biomarker, principal strata are defined
by {c, S(1)}, meaning that the principal stratum is completely observed and known for all
patients with Z = 1. The challenge remains to estimate the stratum membership of those with
Z = 0, that is, to impute placebo recipients’ potential immune response to the vaccine. Note
that a constant biomarker precludes further assumptions about the associations in (1)
involving S(0), but does not obviate the need for those pertaining to the associations in (2).

3.2 Previously-used estimation strategies with a constant biomarker
Here we outline the estimated-likelihood (GH) and approximate calibrated-based EM
(ACEM, Qin et al. (2008)) strategies used in previous research to estimate the CEP surface
with a constant biomarker and illuminate an implicit assumption embedded in these
sequential approaches. For comparison with GH, we use gz(s1, c, x; βz) = βz0 + βz1s1 + βz2x
for the risk distributions in (3). A constant biomarker implies that r1(s1, c, x) is estimable
from observed data on vaccine recipients, but the unavailability of S(1) for patients with Z =
0 means that r0(s1, c, x) is not. Follmann (2006) and GH argue that models for r0(s1, c, x) are
identified under the assumption that β02 = β12, which amounts to an assumption about the
first association in (2) (i.e., Y (0), X|S(1)) and can be easily and explicitly incorporated into
any estimation strategy. However, while this assumption results in identifiability of r0(s1, c,
x), it does not suffice for identifiability of the entire joint distribution of the data, and further
assumptions about the second association in (2) (i.e., S(1), Y(0)|X) are required. We argue
below that the estimated-likelihood and ACEM strategies imply a conditional independence
assumption that can impact estimation.

The estimated-likelihood and ACEM approaches can be loosely conceived as consisting of
two separate stages: the imputation stage and the risk model stage. The imputation stage
estimates a model for f(S(1)|X, Z = 1) and applies this model to estimate the missing S(1) in
patients with Z = 0. This is justified because randomization ensures that f(S(1)|X, Z = 1) =d

f(S(1)|X, Z = 0), where =d denotes equality in distribution. The risk model stage considers
the risk distributions in (3) conditional on the values of S(1) estimated from the imputation
stage.

Conditioning solely on X in the imputation stage implies that values of S(1) in the Z = 0
patients are estimated subject to the conditional independence assumption that S(1) ⫫ Y(0)|
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X, which amounts to a model assumption about the second association in (2) (i.e., S(1), Y(0)|
X). Problems can arise when this conditional independence is in fact false, despite the fact
that the risk-model stage does not entail this assumption when β01 ≠ 0. This issue is akin to
that of imputing a missing covariate without conditioning on the observed outcome, but is
fraught with the additional complication that the data lack information about the association
between the missing covariate, S(1), and the observed outcome, Y(0), because these
quantities are never jointly observed.

This conditional independence between S(1) and Y(0) (conditional on X) when estimating
missing potential outcomes has been examined in settings such as treatment noncompliance
(Jo and Stuart, 2009) but appears to have been overlooked in the vaccine literature. We
argue that this assumption in the imputation stage is sufficient for identifiability of models
for the entire joint distribution of the data, but that estimates are subject to bias amid
violations. Note that one could fully enforce this assumption in both stages (i.e., also assume
that β01 = 0), which Jo and Stuart (2009) refer to as assuming principal ignorability, but this
assumption is not valuable for estimating the CEP surface because it assumes that the risk of
infection under placebo is the same in all strata.

