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The mechanistic target of rapamycin (mTOR) is a highly conserved protein that regulates growth and proliferation in response
to environmental and hormonal cues. Broadly speaking, organisms are constantly faced with the challenge of interpreting their
environment and making a decision between “grow or do not grow.” mTOR is a major component of the network that makes this
decision at the cellular level and, to some extent, the tissue and organismal level as well. Although overly simplistic, this framework
can be useful when considering the myriad functions ascribed to mTOR and the pleiotropic phenotypes associated with genetic
or pharmacological modulation of mTOR signaling. In this review, I will consider mTOR function in this context and attempt to
summarize and interpret the growing body of literature demonstrating interesting and varied effects of mTOR inhibitors. These
include robust effects on a multitude of age-related parameters and pathologies, as well as several other processes not obviously
linked to aging or age-related disease.

1. Introduction

mTOR regulates a diverse array of cellular processes through
its catalytic function as a serine/threonine protein kinase
of the phosphoinositide-3-kinase-related family [1]. It acts
within at least two distinct molecular complexes: mTOR
complex 1 (mTORC1) and mTOR complex 2 (mTORC2)
[2]. The composition of each complex is highly studied,
and many of the distinct components of each complex
have been characterized [3, 4]. mTORC1 consists of mTOR,
the regulatory-associated protein of mTOR (raptor), the
mammalian lethal with Sec13 protein 8 (mLST8), the DEP
domain containing mTOR-interacting protein (deptor), and
the proline-richAkt substrate of 40 kDa (PRAS40). mTORC2
also containsmTORandmLST8, but the remainingmTORC2
components are distinct from mTORC1. These include the
rapamycin-insensitive companion of mTOR (rictor), protein
observed with rictor (protor), mammalian stress-activated
protein kinase-interacting protein 1 (mSin1), and proline-rich
protein 5 (PRR5). BothmTOR complexes are essential, as loss
of either raptor or rictor results in loss of viability [5, 6].

mTOR was first identified from studies in the budding
yeast Saccharomyces cerevisiae of mutations that conferred
altered sensitivity to themacrolide antibiotic rapamycin (also

known as sirolimus) [7, 8]. Analysis of rapamycin resistant
mutants led to the identification of two yeast genes, TOR1
and TOR2, that both encode mTOR kinases. Yeast Tor1 is
found exclusively in mTORC1, while yeast Tor2 functions in
both mTOR complexes. Thus, null mutations in yeast TOR1
result in viable but rapamycin-sensitive cells, while null alleles
of TOR2 cause loss of viability. Unlike yeast, only a single
mTOR-encoding gene has been identified in multicellular
eukaryotes, and the resulting mTOR protein functions in
both mTORC1 and mTORC2 [9–13].

Of the two mTOR complexes, mTORC1 has been charac-
terized to amuch greater extent thanmTORC2 and appears to
play themore important role in aging and age-related disease.
mTORC1 activity induces cell growth and proliferation by
promoting mRNA translation and protein synthesis, pro-
moting lipid biogenesis, altering mitochondrial metabolism,
repressing autophagy, and modulating gene expression via
several transcription factors [14, 15]. mTORC1 regulates
global mRNA translation through at least two distinct and
highly conserved substrates: ribosomal S6 kinase (S6K1) and
eukaryotic translation initiation factor 4E-binding protein
1 (4E-BP1). Phosphorylation of S6K1 promotes ribosome
biogenesis, while phosphorylation of 4E-BP1 induces its
release from the eukaryotic translation initiation factor 4E
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(eIF4E), allowing eIF4E to associate with mRNA cap binding
proteins and form the cap-dependent translation initiation
complex [16].

The mTORC1 complex, in turn, is activated by nutrient
and growth cues through sensing of amino acid levels,
energy status, and oxygen and in response to hormones and
growth factors [15]. Perhaps the most important upstream
regulator of mTORC1 is the tuberous sclerosis complex,
composed of TSC1 (hamartin) and TSC2 (tuberin). TSC1/2
functions as a GTPase-activating protein for the small Ras-
related GTPase Rheb [17–19].Themechanism by which Rheb
activates TORC1 is not known but requires GTP-bound Rheb
and may involve direct physical interaction [20, 21]. TORC1
is also activated by insulin and other growth factors via
signaling through phosphatidyl 3-OH kinase and Akt and
extracellular-signal-regulated kinase 1/2 (ERK1/2), which are
able to phosphorylate and inhibit TSC2 [18, 22, 23]. TORC1
is also regulated via TSC2 by the energy sensing AMP-
activated protein kinase (AMPK), which represses mTORC1
when cellular energy status is low by phosphorylating both
TSC2 and raptor. [24, 25]. Intracellular amino acids also
activate mTORC1, but do so through a TSC1/2-independent
manner. Although the details are still being worked out,
recent studies have demonstrated that amino acids signal
to and activate mTORC1 at the lysosomal surface through
a family of four small GTPases termed Rag proteins and a
scaffolding complex termed Regulator [26–29]. For a more
in-depth description of the regulation and structure of the
mTORC1 pathway interested readers are referred to the
following detailed reviews [30–33].

Rapamycin, fromwhichmTORgets its name,was isolated
as a compound produced by the bacterium Streptomyces
hygroscopicus in soil samples obtained on the island of
Rapa Nui [34, 35]. Initially developed as an antifungal
compound, it soon became actively studied for its potent
antiproliferative and immunomodulatory activities [36, 37].
Although not known at the time it was identified, rapamycin
is a specific inhibitor of mTORC1 that acts by binding
to the FK506-binding protein 12 kDa (FKBP12), forming a
molecular complex that impairs mTORC1 activity [38, 39].
In general, mTORC1 inhibition by rapamycin results in a
reduction in global mRNA translation, altered glucose and
lipid metabolism, and increased autophagy [40]. In mam-
mals, rapamycin has broad immunomodulatory and anti-
inflammatory effects. A plethora of studies have shown that
rapamycin treatment results in interesting and varied effects
on cellular and organismal physiology, including robust
benefits for a variety of pathological conditions (described
further below).

