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Comparing G: multivariate analysis of genetic variation
in multiple populations

JD Aguirre, E Hine, K McGuigan and MW Blows

The additive genetic variance–covariance matrix (G) summarizes the multivariate genetic relationships among a set
of traits. The geometry of G describes the distribution of multivariate genetic variance, and generates genetic constraints
that bias the direction of evolution. Determining if and how the multivariate genetic variance evolves has been limited by
a number of analytical challenges in comparing G-matrices. Current methods for the comparison of G typically share several
drawbacks: metrics that lack a direct relationship to evolutionary theory, the inability to be applied in conjunction with complex
experimental designs, difficulties with determining statistical confidence in inferred differences and an inherently pair-wise
focus. Here, we present a cohesive and general analytical framework for the comparative analysis of G that addresses these
issues, and that incorporates and extends current methods with a strong geometrical basis. We describe the application of
random skewers, common subspace analysis, the 4th-order genetic covariance tensor and the decomposition of the
multivariate breeders equation, all within a Bayesian framework. We illustrate these methods using data from an artificial
selection experiment on eight traits in Drosophila serrata, where a multi-generational pedigree was available to estimate
G in each of six populations. One method, the tensor, elegantly captures all of the variation in genetic variance among
populations, and allows the identification of the trait combinations that differ most in genetic variance. The tensor
approach is likely to be the most generally applicable method to the comparison of G-matrices from any sampling or
experimental design.
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INTRODUCTION

The distribution of genetic variation among multiple traits is a key
determinant of how a population will respond to selection (Lande,
1979; Schluter, 1996; Arnold et al., 2001). For the prediction of
evolutionary responses, the genetic variation in multiple traits is
described by the symmetrical genetic variance–covariance matrix,
G (Lande, 1980; Phillips and McGuigan, 2006). Genetic variances,
and particularly covariances, depend on underlying genetic details such
as the frequencies of alleles and the distribution of their effect sizes
(Barton and Turelli, 1987; Turelli, 1988; Turelli and Barton, 1990), and
hence are subject to change under both drift and selection. It is there-
fore reasonable to expect that the genetic variance in multiple traits
might differ among populations, and consequently that the responses
of these populations to the same selective force might also differ.

Although determination of the genetic details underpinning G is
an active research area (Kelly, 2009), the general lack of information
on the distribution of allelic effects and frequencies currently makes
it impossible for theoretical quantitative genetic models to clearly
predict the evolutionary dynamics of G. Several studies have
circumvented this problem through simulation-based approaches,
exploring the impact of variation in parameters describing evolu-
tionary processes (selection, mutation and migration) on the
evolution of G (Jones et al., 2003; 2004; Guillaume and Whitlock,
2007; Jones et al., 2007; Revell, 2007). These studies have demon-
strated that G will evolve to the greatest extent in small populations,

under weak correlational selection on traits, through directional
selection against major axes of G, and when mutational correlation
among traits is low. Simulated parameter ranges are based on
information from nature (see Arnold et al. (2008)), but nonetheless,
we typically lack information on multivariate mutation and selection,
and on migration in specific natural populations and for multivariate
trait sets of interest. It remains an empirical question whether G
typically varies among populations in ways that will impact on their
future responses to selection.