3.3 Bayesian estimation of the CEP Surface with or without a constant biomarker
As an alternative to previously-used sequential methods, our Bayesian approach considers
the full joint distribution of the data simultaneously, which “connects” the imputation and
risk model stages in the sense that the imputation stage is carried out conditional on data and
parameters in the risk model stage. For example, in the constant biomarker setting,
imputations for S(1) in patients with Z = 0 are carried out conditional on all model
parameters and observed data, including in particular observed values of Y(0) (the sequential
methods described in Section 3.2 do not condition on Y(0) in the imputation stage). A nice
feature of our Bayesian approach is that the required assumptions regarding the
nonidentifiable associations in (1) and (2) can be naturally incorporated via prior
information to yield useful posterior estimates of the CEP surface. We explore different
assumptions regarding the associations in (1) and (2) via specification of informative prior
distributions on some of the parameters in rz(s1, s0, x) and, in the absence of a constant
biomarker, a sensitivity parameter characterizing the correlation between S(0) and S(1). A
key benefit of such an approach is that placing prior information on scientifically-
interpretable parameters in the risk model stage will apply to the entire joint distribution of
the data, including the model for the imputation stage. Thus, in contrast to previously-used
sequential methods, our Bayesian approach unifies the imputation and risk model stages and
facilitates imputation of the unobserved S(1 − z) for Z = z patients conditional on both X and
the observed Y(z).

Making explicit use of the i subscript, we view the random variables Zi, Si(0), Si(1), Yi(0),
Yi(1), Xi as realizations from a joint probability distribution with Zi, Xi, Si(Zi), Yi(Zi)
observed and Si(1 − Zi), Yi(1 − Zi) missing for all i. With the introduction of model
assumptions, Markov chain Monte Carlo (MCMC) methods such as the Gibbs sampler
(Gelfand and Smith, 1990) can simplify inference in this setting because causal estimates
can be calculated conditional on “complete data” for which unobserved potential outcomes
are replaced by simulated values.

We denote the full distribution of the data as
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where the last equality follows from randomization. To facilitate Bayesian inference, we
express the joint distribution of all potential outcomes and covariates as the product of
independently identically distributed random variables conditional on a generic parameter θ
(Rubin, 1978) and write the posterior distribution of θ as

where p(θ) is a prior distribution for θ. The integration over  is computationally difficult

in general, but  can be handled with standard strategies that average outcomes within

randomized groups. We omit the  to simplify notation. Focusing on the joint posterior

proves more convenient because it is proportional to the standard posterior distribution of θ
that would arise from complete data (Jin and Rubin, 2008). This perspective motivates a

Gibbs sampler that iterates between sampling the  conditional on the current parameter
values and observed data and sampling from the posterior distribution of θ conditional on
complete {Si(0), Si(1)}.

3.4 Prior specification
We treat all parameters as a priori independent, specifying flat prior distributions for μ and
proper but diffuse prior distributions for Σ. For the constant biomarker special case, we

parameterize Σ with  and , with flat prior
distributions for μX, a0 and a1 and proper but diffuse gamma prior distributions for

. For the β parameters, we specify normal prior distributions, the hyperparameters
of which we describe in the applications that follow.

Table 1 reviews the modeling assumptions regarding the nonidentifiable associations in (1)
and (2) implied by prior specification on the β parameters and by introduction of a
sensitivity parameter, emphasizing the point that with our Bayesian strategy, assumptions
about nonidentifiable relationships in the data simultaneously apply to both the imputation
and risk model stages. This table compares these assumptions with those of the previously-
used sequential strategies described in Section 3.2.

4. Simulation Study with a Constant Biomarker
Here we conduct a simulation study paralleling that in GH to compare the performance of
our Bayesian approach with the sequential estimated-likelihood approach. In order to
compare our simulations with the parametric simulations reported in GH, we choose CA =
CD = 0, and set h(x, y) = Φ−1(x)− Φ−1(y), which yields CEPr(s1, c, x) = (β10 − β00)+(β11 −
β01)s1 + (β12 − β02)x.