Rapamycin derivatives (commonly referred to as rapa-
logues or rapamycins) were first used clinically to prevent
kidney transplant rejection and have since been approved
for a few cancers, for use in cardiac eluting stents to prevent
restenosis, as well as orphan drug status for tuberous sclerosis
and uveitis (Table 1). In addition to these rapamycin deriva-
tives, several new inhibitors of mTOR have been developed
that work through an ATP-competitive mechanism or that
simultaneously inhibit both PI-3 kinase and mTOR (dual
inhibitors). Both of these newer classes of mTOR inhibitors

can inhibit both mTORC1 and mTORC2; however, their
efficacy in different disease models and clinical trials is still
being actively investigated.

2. mTOR Signaling and the Biology of Aging

Research into the biology of aging has made dramatic
progress over the past decade. Once assumed to be an
inevitable and immutable process, we now know aging can
be modulated genetically, environmentally, and pharmaco-
logically [41, 42]. Multiple single gene mutations have been
identified that are sufficient to slow aging and extend lifespan
in four of the major model organisms used in biomedical
research: the budding yeast Saccharomyces cerevisiae, the
nematode Caenorhabditis elegans, the fruit fly Drosophila
melanogaster, and the laboratory mouse Mus musculus [43–
47]. Among these, only a handful of interventions show
similar effects on aging in multiple organisms and are, there-
fore, considered to be conserved modulators of aging. These
include dietary restriction and inhibition of mTOR, which
extend lifespan in all four species, and reduced insulin/IGF-
1-like signaling which is associated with increased lifespan in
all except yeast [48–50].

The role of the mTOR pathway in aging was first estab-
lished from studies of aging in budding yeast. Two aging
paradigms have been described in yeast: chronological aging,
which is defined as the length of time that a yeast cell can
survive in a nondividing state, and replicative aging, which
is the number of daughter cells a mother cell can produce
prior to irreversible cell cycle arrest [51, 52]. From a screen for
stress-resistant, chronologically long-lived mutants, Fabrizio
and colleagues isolated a mutation in SCH9 [53], which
encodes the yeast homolog of the mTOR substrate ribosomal
S6 kinase and is a target of TORC1 in yeast [54]. Subsequent
studies went on to show that deletion of either SCH9 or TOR1
(which functions exclusively in yeast mTORC1; see above)
is sufficient to extend both replicative and chronological
lifespan in budding yeast [55–58].

In parallel with the discoveries that mutations reducing
mTORC1 signaling can increase lifespan in yeast, similar
resultswere emerging fromgenetic studies in both nematode-
sand fruit flies. In C. elegans, Vellai et al. showed that both
genetic depletion and RNAi knockdown of the worm mTOR
gene, let-363, resulted in enhanced longevity [59], while Jia
et al. found a similar effect from mutations in the raptor
gene, daf-15 [60]. Elegant work from the Benzer lab in fruit
flies further established this link by examining both upstream
and downstream components of the mTORC1 pathway.
Lifespan extension was observed following overexpression of
Drosophila homologs of TSC1 or TSC2 (negative regulators of
mTORC1), as well as dominant negative alleles of Drosophila
mTOR or S6 kinase [61].

Following initial demonstrations that inhibition ofmTOR
could extend lifespan in yeast, worms, and flies, several
additional studies replicated these findings (as seen in
Components of the mTOR Signaling Pathway That Have
Been Manipulated to Increase Lifespan) and provided both
genetic and molecular evidence that dietary restriction and
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Table 1: Some mTOR inhibitors used clinically and in research.

Chemical Class Clinical uses/trials References

Rapamycin
Sirolimus
Rapamune

Rapalogue

FDA approved to prevent organ rejection following renal
transplant and for use in drug eluting stents to prevent
restenosis following angioplasty. Orphan drug status for bone
sarcoma, tuberous sclerosis, and uveitis. Multiple active,
recruiting, and completed trials.

[35, 62, 63]

Everolimus
RAD001
Afinitor
Zortress

Rapalogue

FDA approved for subependymal giant cell astrocytoma
(SEGA) associated with tuberous sclerosis, specific forms of
breast and pancreatic cancer, advanced renal cell carcinoma,
noncancerous kidney tumors, and renal and liver transplants.
Multiple active, recruiting, and completed trials. Orphan
drug status for lymphoplasmacytic lymphoma and gastric
cancer.

[62, 63]

Temsirolimus
CCI-779
Torisel

Rapalogue FDA approved for advanced stage renal cell carcinoma.
Multiple active, recruiting, and completed trials. [62, 63]

Ridaforolimus
AP23573
MK-8669
Deforolimus

Rapalogue Multiple active, recruiting, and completed trials for various
cancers. [64]

Zotarolimus
ABT-578 Rapalogue FDA approved for use in cardiac stents to prevent restenosis

following angioplasty. Multiple active and completed trials. [65, 66]

AZD8055 ATP-competitive mTOR inhibitor In clinical trials for gliomas, liver cancer, and solid tumors. [67–70]

AZD2014 ATP-competitive mTOR inhibitor Clinical trials recruiting for metastatic breast and renal
cancers. [67]

OSI-027 ATP-competitive mTOR inhibitor Completed phase 1 clinical trial in patients with advanced
solid tumors or lymphoma. [71, 72]

MLN0128 ATP-competitive mTOR inhibitor Completed and recruiting phase 1 trials for multiple myeloma
and advanced malignancies. [72]