Numerous empirical studies have taken a comparative approach to
determine evolutionary rates, and the processes affecting G (Steppan
et al., 2002; Arnold et al., 2008). Although G-matrices are highly
conserved among some populations (see Arnold et al. (2008)), they
have also been demonstrated to rapidly diverge among both natural
populations and experimental treatments (Cano et al., 2004;
Doroszuk et al., 2008; Hine et al., 2009; Johansson et al., 2012).
Laboratory manipulations have demonstrated that G can evolve
rapidly in response to drift (Phillips et al., 2001), and that selection
can drive rapid and repeatable evolution of G (Blows and Higgie,
2003; Hine et al., 2011). Further, the reproduction by experimental
evolution of patterns observed in G among natural populations
(Blows and Higgie, 2003), and the observations that the strength
(Hunt et al., 2007) and pattern (Roff and Fairbairn, 2012) of selection
are associated with levels of genetic variation in populations suggest
selection might have a discernible effect on G.
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Logistical limitations on estimating quantitative genetic parameters,
particularly the need for relatively large samples, have restricted the
utility of comparative quantitative genetics. However, more generally,
the identification and interpretation of the variation among
G-matrices has been limited by the lack of an appropriate statistical
framework, a long-standing and ongoing analytical challenge (Turelli,
1988; Steppan et al., 2002; Hansen and Houle, 2008; Marroig et al.,
2011; Roff et al., 2012). Various properties of symmetrical matrices
can be described by summary parameters such as their size (the
trace), measures of their ill-conditioned nature or eccentricity (Jones
et al., 2003; Kirkpatrick, 2009), and the correlation among matrix
elements (Roff et al., 2012). More complex hypotheses concerning
proportionality, and a series of partial trait combination (principal
component) comparisons using a hierarchy of similarity can also be
tested (Flury, 1988; Phillips and Arnold, 1999).

There are a number of drawbacks that are shared by many of these
current approaches. First, the majority of methods use metrics that do
not clearly relate to evolutionary theory (Hansen and Houle, 2008),
making it difficult to connect divergence in G to simple changes in
genetic variance and the response to selection. Second, comparisons
are typically made in the absence of any specific information on the
direction of selection, and information on selection cannot be readily
incorporated into some metrics. Third, many approaches can be
applied only to data derived from simple experimental designs and
are not well suited for applications involving the more complex
experimental designs typically employed in experimental evolution
studies or replicated sampling from different environments in the
field. Finally, approaches for comparing G are typically focused on
differences between pairs of populations, with no simple general-
isation to multi-population studies. We are therefore lacking an
analytical approach that is generally applicable across the data
structures typical of studies in experimental and natural populations,
which can be used to provide statistical confidence in
inferred differences, and which can be used to predict differences
between populations in their ongoing evolution. Our aim in this
paper is to provide a cohesive and general analytical framework for
comparative quantitative genetics that incorporates and extends
existing geometric approaches, as it is the geometry of G that
generates evolutionary constraints and determines the extent to
which particular traits will respond to a given episode of selection
(Walsh and Blows, 2009).

The response of a population to a particular vector of selection
gradients (b) for a set of n traits is given by (Lande, 1979):
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where G rotates (and scales) the response away from the direction
of b, resulting in some level of genetic constraint (Walsh and Blows,
2009); the geometry of G determines the bias in the response to
selection. Although individual traits feature as the rows and columns
of G, it is important to realise that these individual measured traits do
not necessarily have a greater role in the response to selection than
any combination of the traits. Recognising G as simply characterising
the level of genetic variance in all possible trait combinations
(Blows and Hoffmann, 2005) provides a point of departure for
the framework we outline in this paper for establishing how
G differs among populations, and the evolutionary consequences of
those differences.

To begin, consider how the genetic variance in any trait combina-
tion can be found using the projection (Lin and Allaire, 1977):

s2
gðbÞ¼ bT Gb

where b is scaled to unit length. It is the relative orientation of the
direction of b to the distribution of genetic variance in G that
determines how biased the response will be away from b when
selection is applied in this direction. The distribution of genetic
variances in G can be represented by the eigenvalues (k) of G, that is,
by the genetic variances of the orthogonal trait combinations
described by the eigenvectors. Most estimated G tend to be
ill-conditioned, displaying an exponential-like decay in k
(Kirkpatrick, 2009). The influence of the li and its corresponding
eigenvectors (gi) on the response to selection can be shown using a
spectral decomposition of the multivariate breeders’ equation (Walsh
and Blows, 2009):
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When genetic variation is much larger in some trait combinations
than others (for example, the k decay exponentially), there are two
possible consequences for the response to selection that are not
apparent from the consideration of single trait heritabilities and
selection gradients. First, individual traits might respond to selection
in the direction opposite to their selection gradient. Second, the set of
correlated traits might respond overall in a direction that is
substantially different from the direction of selection applied (that
is, b). Both these possible outcomes become more likely as the
magnitude of genetic variation becomes smaller in the direction of
selection relative to other trait combinations (Walsh and Blows,
2009). Even if the direction of selection differs among populations,
the pattern of phenotypic divergence might resemble the pattern of
genetic covariation among traits more than the pattern of divergent
selection if G is highly ill-conditioned, and the genetic variance is low
in the directions of selection (Chenoweth et al., 2010).