We follow the simulation scheme of GH that is designed to mimic the first preventive HIV
vaccine efficacy trial. The candidate surrogate in this trial was 50% neutralization titers
against the HIV recombinant gp120 molecule measured at t = 1.5 months post-baseline, and
the primary outcome was HIV infection at 36 months follow-up. The constant biomarker in
this case is the lower limit of detection of the antibody assay, c = 0, so S(0) = 0 for all
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patients. We simulate data for 1,805 placebo recipients and 3,598 vaccine recipients using
the case-cohort sampling scheme from GH. Infection outcomes are simulated from (3) with
gz(s1, c, x; βz) = βz0 +βz1s1 +βz2x. For the vaccine arm, we set (β10, β11, β12) = (−1.21, − 0.67,
− 0.1). For the placebo arm, we consider two scenarios reflecting an overall vaccine effect of
50% reduction in the number of infections: one where the surrogate has no value,
corresponding to β00 = −0.825, β01 = −0.67, and β02 = −0.1 (scenario (a)), and one where it
has high value, corresponding to β00 = −1.1, β01 = 0.0, and β02 = −0.1 (scenario (b)). In both
scenarios (a) and (b), we vary the correlation between {X, S(1)} to reflect settings where the
pretreatment covariate predicts immune responses to varying degrees, with ρ = 0.5, 0.7, or
0.9. Further details of the data-generating mechanism appear in Web Appendix A.

We use the Bayesian strategy described in Section 3.3 to analyze data simulated as described
above, varying features of the analyses to represent different assumptions about the
associations in (2). For all analyses, we anchor prior information about the β parameters to
observed quantities in the treatment arm. Let (β̂10, β̂11, β̂12) denote the maximum likelihood
estimates of the parameters in r1(s1, c, x) obtained using observed data for patients with Z =
1. We center the prior distributions of β01 and β11 at β̂11 and of β02 and β12 at β̂12 to place
prior weight on the absence of an associative effect and on the absence of an interaction
between X and Z. For the model intercepts, we center the prior distributions of βz0 at Φ−1(p̂z)
− β̂11S̄(1) − β̂12X̄, where p̂z is the observed proportion of infections in patients with Z = z,
and S̄(1) and X̄ are the averages observed in the vaccine arm. Prior variances for the βz are
varied across analyses. Details of the MCMC appear in Web Appendix B.

4.1 The necessity of assumptions regarding nonidentifiable associations
To illustrate the necessity of modeling assumptions about nonidentifiable associations, we
analyze five low surrogate value datasets with ρ = 0.5 under two diffuse prior specifications
for β. The first completely diffuse analysis sets prior variances for each of (β10, β11, β12, β00
– β10, β01 – β11, β02 – β12) to 2.02, representing substantially noninformative prior
distributions on the probit scale and implying no assumptions about the associations in (2).
MCMC chains failed to converge in the analysis of each of these datasets, with the potential
scale-reduction statistic, R ̂ (Gelman and Rubin, 1992), for some parameters as high as 17.23.
The second diffuse analysis uses the same prior specification but entails the restriction that
β02 = β12, which previous research has used to justify identifiability of r0(s1, c, x). This
analysis also resulted in MCMC chains that did not converge, with values of R̂ as high as
29.04. Thus, imposing an identifiability assumption that pertains only to r0(s1, c, x) does not
suffice for identifiability of models for the entire joint distribution, and further assumptions
are required regarding the second association in (2) (i.e., S(1), Y(0)|X). This speaks to
previous methods’ reliance on the implicit conditional independence assumption made in the
imputation stage.

4.2 Performance of the Bayesian approach and comparison with previous methods
We examine in detail the Bayesian analysis that specifies prior information regarding both
associations in (2). Prior variances for (β10, β11, β12) are set to 2.02 and prior variances for
(β00 – β10, β02 – β12) are set to (0.52, 0.12). The prior variance for (β01 – β11) is set to (0.652,
0.92, 1.52) in settings with ρ = (0.5, 0.7, 0.9), respectively. This prior specification represents
prior belief against an interaction between Z and S(1) and stronger prior belief against an
interaction between Z and X. These prior specifications correspond, respectively, to belief in
the equivalence of the following pairwise associations: {S(1), Y(0)|X} = {S(1), Y(1)|X} and
{X, Y(0)|S(1)} = {X, Y(1)|S(1)}, that is, they pertain to the associations in (2). We conduct
the informative analysis on 200 datasets simulated under each of the scenarios described
above.
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Table 2 summarizes the performance of the Bayesian method under each simulated scenario.
Note that in the constant biomarker special case, we define EAE− = 0 since S(1) is never less
than S(0) = 0, yielding EAE = EAE+. Bias in the posterior mean and median estimates of
EDE, EAE, and PAE is small for all values of ρ in both scenarios (a) and (b), and posterior
standard deviations for all summary parameters are decreasing in ρ, reflecting increased
accuracy in the imputation of Smis in the presence of a more predictive pretreatment
covariate. For these summary parameters, the most pronounced bias appears in scenario (b)
with ρ = 0.5, where the posterior mean and median of PAE indicate a bias of −0.05 and
−0.06, respectively, which is small relative to the true value of 0.83. This likely results from
the fact that β01 ≠ β11 in scenario (b), but the prior specification that these parameters are
equivalent impacts posterior estimates when X is not particularly predictive of S(1) (i.e.,
when ρ = 0.5). The over coverage of the 95% posterior intervals is due to placing prior mass
over the entire flat region of the likelihood around the true values of the nonidentified
parameters (Gustafson and Greenland, 2009).