WYE-132 ATP-competitive mTOR inhibitor None. [73]
Torin1 ATP-competitive mTOR inhibitor None. [74]
PI-103 PI3K/mTOR inhibitor None. [75]

P7170 PI3K/mTOR inhibitor Phase 1 clinical trial recruiting for advanced refractory solid
tumors. [76]

PF-04691502 PI3K/mTOR inhibitor Phase 1 trials completed and recruiting; phase 2 trial for
recurrent endometrial cancer recruiting. [77]

PF-05212384
PKI-587 PI3K/mTOR inhibitor Phase 1 clinical trials recruiting for advanced cancers; phase 2

trial for recurrent endometrial cancer recruiting. [78, 79]

GNE477 PI3K/mTOR inhibitor None.
PKI-179 PI3K/mTOR inhibitor Phase 1 clinical trial terminated. [80]
WJD008 PI3K/mTOR inhibitor None.
XL765
SAR245409 PI3K/mTOR inhibitor Several phase 1 trials completed for solid tumors, breast

cancer, malignant gliomas, and recurrent glioblastomas. [81]

NVP-BEZ235 PI3K/mTOR inhibitor Multiple phase 1 trials completed. Phase 1/2 trials active,
ongoing, or recruiting for various cancers. [82, 83]

BGT226 Phase 1 and phase 1/2 trials completed for solid tumors and
breast cancer. [84, 85]

SF1126 Phase 1 trial completed for solid tumors. [86]
GSK2126458 PI3K/mTOR inhibitor Active and recruiting phase 1 trials for solid tumors. [72, 83]
Current clinical trials information from clinical trials.gov on September 12, 2013. 1507 studies returned for “rapamycin,” “everolimus,” “sirolimus,” or
“temsirolimus.” “None” means no hits returned.
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mTOR modulate aging through overlapping mechanisms. In
all three species, dietary restriction is sufficient to reduce
mTOR signaling and induce mTOR-dependent changes in
metabolism, mRNA translation, and autophagy [87, 88]. In
addition, epistasis experiments place mTORC1 and dietary
restriction in the same longevity pathway. These data have
led to a consensus model that dietary restriction promotes
longevity, at least in part, through a reduction in mTORC1
activity [40, 89, 90].

Components of the mTOR Signaling Pathway That Have Been
Manipulated to Increase Lifespan

mTOR. mTOR is the kinase subunit of mTORC1 and
mTORC2. Deletion of budding yeast TOR1 extends both
replicative [57, 91] and chronological [58, 92, 93] lifespan.
RNAi knockdown of the worm mTOR homolog [59, 94–
96] and expression of a dominant negative allele of the fly
homolog also extends lifespan [61]. Female mice heterozy-
gous for both mTOR and mLST8 are long lived [97]. Mice
with two hypomorphic mTOR (Δ/Δ) alleles express mTOR
at approximately 25% of wild-type levels and have increased
lifespan [98]. Treatment with rapamycin, which disrupts
mTORC1, extends both replicative and chronological lifespan
in budding yeast [58, 99], as well as chronological lifespan
of fission yeast [100] when added to the culture medium.
Rapamycin also extends lifespan in C. elegans [101, 102] and
D. melanogaster when provided during adulthood [103, 104].
Several independent studies have shown lifespan extension
in UMHET3 [105–107], 129/Sv [108], and C57BL/6 [109–111]
mice.

Raptor. Mutation or RNAi knockdown of the raptor homolog
(daf-15) extends lifespan in C. elegans [60].

mLST8. mLST8 is a component of mTORC1. Female mice
heterozygous for both mTOR andmLST8 are long-lived [97].

TSC1/TSC2. TSC1 and TSC2 function as upstream negative
regulators of mTORC1. Budding yeast and C. elegans do
not have homologs of TSC1/2. Overexpression of dTSC1 or
dTSC2 extends lifespan in fruit flies [61].

Ribosomal S6 Kinase and 4E-BP. S6 kinase and eukaryotic
initiation factor 4E binding protein (4E-BP) are highly con-
served substrates of mTORC1 involved in regulating control
ofmRNA translation. Deletion of the budding yeast S6 kinase
homolog gene SCH9 robustly extends both replicative and
chronological lifespan [53, 57], and mutation of the fission
yeast homolog Sck2 extends chronological lifespan [112].
RNAi knockdownor deletion of thewormS6 kinase homolog
rsks-1 extends lifespan in C. elegans [102, 113, 114]. Expression
of a dominant negative allele of dS6K [61] or overexpression
of 4E-BP [115] extends lifespan in fruit flies. Knockout of the
mouse S6K1 gene extends female, but not male, lifespan [116].

Translation Initiation Factors and Ribosomal Proteins. One of
the major downstream processes regulated by mTORC1 is
mRNA translation [117, 118]. Mutation or RNAi knockdown

of several ribosomal protein genes has been shown to extend
lifespan in budding yeast and C. elegans [95, 113, 119–125].

Autophagy. Several reports have suggested that increased
autophagy is necessary for lifespan extension in response to
mTOR inhibition or dietary restriction, but it has remained
unclear whether induction of autophagy is sufficient to
extend lifespan [126–128]. A recent study reports that over-
expression of the autophagy factor Atg5 activates autophagy
and extends lifespan in mice [129].

The evidence that inhibition of mTORC1 is sufficient
to extend lifespan in mammals came first from studies
performed as part of the National Institute on Aging’s
Interventions Testing Program (ITP). The ITP is a unique
initiative designed to test candidate interventions for effects
on lifespan inmice [130, 131]. Chemical compounds or dietary
formulations are nominated through a formal proposal pro-
cess, selected by a panel of expert scientists and initiated into
longevity studies at three independent sites: the University
of Michigan, the Jackson Laboratory, and the University
of Texas Health Science Center San Antonio. All longevity
studies through the ITP are performed in the genetically
heterogeneous UMHET3 mouse strain background with
treatment beginning at 6 months of age.