In this paper, we bring together within a single statistical frame-
work a number of geometrical approaches designed to establish differ-
ences in G-matrices among multiple populations. The approaches we
consider are restricted to those that establish a change in genetic
variance among populations rather than methods that focus on other
matrix summary parameters that are not directly related to the
response to selection. We integrate all approaches into a Bayesian
framework that enables uncertainty to be placed on the estimation of
differences among populations, and we provide worked examples for
all approaches based on six G-matrices derived from a previously
published data set. Finally, in the on-line Supplementary Material, we
supply the R code (Dryad repository: doi:10.5061/dryad.g860v) for
the programs and matrix manipulations needed to conduct these
analyses.

MATERIALS AND METHODS
We develop four specific approaches to the comparison of G-matrices, all of

which focus on establishing differences in genetic variance. The methods

increase in complexity, from considering the level of genetic variance in

random vectors and how these differences among matrices are distributed

across the phenotypic space (Method 1), to the identification of higher-

dimensional common spaces (Method 2) and ending with two approaches that

consider differences in genetic variance across the entire space (Methods 3–4).

The first three methods assume no more information is available than the

G-matrices themselves, while Method 4 takes advantage of information on the

direction of selection when it is known.
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Bayesian analyses
We place all four approaches in a Bayesian framework that enables the

estimation of uncertainty on the genetic parameters that are estimated. One

particularly useful feature of Bayesian approaches for the comparison of G is

that the uncertainty in estimates of nuisance parameters (for example, trait and

generation means in the analyses presented below) is integrated out of the

marginal posterior distributions of the parameters of interest (Gelman et al.,

2004). The joint marginal posterior distributions therefore capture the

uncertainty in G, but also any uncertainty in the estimates of the nuisance

parameters influencing G.

Owing to the complexity of the models required to analyse data typical of

evolutionary quantitative genetics studies, the full posterior distribution can

often not be derived analytically. In these cases, however, it is possible to use

Markov chain Monte Carlo (MCMC) methods to evaluate the posterior

distribution (Gelman et al., 2004). Here, the Markov process is used to move

the chain from a random starting value to regions of parameter space with

greater density, thereby permitting sampling of the joint posterior distribution

at each step in MCMC chain. When applied correctly, the combination of

MCMC and Bayesian approaches allows us to evaluate the full posterior

distribution of the parameters of interest while accounting for the uncertainty

introduced by nuisance parameters. Furthermore, because the variation among

samples of the marginal posterior distribution captures the uncertainty in

estimates of the model parameters, applying any linear transformation (for

example, projection of a linear combination through a G) to the samples of the

posterior distributions preserves this uncertainty (O’Hara et al., 2008;

Ovaskainen et al., 2008). Hence, the uncertainty can be carried forward into

new analyses and to provide estimates of confidence for metrics of similarity or

dissimilarity among matrices.

A useful characteristic of using MCMC approaches to evaluate the posterior

distributions of the model parameters is that the variance components are

constrained to be positive, and hence the estimated G matrices will be positive

definite. Consequently, the posterior distribution of a variance component

cannot be used to test whether the variance component is significantly

different from zero. It is therefore important to construct a sensible null

model for the hypothesis test of interest. For example, to examine whether an

increase in the breeding values of Soay sheep on island of St Kilda reflected

positive selection on breeding values, Hadfield et al. (2010) compared the

observed temporal trend in breeding values with a null model representing the

temporal tend in breeding values under genetic drift alone. Their study

demonstrated that, despite the uncertainty in the estimated breeding values

(as determined through Bayesian methods), the increase in the average

breeding value of the Soay sheep population was greater than the null, and

so it is likely that selection rather than drift caused the observed increase in

breeding values.