Table 2 also illustrates the improved performance of our Bayesian method over the
estimated-likelihood approach in GH. Note that while simulations here are fundamentally
the same as the parametric simulations in GH, there are some minor differences (e.g., GH
bin X, S(1) into quartiles). For estimates of the PAE - the only CEP summary quantity
reported in the parametric simulations in GH - the Bayesian approach outperforms the
estimated-likelihood strategy on the basis of bias and variability of the estimates. Also note
that the Bayesian approach performs well for all values of ρ, but the estimated-likelihood
strategy from GH relies on a highly predictive covariate (ρ = 0.9) to yield estimates without
substantial bias.

Web Appendix C examines in detail the influence of the prior distributions on posterior
densities of β parameters, but we note here that the prior dominates the posterior distribution
of (β02 – β12) reflecting prior belief in the absence of an interaction between Z and X.

5. Data Analysis Without a Constant Biomarker
Here we use our Bayesian strategy to extend estimation of the CEP surface beyond
previously-considered illustrations to settings without a constant biomarker. We illustrate
this extension by analyzing data from the AIDS Clinical Trials Group protocol 320 (ACTG
320). This historically important trial compared an experimental therapy of two nucleoside
analog reverse transcriptase inhibitors (zidovudine and lamivudine) combined with a
protease inhibitor (in-dinavir) against a control therapy consisting of only the two reverse
transcriptase inhibitors, and is particularly germane to discussion of surrogate endpoints
because of the trial’s early termination due to clear clinical benefit of the experimental
treatment (Hammer et al., 1997). We explore whether change in log-transformed CD4 count
from baseline to 4-weeks follow up (S, continuous) qualifies as a principal surrogate
endpoint for progression to AIDS or death (Y, binary) at distant follow up (median follow-up
time 38 weeks). We include log-transformed baseline CD4 count as a pretreatment
covariate, X. Basic graphical examination of the multivariate normality assumption from
Section 3 appears in Web Appendix D.

For illustrative purposes, we confine our attention to 516 treated and 490 control patients
who were not censored before the end of trial follow up and who had CD4 measured at
baseline and 4 weeks post-treatment. The mean (SD) 4-week change in CD4 count was
46.29 (59.62) in the treatment arm and 27.49 (49.18) in the control arm, indicating that, on
average, the treatment improved CD4 counts. There was also a beneficial average treatment
effect on the primary outcome, with deaths or AIDS progressions in 24 (4.6%) treatment-
arm patients, compared with 46 (9.4%) control-arm patients. There is no evidence of a
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violation of the equal individual clinical risk assumption, with < 2% of patients in either arm
progressing to AIDS or death within 4 weeks of treatment initiation.

One way to accommodate varying control-group response is to use gz(s1, s0, x; βz) = βz0 +
βz1s0 + βz2(s1 − s0) + βz3x for the risk distributions in (3). The adjustment for (s1 − s0) allows
estimation of whether larger causal effects on CD4 count are predictive of clinical benefit. In

contrast to the illustrations with a constant biomarker, we use  for ACTG
320, allowing interpretation of the CEP surface as the log relative risk (RR) of progression
to AIDS or death within a principal stratum. To assess surrogate value, we use EDE, EAE+,
and EAE− to estimate the average causal effect of Z on Y when there is no, a positive, or a
negative effect of Z on S. We examine PAE to quantify the relative magnitudes of
associative and dissociative effects. The thresholds for summarizing the CEP surface are CD
= CA = 0.05 to calculate dissociative effects in patients whose CD4 counts under competing
treatments are estimated to be within 5% of each other, and associative effects in patients
estimated to experience more pronounced causal effects on CD4.