Rapamycin was selected for inclusion in the initial ITP
cohort, but because of problems associated with developing a
stable formulation of the drug in themouse chow, the animals
did not begin receiving rapamycin until about 600 days of age
[132]. The rapamycin was delivered in a microencapsulated
form suitable for enteric release at a dose of 14mg/kg and
resulted in a significant lifespan extension of about 15% in
females and 10% in males [105]. A second ITP study in
which the same dose and delivery regimen for rapamycin
was initiated at 9 months of age also resulted in a significant
lifespan extension in both male and female mice at all three
sites; however, the effect was not substantially larger than the
prior report of late life administration alone [106]. Several
groups have since replicated the ability of rapamycin, as
well as genetic inhibition of mTORC1 signaling, to extend
lifespan in mice (as seen in Components of the mTOR
Signaling Pathway that Have Been Manipulated to Increase
Lifespan), making this pathway the current best candidate for
interventional strategies to slow aging inmammals [133, 134].

2.1. Effects of mTOR on Healthspan and Age-Related Diseases.
Healthspan is broadly defined as the period of life spent free
of chronic disease and disability.There is growing recognition
that, before interventions such as rapamycin can be seriously
considered in the context of human aging, we need a better
understanding of their impact on overall health during aging
[135, 136]. A major barrier to this, however, is the lack of
standardized biomarkers of aging, aging rate, or healthy aging
in model systems. For example, although there is broad
consensus that rapamycin can extend lifespan in simple
eukaryotes and mice, it remains an open and contentious
question whether rapamycin is actually slowing the aging
process and improving the healthspan of mammals.



Scientifica 5

One way to begin to assess whether aging is retarded by
rapamycin is through examination of multiple age-related
parameters, since the assumption is that an intervention
that slows the rate of aging should also slow the onset and
progression of multiple age-associated phenotypes [41, 137].
At least three studies have attempted to do this for mice fed
the encapsulated rapamycin diet used by the ITP. In general,
all three studies found that rapamycin delayed many, but
not all, age-sensitive traits [107, 109, 110]. Wilkinson et al.
found evidence for improvements in age-sensitive measures
of spontaneous activity, liver, heart, endometrial, adrenal,
and tendon function but also reported that rapamycin had
negative effects on age-associated cataract formation and
testicular degeneration [107]. Zhang et al. reported no adverse
effects from rapamycin and detected improvements in age-
associated sleep fragmentation (males), gait and rotarod
performance decline, and cancer incidence (females) [110].
Of these three studies, Neff et al. performed the most
comprehensive analysis of healthspan and identified positive
changes from rapamycin in 15 out of 40 parameters quan-
tified [109]. This includes beneficial effects on measures of
cardiac function, cancer incidence, cognitive function, tissue
pathology, immune system preservation, renal and hepatic
function, and muscular and visual performance.

There are several features that complicate and limit
aspects of these studies. In particular, negative results cannot
be rigorously interpreted in the absence of a positive control,
which was lacking in all three cases. Neff et al. misinterpret
their failure to detect changes in some of the age-sensitive
traits they examined by concluding that rapamycin has no
effect on those parameters and, therefore, does not slow aging
[109]. This is particularly problematic considering that Neff
et al. only examined a single dose of rapamycin (14mg/kg).
Wilkinson et al. examined three doses of rapamycin in
their study (4.7, 14, and 42mg/kg), but the optimal dose
for extending lifespan remains unknown [107]. Neff et al.
also noted that many rapamycin sensitive traits were affected
similarly in young animals as well as old ones, which they
interpreted as an aging-independent effect, but this does not
rule out (although it maymask) an aging-dependent effect on
the same parameter. Direct comparisons are also of limited
utility due to differences in study design, including strain
background (UMHET3 in Wilkinson et al. versus C57BL/6
in the other two) and age of intervention onset (4, 13, or 20–
22 months in Neff et al., 9 months in Wilkinson et al., and 19
months in Zhang et al.) and duration.

In addition to the three studies described above, several
reports on individual age-sensitive traits have indicated that
rapamycin can improve a variety of measures of healthy
aging and impact multiple age-related diseases [40]. The
mechanisms by which rapamycin impacts so many different
age-sensitive processes remains an area of active investigation
but most likely involves several different cell-intrinsic and
systemic effectors. As mentioned briefly above and reviewed
in detail elsewhere [40, 89, 138–140], regulation of autophagy,
mRNA translation, and mitochondrial metabolism almost
certainly play central roles in mTOR-mediated effects on
disease. In addition, more complex mTOR-mediated effects
on gene expression through key transcription factors, as well

as interactions with Akt, AMP kinase, p53, and other energy
and growth regulatory factors, are likely important [141]. At
the systemic level, there is growing evidence that inhibition of
mTOR can preserve stem cell function in different tissues [62,
142], decrease cellular senescence [143–145], and generally
decrease inflammation [146, 147].

2.1.1. Neurodegenerative Diseases andCognitive Decline. Inhi-
bition of mTORC1 has been studied in several age-related
neurodegenerative disease models with striking results [4,
148, 149]. Many of these diseases, including Parkinson’s
disease, Alzheimer’s disease, and Huntington’s disease, are
associated with the accumulation of aberrant or misfolded
proteins.Thus, it has been suggested that defective autophagic
degradation is a major component of such diseases [150],
and that enhancing autophagy with drugs such as rapamycin
could offer a successful therapeutic strategy [151]. With
respect to Parkinson’s disease, rapamycin has been shown to
attenuate dopaminergic neurotoxicity in both fly and mouse
models of the disease [152, 153]. In one recent study, for
example, rapamycin showed strong neuroprotective effects
in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
mouse model of Parkinson’s disease [154]. Similar protective
effects have been seen frommTORC1 inhibition in fly,mouse,
and human cell culture models of Huntington’s disease [155,
156].