Here, we use a similar approach to compare our observed differences among

G-matrices to a null model where we assume the differences among G are

driven by random sampling variation alone. Conceptually, our approach is

equivalent to the standard approach of estimating null G through the

randomisation of individuals (or families) among populations (Roff et al.,

2012). The key difference here is that we generate the null G from the posterior

predictive distribution of breeding values for the observed G. This approach

has several general advantages. First, this approach can be applied across

diverse pedigree structures where the unit of randomisation is the individual’s

estimated genetic value (Ovaskainen et al., 2008). Second, because the null

G are estimated from the posterior predictive distribution of breeding values,

the approach has a lower computational requirement than re-running models

for each randomised data set. Finally, the procedure ensures that the set of

randomised G-matrices have the same structure as the set of observed

G-matrices. Consequently, the same matrix comparison metrics can be applied

to both the observed and randomised G, allowing hypothesis tests comparing

differences in our observed G to a set of null G, based on the assumption that

differences are driven by sampling alone.

To generate our randomised G, we first estimate the marginal

posterior distribution of G for our six populations of interest (described

below). Second, for each MCMC sample, we calculate posterior predictive

breeding values for individuals by taking draws from a multivariate normal

distribution with a mean of zero and a variance of the i th MCMC sample

of the j th G. Importantly, breeding values are assigned using the pedigree

corresponding to each population. Finally, we randomly assign individuals to

one of six hypothetical populations and construct G-matrices from the vectors

of breeding values.

Example data set
The example data set we use is a subset of an experiment reported in Hine

et al. (2011), where specific details of the experimental design and laboratory

procedures can be found. Briefly, an artificial selection experiment was

conducted on eight traits (cuticular hydrocarbons) in Drosophila serrata.

There were two treatments (b and m) in which different linear combinations of

the eight traits were selected on for 11 generations, with two replicate

populations per treatment. Two control (c) populations were also maintained

under the same experimental conditions. In both of the treatments, and in the

controls, paternal pedigrees were recorded for all males every generation, and

the eight traits were recorded for each of these males. Here, we utilised the

pedigree and phenotypic data from the final four generations (8–11) to

estimate G using an animal model. This yielded a total of six G-matrices for

comparison. The G for each population was estimated using the MCMCglmm

package (Hadfield, 2010) in R (R Development Core Team, 2013) to fit the

model:

y¼XbþZ1u1þZ2u2þ e

where X, Z1 and Z2 are the incidence matrices that, respectively, relate the

vectors of trait and generation means (b), the vector of additive genetic effects

(u1) and the vector of vial effects (u2) to the observations in y. The vector e

contains the error. MCMCglmm fits mixed models in a Bayesian framework

using MCMC to sample the posterior distributions of the location effects and

variance components. For the location parameters, priors were normally

distributed and diffuse about a mean of zero and a variance of 108. For the

variance components, we used weakly informative inverse-Wishart priors with

the parameters for the distribution set to 0.001 for the degrees of freedom, and

for the scale parameter we defined a diagonal matrix containing values of one

third of the phenotypic variance. To assist with model convergence, the

response vector (y) was rescaled, with all elements multiplied by 10. The joint

posterior distribution was estimated from 1 003 000 MCMC iterations

sampled at 100 iteration intervals after an initial burn-in period of 3000

iterations. Overall, model convergence (Geweke as well as Gelman and

Rubin diagnostics) and model fit diagnostics (posterior predictive distribu-

tions) indicated the MCMC chain sampled the parameter space

adequately. Example script to run these models is presented in Dryad (Dryad

repository: doi:10.5061/dryad.g860v). The functions for the matrix comparison

methods below are presented in the Supplementary material as a tutorial and

in Dryad (Dryad repository doi: 10.5061/dryad.g860v).