Without a constant biomarker, model assumptions must be made regarding all of the
associations in (1) and (2). For the association {S(0), S(1)|X}, we incorporate a pre-specified
parameter, denoted φ, that characterizes the nonidentified correlation between S(0) and S(1).
Note that the correlation between {S(0), X} observed in the Z = 0 arm is −0.29, and the
correlation between {S(1), X)} observed in the Z = 1 arm is −0.59. These observable
associations can rule out some values of φ that would imply an invalid covariance structure
for {S(0), S(1), X}. To prevent computation of covariance structures near the positive-
definiteness boundary and to reflect belief that S(0) and S(1) are nonnegatively correlated,
the proposed sensitivity-analysis strategy fixes φ for each analysis and varies its value across
the range [0.0, 0.8] to obtain estimates of the CEP surface.

For the other nonidentifiable associations, we anchor prior information for the β parameters
in the rz(s1, s0, x) to maximum likelihood estimates fit to the following model using only
data available in the control arm:

(4)

denoting these estimates with γ̂0, γ̂1, and γ̂2. Note that this model differs from r0(s1, s0, x)
only in its omission of the quantity (s1 − s0). We center the prior distribution for β00 at γ̂0,
for β01 and β11 at γ̂1, and for β03 and β13 at γ̂2. Prior means for β02 and β12 are centered at 0,
and the prior mean for β10 is centered at Φ−1(p̂1) − γ̂1S̄(0) − γ̂2X ̄, where S̄(0), X̄ are averages
observed in the Z = 0 patients. Prior variances for (β00, β01, β02, β03) are set to (0.32, 2.02,
2.02, 0.12), and prior variances for (β10 – β00, β11 – β01, β12 – β02, β13 – β03) are set to (0.32,
2.02, 2.02, 0.012). This prior specification places prior weight on the belief that the model in
(4) is correct, that is, that after adjusting for (log-transformed) baseline CD4 count and
potential response to the control treatment, the difference {S(1) − S(0)} is unrelated to the
probability of progression to AIDS or death in both treatment arms, and that there are no
interactions between treatment and X, S(0), or {S(1) − S(0)}. This implies prior weight on
the absence of an associative effect. Note that the prior variances indicate especially strong
prior belief in the relationship between X and progression to AIDS or death, but that prior
belief in the other parameters is substantially more diffuse. Other prior distributions are as
described in Section 3.4 and details of the MCMC appear in Web Appendix B.

Figure 1 displays posterior estimates of the EDE, EAE+, and EAE− across the range of
values for φ. In Figure 1(a), we see that the treatment protects against progression to AIDS
or death in patients who experience little or no effect on CD4 count. Figure 1(b) depicts a
more pronounced protective effect in patients for whom the treatment causes an increase in
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CD4 count. Figure 1(c) indicates no causal effect on progression to AIDS or death when the
treatment causes a decrease in CD4 count. These results are qualitatively robust to
specification of φ. To measure the overall magnitude of associative effects relative to
dissociative effects, Figure 2 displays histograms of posterior samples of PAE for selected
values of φ to indicate that associative effects tend to be more pronounced than dissociative
effects, but that values of PAE near 0.5 cannot be ruled out.