Recently, there has been particular interest in the poten-
tial utility of mTORC1 inhibitors to treat Alzheimer’s disease,
the most common form of dementia in people. Alzheimer’s
disease neuropathology is characterized by the presence
of amyloid-𝛽 protein plaques and neurofibrillary tangles
formed of hyperphosphorylated tau and is associated with
hyperactivation ofmTOR [157, 158]. In 2010, two independent
studies reported positive effects of rapamycin on disease
progression in differentmousemodels of Alzheimer’s disease.
Majumder et al. [159] found that feeding 3xTg-AD mice a
diet supplemented with rapamycin beginning at 2 months
of age caused a significant reduction in plaques, tangles, and
cognitive defects. Interestingly, no benefit was seen when the
same therapy was initiated at 15 months of age, suggesting
that the protective effects of mTORC1 inhibition are required
early in this diseasemodel. Spilman et al. [160] showed similar
beneficial effects from rapamycin in the PDAPP transgenic
mouse model of Alzheimer’s disease. Rapamycin has also
been shown to prevent disease progression in human (h)APP
mice when treatment is initiated prior to disease onset and
to improve cerebral blood flow and cognitive function even
when administered after disease onset [161].

The growing evidence of a positive benefit from mTOR
inhibition in neurodegenerative diseases raises the question
of whether similar benefits might have also been observed
for age-related declines in cognitive function in the absence
of frank neurological disease. Prior studies had provided
mixed evidence for such effects. Acute mTORC1 inhibition
can have a negative effect on long-term plasticity required
for memory, which is thought to result from inhibition of
mRNA translation required for long-term synaptic changes;
however, hyperactivation of mTOR in mammals also causes



6 Scientifica

defects in plasticity and memory [162]. Recent studies assess-
ing the effects of chronic mTORC1 inhibition on cognitive
function during normal aging in mice have generally found
evidence for protection against cognitive decline, particularly
on tasks measuring exploratory activity and spatial learning
and memory [109, 163, 164]. Intriguingly, there are also
indications that rapamycin enhances cognitive function in
young mice and has antianxiety and antidepressive effects at
all ages tested [163, 165].

2.1.2. Cancer. A majority of tumors show evidence for
activation of mTOR signaling, and mTOR inhibition has
been studied extensively as a potential therapy for a wide
variety of cancers [166–168]. Rapamycin and rapamycin
derivatives potently inhibit growth of solid tumor cell lines,
and rapamycin has been shown to enhance survival and
reduce tumor burden in several cancer-prone mouse models,
including heterozygous p53+/− [169], heterozygous Rb +/−
mice [170], and multiple tumor xenograft models [171–176].
The effects of rapamycin on total cancer incidence in mice
during aging are less clear. The ITP studies where rapamycin
is provided in the diet throughout life have not resulted in
substantial changes in tumor frequency at time of death,
although since the animals live longer this suggests a delay
in tumor formation and/or progression [105, 107]

Despite the robust and nearly universal anticancer effects
in animal and cell culturemodels, rapamycin derivatives have
shown disappointing efficacy in several clinical trials, with
the exception of renal cell carcinoma and a few other rare
forms of cancer [166, 177]. Numerous trials are underway
using mTOR inhibitors against different tumor types, and
their use in neuroendocrine tumors of the pancreas and
intestine, mantle cell lymphoma, and sarcomas appears to be
particularly promising [178]. It is believed that the lack of
potent efficacy by rapamycin in cancer patients may result
from activation of Akt signaling following chronic mTOR
inhibition. Initial studies of dual PI3K/mTOR inhibitors and
combination therapies aimed at simultaneously targeting
both mTOR and Akt have provided promising results (see
Table 1).

2.1.3. Cardiac Function. Several recent studies have sug-
gested that aberrant activation of mTOR underlies a variety
of pathological conditions in the heart, both as a conse-
quence of normal aging, as well as damage that may result
from non-age-related trauma. The most direct evidence
that inhibition of mTOR can retard age-related changes in
heart function comes from a study in which 24-month-old
C57BL/6 mice were treated with rapamycin for 3 months
[179]. After this treatment regimen, cardiac function was
dramatically improved, as assessed through a variety of
measures including ultrasound imaging, gene expression
profiling, echocardiography, and cytokine profiling to assess
cardiac inflammation. Notably, skeletal muscle function
and spontaneous activity were also improved in this study
[179]. Treatment with rapamycin also inhibits angiotensin II
induced increases in protein synthesis in cardiac myocytes
[180], and evidence has accumulated thatmTORC1 inhibition

may be generally protective against cardiomyopathy. The
first evidence that rapamycin may prove beneficial in this
context was provided by studies using a pressure overload
model inmice where rapamycin significantly reduced cardiac
hypertrophy when administered either before or after the
surgery [181, 182]. Since then, rapamycin and rapamycin
derivatives have been reported to provide beneficial effects
in numerousmodels of cardiomyopathy, including hormone-
induced cardiomyopathy [183], cardiac ischemia/reperfusion
injury [184, 185], hypertrophic cardiomyopathy in a mouse
model of LEOPARD syndrome [186], and in rat, mouse, and
zebrafish models of dilated cardiomyopathy [187–191].