To summarize the entire CEP surface, Figure 3 depicts a contour plot, with contours
corresponding to values of CEPr(s1, s0, x) (labeled as relative risks), across values of S(0)
and S(1). For this illustration, contours are computed using posterior mean estimates of the β
parameters, and x is held fixed at X ̄. The scatterplot of points on the contour plot represents
values of {S(0), S(1)} simulated from one iteration of the Gibbs sampler. The results are
pictured for the analysis where φ = 0.4; other assumed values of φ produced similar contours
but are not pictured. We see that EDE lies on a contour with RR = 0.55, indicating that the
treatment protects against progression to AIDS or death in patients who do not experience a
causal effect on CD4. We see that in areas of the plot where S(1) > S(0), representing
patients for whom the treatment improves CD4, the surface indicates a protective associative
effect of the treatment (RR < 1) that is more pronounced as {S(1) − S(0)} increases, with
EAE+ lying on a contour with RR = 0.24. For areas indicating that the treatment harms CD4
count {S(1) < S(0)}, we see that EAE− lies on a contour with RR = 0.98, and that the risk of
progression to AIDS or death is increased (RR > 1) in the small number of patients estimated
to have S(1) much less than S(0).

Detailed examination of prior vs. posterior densities for the analysis of the ACTG data
appears in Web Appendix C, but we note here that prior specification dominates the
posterior distributions for β03 and β13 − β03, reflecting the the strong prior belief that the
relationship between X and Y (z) estimated from (4) is correct.

In summary, our analysis indicates that the beneficial causal effect of Z = 1 on progression
to AIDS or death is associated with beneficial causal effects of Z = 1 on CD4 count (EAE+ <
0), and that there is no evidence of an effect of Z = 1 on progression to AIDS or death for
patients for whom the treatment harms CD4 count (EAE− ≈ 0). However, this analysis does
not suggest perfect utility for using 4-week changes in CD4 count as a surrogate endpoint
because we also estimate that a beneficial causal effect on progression to AIDS or death
persists even in patients for whom the treatment does not impact CD4 (EDE < 0). While our
analysis does suggest some surrogate value, with associative effects that larger in magnitude
than dissociative effects (PAE > 0.5), the uncertainty in these estimates cannot rule out
associative and dissociative effects of similar magnitude.

6. Discussion
We have presented a Bayesian strategy for estimating the CEP surface to evaluate a
principal surrogate endpoint that offers improvements over previously-used sequential
methods. By considering the full joint distribution of the data simultaneously and
incorporating prior information regarding nonidentifiable associations, our approach
provides improved performance in the previously-considered setting of a constant
biomarker, and also extends estimation to more general settings with varying control-group
response.

The benefit of the Bayesian approach is most evident in comparison with existing methods
that assume a constant biomarker and an implicit conditional independence assumption
when imputing missing surrogate responses. Unlike existing methods in vaccine trials that
rely on large values of ρ, the Bayesian method performs well in the absence of a highly
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predictive pretreatment covariate, in part because it makes use of additional information
contained in Y(0) to impute missing S(1).

While the literature on principal stratification commonly relies on categorical S and a finite
number of strata, we focus on continuous S and make use of structured models. Alternative
flexible parametric assumptions or assumptions such as monotonicity could prove valuable
(Jin and Rubin, 2008; Bartolucci and Grilli, 2011). For example, Web Appendix D casts
some doubt on the assumption of multivariate normality for {X, S(0), S(1)}, and more
flexible models could be included at the cost of significant computational complexity.
Furthermore, the assumption that Y(0) ⫫ Y (1)|S(0), S(1), X could be relaxed in exchange for
another sensitivity parameter analogous to φ (Jin and Rubin, 2008). Our analysis of ACTG
320 that focuses on relative risks could exhibit some sensitivity to assumptions about the
association between Y(0) and Y(1).

In practice, researchers may be interested in quantities such as EDE, EAE+, EAE−, and PAE
to summarize whether little/no, positive, or negative effects of Z on S correspond to little/no,
positive, or negative effects of Z on Y, with PAE summarizing the relative magnitudes of
associative and dissociative effects. However, it should be noted that any such summary
measures could prove too coarse to uncover certain features of the entire CEP surface. For

example, our definition of EDE could obscure existence of strata defined by  and

 such that  and , which could yield EDE = 0 in the
midst of nonzero dissociative effects. Alternative summary quantities that focus on more
specific regions of the CEP surface could be adopted to uncover such settings, which may
require more flexible parametric models than those presented here.

Our approach to surrogate outcomes proceeds along the lines of FR and GH and defines
exactly two causal effects; that of Z on both S and Y. Related causal-inference methods
predicated on direct and indirect effects could provide alternative approaches (see
VanderWeele (2011) and the references within). These methods imply additional
assumptions that lead to definition of a third causal effect absent from our principal
stratification framework, that of S on Y. For example, Chen et al. (2007) define conditions
for a surrogate endpoint to ensure avoidance of the so-called “surrogate paradox” where the
signs of the effects of Z on S and of S on Y cannot predict the sign of the effect of Z on Y.
When interpreted correctly, principal surrogates do not suffer from this paradox because
they do not use an effect of S on Y to infer anything about surrogacy. The paradox seems
relevant only when interest lies in estimating causal pathways involving the following three
effects: Z on S, Z on Y, and S on Y. Principal stratification only considers the first two of
these effects, so to the extent that it is possible to conceive of a counterintuitive sign of the
causal effect of S on Y, it does not obscure whether the effect of Z on Y coincides with the
effect of Z on S.

Finally, we have considered trials with both S and Y measured in order to validate whether S
qualifies as a principal surrogate in a particular setting. An important area of future research
in which the Bayesian ideas presented here might prove valuable is in quantifying the
predictive value of the effect of Z on S for reliably establishing the effect of Z on Y in future
trials where Y may not be measured. This could contribute toward establishing a “level 2
surrogate of protection” that is predictive of efficacy across different settings or populations
(Gilbert et al., 2008).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Posterior means (and 95% intervals) for EDE, EAE+, and EAE− from ACTG 320.
Horizontal dotted lines are at 0.
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Figure 2.
Posterior histograms of PAE for different values of sensitivity parameter φ from ACTG 320.
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Figure 3.
Posterior mean CEP surface calculated with X set to the sample average from ACTG 320
and φ = 0.4. Scatterplot represents values of {S(0), S(1)} from one iteration from the Gibbs
sampler, and dashed line is S(0) = S(1). Contours are placed at estimated relative risk of
progression to AIDS or death in treatment vs. control arm.

Zigler and Belin Page 17

Biometrics. Author manuscript; available in PMC 2013 December 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zigler and Belin Page 18

Table 1

Comparisons between assumptions made regarding nonidentifiable associations in the proposed Bayesian
approach and those implicit in the previously-used sequential methods. Assumptions common to both methods
are: SUTVA, ignorable treatment assignment, equal individual clinical risk, and multivariate normality of
{S(0), S(1), X}.

Sequential Approach

Association Imputation Stage Risk Model Stage

Constant Biomarker

Y(0), Y(1)|X, S(0), S(1) Not Applicable Y(0) ⫫ Y(1)|X, S(0), S(1)

Y(0), X|S(1) Not Applicable No interaction, β02 = β12

S(1), Y(0)|X S(1) ⫫ Y(0)|X Possible dependence, β01 ≠ 0

Bayesian Approach

Association Imputation Stage Risk Model Stage

Constant Biomarker

Y(0), Y(1)|X, S(0), S(1) Y(0) ⫫ Y(1)|X, S(0), S(1)

Y(0), X|S(1) Prior on β02 – β12

S(1), Y(0)|X Prior on β01 – β11

No Constant Biomarker

Y(0), Y (1)|X, S(0), S(1) Y (0) ⫫ Y(1)|X, S(0), S(1)

S(0), S(1)|X Sensitivity parameter, φ

Y(1), S(0)|X Prior on β11 – β01 and β12 – β02

Y(1), X|S(0) Prior on β13 – β03

Y(0), S(1)|X Prior on β01 and β02

Y(0), X|S(1) Prior on β03

Biometrics. Author manuscript; available in PMC 2013 December 12.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zigler and Belin Page 19

Ta
bl

e 
2

Si
m

ul
at

io
n 

su
m

m
ar

y 
fo

r 
B

ay
es

ia
n 

es
tim

at
io

n 
of

 th
e 

C
E

P 
su

rf
ac

e 
in

 th
e 

co
ns

ta
nt

 b
io

m
ar

ke
r 

sp
ec

ia
l c

as
e 

w
ith

 (
a)

 n
o 

or
 (

b)
 h

ig
h 

su
rr

og
at

e 
va

lu
e 

an
d 
ρ 

=
0.