2.1.4. Diabetes and Obesity. The relationship between mTOR
signaling and age-related metabolic disorders is less straight-
forward than for other age-related phenotypes. In rodents
and people, aging is associated with an increase in adiposity,
increased insulin resistance, and reduced ability to maintain
glucose homeostasis [192, 193]. Data from both animal mod-
els and clinical studies suggest that inhibition of mTOR can
result in either reduced or improved metabolic homeostasis,
depending on context and the assays used. The situation
is further complicated by the fact that obesity itself can
result in chronic activation of mTOR, which has been linked
to obesity-associated cancer, beta cell adaptation preceding
type II diabetes, nonalcoholic fatty liver diseases, and other
complications [165, 194, 195].

In genetic mouse models, absence of either mTORC1
specifically in adipose or S6k1 in the whole body is sufficient
to prevent diet-induced obesity [196–198].The S6k1 knockout
mice are also hypoinsulinaemic and glucose intolerant, how-
ever, due to a decrease in beta cell size and function [196].
This is consistent with reports that rapamycin treatment
can also impair beta cell function in both animals models
and human patients [199]. Mice chronically treated with
rapamycin develop glucose intolerance and insulin resis-
tance, which has recently been attributed to inhibition of
mTORC2 [97], and dyslipidemia is a side effect associated
with rapamycin derivatives in people. Despite these diabetes-
like symptoms, both S6k1 knockout mice and rapamycin
treated mice are long-lived, suggesting that if the metabolic
effects are detrimental to health, they are not so detrimental
as to limit survival, at least in mice. One recent study looked
directly at effects of rapamycin on obesity using the db/db
mouse model of diabetic dyslipidemia [200]. Animals were
fed either a normal diet or encapsulated rapamycin in the
diet for 6 months starting at 2 months of age. At the end of
the trial period, rapamycin-treated animals had lower body
weight, lower percent body fat, increased insulin sensitivity,
and increased markers of beta oxidation and mitochondrial
biogenesis. It has also been pointed out that the “starvation
induced diabetes” associated with mTORC1 inhibition differs
substantially from type II diabetes, which is caused by insulin
resistance resulting from overnutrition and is associated with
mTOR activation [201]. Thus, additional study is needed
to determine whether targeted inhibition of mTORC1 can
prove useful against type II diabetes or obesity and whether
the potential changes in lipid profile, insulin sensitivity,



Scientifica 7

and glucose homeostasis resulting from chronic mTORC1
inhibition represent a significant health risk.

2.1.5. Immune Function. The primary clinical use of rapamy-
cin derivatives is in combination therapy to depress immune
function in order to prevent organ transplant rejection.Thus,
it is somewhat surprising that, in the context of aging,
there is evidence that rapamycin may preserve immune
function. As in people, old mice show a reduced capacity
to mount an immune response to influenza vaccination.
Treating 22–24-month-old mice with rapamycin for only 6
weeks doubled the percentage and number of B (but not T)
cells in the bonemarrow and restored the capacity of the aged
animals’ immune system to mount an effective response to
influenza vaccination that was protective against subsequent
infection [111]. This is consistent with reports that rapamycin
derivatives can enhance immune system efficacy in multiple
settings, including tuberculosis [202] and antitumor vaccine
[203] responses in mice and vaccinia vaccination in non-
human primates [204]. The apparent contradiction between
these observations and the perception that rapamycin is
a general immunosuppressant may be explained by obser-
vations that mTOR can exert divergent immunoregulatory
functions during immune cell activation and differentiation
depending on the cell subset type. Thus, the notion that
rapamycin is a potent and general immunosuppressant is
clearly overly simplistic, with the actual outcome likely
depending on dose and duration of treatment, immune cell
type, and specific immune challenge.

2.1.6. Kidney Disease. Chronic kidney disease affects more
than 45% of people over age 70 and likely contributes to
a decline in function of multiple organ systems [205, 206].
Rapamycins are used clinically to reduce nephrotoxicity,
to prevent allograft rejection, and as a treatment for renal
cell carcinoma [207]. Activation of mTOR signaling is also
associated with several common forms of kidney disease,
suggesting that inhibition of mTOR might have broader
therapeutic benefits for kidney health. Consistent with this,
rapamycins have been shown to reduce kidney fibrosis,
attenuate diabetic nephropathy, and improve outcome in
animalmodels of polycystic kidney disease (discussed further
below).

2.1.7. Age-Related Macular Degeneration. Age-related macu-
lar degeneration is the leading cause of blindness in Western
countries [208]. A contributing cause is capillary overgrowth
in the choroid layer of the eye, which has been attributed to
excessive production of VEGF. Rapamycin has been shown
to reduce VEGF expression in retinal pigment epithelium
and inhibit angiogenesis in vitro [209]. In a rat model of
age-related macular degeneration, rapamycin decreased the
incidence and severity of retinopathy [210], and in human
patients rapamycin appeared to decrease the need for anti-
VEGF intravitreal injections by approximately half [211].

2.1.8. Progeria. Hutchinson-Gilford progeria syndrome is a
rare autosomal genetic disease in which a subset of tissues

appear to undergo accelerated aging [212]. Patients seem
normal at birth but develop a childhood progeroid phenotype
and suffer death in the early teens.Hutchinson-Gilford proge-
ria syndrome is most typically caused by a de novomutation
in the lamin A/C gene (LMNA) that activates a cryptic
splice site, producing an abnormal lamin A protein termed
progerin. Accumulation of progerin leads to aberrant nuclear
morphology in vitro and is believed to directly cause the
disease phenotypes. It was recently reported that treatment
of cells fromHutchinson-Gilford progeria syndrome patients
with rapamycin corrected the nuclear morphology defect,
delayed the onset of cellular senescence, and enhanced the
clearance of progerin through autophagic degradation [213].
There is currently no effective treatment for Hutchinson-
Gilford progeria syndrome, and these data provide hope
that rapamycin derivatives or other mTOR inhibitors might
slow disease progression in Hutchinson-Gilford progeria
syndrome patients [214].

3. Pathological Consequences of
Aberrant Activation of mTOR and
Disease Suppression by Rapamycin

In addition to its role in aging and age-related diseases,mTOR
has also been associated with a growing list of diseases not
clearly associated with aging. In many of these cases, the
disease state is correlated with (and in some has been shown
causally related to) aberrant activation of mTOR signaling.
In such cases, pharmacological inhibition of mTOR may be
therapeutic, by reducing mTOR activity to normal levels.

3.1. Tuberous Sclerosis Complex and mTOR-Related Neuroge-
netic Disorders. The first human disease definitively linked
to aberrant mTOR activation is tuberous sclerosis complex, a
rare genetic disease characterized by nonmalignant tumors of
the brain, kidneys, heart, lungs, eyes, and skin [215]. Tuberous
sclerosis complex is inherited in an autosomal dominant
fashion and occurs in about 1 : 6000 live births [216]. About
85% of cases of tuberous sclerosis complex are caused by loss
of function mutations in either TSC1 or TSC2, resulting in
hyperactivation of mTORC1 in affected tissues [217]. In addi-
tion to tumor development, epilepsy is commonly associated
with tuberous sclerosis complex (see below) and about 50%
of patients have some form of a learning disorder, including
autistic behaviors (also see below) [218–220]. Most of the
neurological symptoms associated with tuberous sclerosis
complex are thought to be due to the formation of cortical
tubers, which form at the gray-white matter junction.

Inhibition of mTOR with rapamycin has been shown to
reduce or prevent adverse consequences of TSC1 or TSC2
mutation in a variety of cell culture and animal models
[221, 222]. Treatment with rapamycin or temsirolimus in a
neuronal TSC1 knockout mouse, for example, dramatically
improved survival and suppressed behavioral and brain
pathological defects associated with the disease, including
complete suppression of seizures [223]. In another study of
Tsc2 +/− heterozygous mice, rapamycin treatment reduced
kidney tumors by more than 90% [224]. Initial data from
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clinical trials indicates that mTOR inhibitors can positively
impact several tuberous sclerosis manifestations [225–230]
and, according to the Clinicaltrials.gov database, more than
a dozen clinical trials are ongoing for assessing therapeutic
effects of mTOR inhibitors in tuberous sclerosis complex.
To date, everolimus is the only mTOR inhibitor clinically
approved for treatment of tuberous sclerosis.

In addition to tuberous sclerosis complex, at least three
other neurogenetic disorders have been associated with
aberrant activation of mTOR in the brain: neurofibromatosis
1, fragile X syndrome, and PTEN associated conditions [231].
Although each has distinct etiology, these conditions share
several overlapping phenotypes with tuberous sclerosis com-
plex, including an increased likelihood of impaired cognitive
function, autism spectrum disorder, epilepsy and seizures,
cutaneous lesions, and tumors.

3.2. Epilepsy. Epilepsy is a neurological disorder that affects
up to 1% of the population and is characterized by recur-
rent seizures [232]. As described above, it is clear that
aberrant mTOR signaling contributes to epilepsy associated
with tuberous sclerosis complex. This raises the intriguing
possibility that hyperactivation of mTOR may also underlie
or contribute to epileptogenesis in other contexts and, by
extension, inhibitors of mTOR may prove therapeutic in
this context [221, 233]. Consistent with this idea, epileptic
seizures are also associated with neuronal ablation of the
tumor suppressor gene phosphatase and tensin homolog
deleted on chromosome ten (PTEN), which acts indirectly
as a negative regulator of mTOR, and both temsirolimus
and rapamycin have been shown to reduce seizures in these
animals [234]. Rapamycin has also been shown to reduce
or prevent seizures and epilepsy development in several
animal models of acquired epilepsy, including kainic acid
and pilocarpine-induced status epilepticus. Aberrant mTOR
activation has also been associated with some forms of focal
cortical dysplasia, a malformation of brain development that
is among themost common forms of pediatric epilepsy [235].
There is some evidence that rapamycin may not be effective
for all forms of epilepsy; for example, no effect was detected
in a mouse model of pilocarpine induced temporal lobe
epilepsy [236], although negative results in such studies are
difficult to interpret (discussed further below). Clinical trials
are ongoing to further examine the effects of everolimus on
epilepsy associated with tuberous sclerosis complex.

3.3. Autism. As with epilepsy, the link between aberrant
mTOR activation and autism is strongest in tuberous scle-
rosis complex; between 20 and 60% of tuberous sclerosis
patients are diagnosed with autism [219, 237], which may
account for 1–4% of all autism cases [238]. In addition to
tuberous sclerosis, however, there is growing evidence that
dysregulatedmTORactivitymay contribute to awider variety
of autism spectrum disorders. As with epilepsy, mutations
in PTEN that lead to aberrant activation of mTOR are
associated with autism [239]. In addition, mutations in the
downstream mTOR target eukaryotic translation initiation
factor 4E (eIF4E) have also been associated with autism

[240].There is also evidence for a strong association between
macrocephaly (large head size) early in life and autism
spectrum disorders, as well as genetic diseases linked to
autism and mTOR hyperactivation, including tuberous scle-
rosis complex, neurofibromatosis type I, Lhermitte-Duclos
syndrome, and Fragile X syndrome [241]. Taken together
these data suggest that disinhibited mTOR may cause, or at
least contribute to, many cases of autism spectrum disorder.
Clinical trials are ongoing to assess whether everolimus can
reduce autistic symptoms in tuberous sclerosis patients.