5,
 0

.7
, o

r 
0.

9.
 2

00
 d

at
as

et
s 

w
er

e 
si

m
ul

at
ed

 a
nd

 a
na

ly
ze

d 
fo

r 
ea

ch
 s

et
tin

g.
 S

D
 is

 th
e 

st
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

po
st

er
io

r 
es

tim
at

es
, a

nd
 P

SD
 is

 th
e 

m
ea

n
po

st
er

io
r 

st
an

da
rd

 d
ev

ia
tio

n 
ac

ro
ss

 d
at

as
et

s.
 Q

ua
nt

iti
es

 u
nd

er
 th

e 
he

ad
in

g 
“G

H
” 

re
pr

es
en

t b
ia

s 
an

d 
m

ed
ia

n 
bo

ot
st

ra
p 

st
an

da
rd

 e
rr

or
 e

st
im

at
es

 (
SE

E
) 

fr
om

th
e 

pa
ra

m
et

ri
c 

si
m

ul
at

io
ns

 r
ep

or
te

d 
in

 G
ilb

er
t a

nd
 H

ud
ge

ns
 (

20
08

).

(a
) 

L
ow

 S
ur

ro
ga

te
 V

al
ue

(b
) 

H
ig

h 
Su

rr
og

at
e 

V
al

ue

T
ru

e

M
ed

ia
n

M
ea

n

P
SD

95
%

 C
ov

er
ag

e

G
H

T
ru

e

M
ed

ia
n

M
ea

n

P
SD

95
%

 C
ov

er
ag

e

G
H

B
ia

s
SD

B
ia

s
SD

B
ia

s
SE

E
B

ia
s

SD
B

ia
s

SD
B

ia
s

SE
E

ρ 
=

 0
.5

E
D

E
−

0.
38

0.
01

0.
06

0.
02

0.
06

0.
09

10
0

−
0.

11
−

0.
01

0.
08

−
0.

01
0.

08
0.

11
99

E
A

E
+

−
0.

38
−

0.
02

0.
08

0
0.

09
0.

12
99

−
0.

53
0.

04
0.

07
0.

05
0.

07
0.

08
93

.5

P
A

E
0.

5
0.

02
0.

07
0.

01
0.

07
0.

13
99

.5
−

0.
20

0.
23

0.
83

−
0.

05
0.

07
−

0.
06

0.
06

0.
12

99
−

0.
25

0.
23

ρ 
=

 0
.7

E
D

E
−

0.
38

0
0.

05
0

0.
06

0.
08

99
.5

−
0.

11
0.

01
0.

06
0.

01
0.

06
0.

09
99

.5

E
A

E
+

−
0.

38
−

0.
01

0.
09

0
0.

09
0.

09
95

.5
−

0.
53

0.
02

0.
06

0.
02

0.
06

0.
07

93
.5

P
A

E
0.

5
0

0.
07

0
0.

07
0.

09
99

.5
−

0.
14

0.
21

0.
83

−
0.

01
0.

06
−

0.
01

0.
05

0.
09

10
0

−
0.

14
0.

21

ρ 
=

 0
.9

E
D

E
−

0.
38

0
0.

06
0

0.
06

0.
07

98
.5

−
0.

11
0.

01
0.

06
0.

01
0.

06
0.

08
98

.5

E
A

E
+

−
0.

38
−

0.
01

0.
07

−
0.

01
0.

07
0.

07
94

−
0.

53
0.

01
0.

06
0.

01
0.

06
0.

06
94

P
A

E
0.

5
0.

01
0.

05
0.

01
0.

05
0.

06
98

−
0.

06
0.

16
0.

83
0

0.
05

0
0.

05
0.

08
99

.5
−

0.
07

0.
17

Biometrics. Author manuscript; available in PMC 2013 December 12.