3.4. Polycystic KidneyDisease. Autosomal dominant polycys-
tic kidney disease is an inherited disorder most often caused
by mutations in the PKD1, which encodes the polycystin-
1 protein [242]. In the normal adult kidney, mTOR is low;
however, it becomes activated in response to damage or
insults that require cell proliferation within the kidney [243].
In autosomal dominant polycystic kidney disease, mTOR
is constitutively hyperactivated, leading to inappropriate
proliferation and the formation of thousands of cysts within
the kidneys. The molecular mechanism for this aberrant
activation of mTOR has begun to be understood, with the
discovery that polycystin-1 can indirectly regulate mTOR
activity in the kidney through a physical interaction with
tuberin, which is encoded by the TSC2 gene [244]. In human
patients with autosomal dominant polycystic kidney disease,
there is evidence of mTOR hyperactivation in renal cells
lining the cysts, and rapamycin has been shown to delay
progression in mouse models of the disease [244]. Sirolimus
is also used clinically in some autosomal dominant polycystic
kidney disease patients following kidney transplant, in order
to prevent organ rejection [245]. In some such patients, the
polycystic kidneys are left in place. In one study, a reduction
in kidney volume of these polycystic kidneys was observed,
relative to similar transplant patients that did not receive
sirolimus [244]. The clinical efficacy of mTOR inhibitors for
autosomal dominant polycystic kidney disease is still under
investigation with several ongoing clinical trials. Completed
clinical trials have shown mixed results, perhaps due to
differences in dosing, size, and duration of treatment [246–
248].

3.5. Chronic Pain and Traumatic Injury. Two additional
pathological conditionswheremTORhas been implicated are
chronic pain and traumatic injury. The relationship between
mTOR and chronic pain is thought to derive from mTOR-
regulated mRNA translation in the nociceptor, a sensory
neuron that sends pain signals to the spinal cord and brain
[249]. Rapamycin has been shown to reduce chronic and
neuropathic pain in multiple rat and mouse models [250–
254]. In rodent models of traumatic cardiac and brain injury,
rapamycin has also been shown to improve outcome [255–
260]. Both chronic pain and traumatic injury are highly
clinically relevant, and it will be of interest to see whether
mTOR inhibition has similar effects on these conditions in
people.
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4. Considerations and Future Directions

Given all the negative consequences associated with acti-
vation of mTOR and the apparent benefits associated with
inhibiting mTOR (slower aging, less disease, better brain
function, and less pain—at least in animal models), it is
tempting to consider the potential benefits associated with
widespread use of mTOR inhibitors. Of course, many of
the beneficial effects associated with mTOR inhibition have
only been seen in preclinical models, and it remains unclear
whether similar effects will be seen in people in most cases.
Clinical trials with mTOR inhibitors have been mixed, with
robust benefits being observed in some cases and minimal,
if any, benefits in others. Nonetheless, although definitive
proof is lacking, it seems likely that a broad range of age-
dependent diseases and disorders would be reduced in people
if appropriate regulation of mTOR could be achieved.

Before this can happen, however, several hurdles must be
overcome. One of the most important is a better understand-
ing of the adverse consequences of chronic mTOR inhibition.
In mice, chronic inhibition of mTORC1 with rapamycin is
associated with insulin resistance and hyperlipidemia [97],
but the mice are healthier and have longer lifespans, suggest-
ing that (at least for mice) this altered metabolic state is not
pathological. Side effects associated with the clinically used
mTOR inhibitors include increased risks of stomatitis (mouth
ulcers), diarrhea and nausea, hyperlipidemia, and infection
(presumably due to immune suppression). As mentioned
above, there is also evidence for enhanced cataract formation
and male sterility in mice receiving lifelong rapamycin,
although it is unclear whether these effects would also occur
in people.

Appropriate dosing of mTOR inhibitors is also a major
challenge that needs to be addressed before it is possible to
assess their broad efficacy in both preclinical and clinical
models. Even limiting the consideration to rodent studies of
rapamycin, a wide range of doses and treatment regimens
have been employed across the spectrum of phenotypes
examined. Rarely is a dose response profile ever performed in
these types of studies, and in cases where negative results have
been obtained it is unclear whether this is because mTOR
inhibition is ineffective or because of suboptimal dosing.
The studies examining effects of rapamycin on longevity
and healthspan are a good example of this. The majority
of studies in this area have used a single dose and delivery
protocol: 14mg/kg/day in the diet in the form of encapsulated
rapamycin. Will higher doses of rapamycin have a greater or
lesser effect on lifespan and healthspan?How does delivery of
encapsulated rapamycin compare to intraperitoneal injection
or other forms of delivery in terms of biological activity?
These are critical questions that need to be answered before
we can even begin to assess the likely translational potential
of these findings.

Another important area of future investigation will be
the similarities and differences between different classes and
types of mTOR inhibitors, both alone and in combination
with other drugs. As shown inTable 1, there are three different
classes of mTOR inhibitors either already in clinical use
or currently being evaluated in clinical trials. Rapamycin

derivatives have been the most studied and, with respect
to aging, rapamycin is the only mTOR inhibitor examined
thus far. It remains to be seen whether more or less potent
effects on longevity and healthspan will be seen with mTOR
inhibitors that target both mTORC1 and mTORC2 and, in
the case of the dual kinase inhibitors, also target PI3K.
Likewise, combinatorial effects of inhibiting mTOR along
with other putative aging-related factors such as AMP kinase
and sirtuins may prove even more effective at enhancing
healthy aging than rapamycin alone.

5. Conclusion

Given the breadth of pathological conditions where mTOR
has already been implicated, it seems likely that additional
therapeutic uses for mTOR inhibitors will be discovered in
the near future. While potential negative effects of mTOR
inhibition need to be addressed, they appear generally
manageable and, as new mTOR inhibitors continue to be
developed, it may be possible to maximize the beneficial
effects of targeted mTOR inhibition while reducing adverse
effects.
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