Method 1. Random projections through G
Random skewers is a method used to compare differences in orientation

among G (Cheverud, 1996; Cheverud and Marroig, 2007). In these approaches,

random b vectors are placed into the multivariate breeders’ equation with each

G, and the vector correlations between the resulting Dz vectors are used as an

indication of the differences among G. The test for the significance of the

similarity or dissimilarity of the matrices is then evaluated by comparison of

the distribution of observed vector correlations with a distribution of vector

correlations conforming to a null model. The null models are often generated

by bootstrapping and represent cases where matrices have coincident spaces

(vector correlations ofB1) (for example, Calsbeek and Goodnight (2009)), or

cases where matrices have distinct spaces (vector correlations of B0) (for

example. Cheverud and Marroig (2007)), depending on whether researchers

are interested in convergence or divergence among G (Roff et al., 2012).

Hansen and Houle (2008) described how, in addition to the differences in

Dz, a random skewer approach can be used to examine differences among G in

the magnitude of genetic variance (as well as metrics of variance such as

evolvability and respondability) using matrix projection. In this section, we

develop an approach based on the projection of random skewers that, when

used in combination with estimates of marginal posterior distribution of G,

can test for differences in the magnitude of genetic variances. This approach

can also be used to describe the trait combinations that differ most often
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among G. Although we limit our approach here to differences in genetic

variance among matrices, it is readily adapted to other scaled measures of

variance such as evolvability and respondability.

Each random vector (typically 1000 or more) is projected through each

MCMC sample of each G-matrix to generate a posterior distribution of the

genetic variance in the direction of the random vector for each population.

Differences in genetic variance among populations are then evaluated by

examining the overlap of the highest posterior density (HPD) intervals

between all possible combinations of populations. All vectors that result in

non-overlapping HPD intervals between any pair of populations are then

collated, and the product-moment G of the vector elements calculated. This

n � n matrix (where n is the number of traits), R, describes which parts of the

phenotypic space tend to show significant differences in genetic variance and

this part of the space can be further investigated through an eigenanalysis of R.

It is important to note that, because the random skewers probe the entire

phenotypic space, each significant random skewer (that is, the vectors

contributing to the estimation of R) can contain some component of those

dimensions that significantly differ, as well as of those that do not. Therefore,

to identify which dimensions of R represent genuine differences in genetic

variance, we projected the eigenvectors of R back onto both the observed and

randomised G-matrices.

Method 2. Krzanowski’s common subspaces
The most basic, and perhaps the most important, question one can ask about

multivariate genetic variance is: which part of the trait space has genetic

variance, and which part does not? To answer this question, approaches to

determining the dimensionality of G have been developed, defining that

subspace of G for which there is statistical evidence for the existence of genetic

variance (Kirkpatrick and Meyer, 2004; Meyer and Kirkpatrick, 2005; Mezey

and Houle, 2005; Hine and Blows, 2006). When multiple populations are

present, the identification of which subspace is shared among G is necessarily

complicated because of the many different hypotheses that are possible to test.

Krzanowski (1979) first described how to establish if the parts of the space

that contain ‘most’ of the (genetic) variation are similar between two

(G) matrices using:

S¼AT BBT A

where the matrices A and B contain a subset k of the eigenvectors of the two G

as columns, and where kpn/2. The sum of the eigenvalues of S gives a

bounded statistic, which ranges between complete orthogonality (0) and

complete overlap (k) of the two subspaces, respectively. Blows et al. (2004) give

further details on the use of this approach for comparing G-matrices and

second-order fitness surfaces.

For more than two populations, the subspace most similar across popula-

tions (t¼ 1, y, p) is found using (Krzanowski, 1979):

H¼
Xp

t¼ 1

At AT
t

where At contains the subset kt of the eigenvectors (as columns) of Gt. The first

k (k¼min(ki), i¼ 1,y, p) eigenvalues of H can take on a maximum value

of p. Any eigenvector of H associated with an eigenvalue equal to p can be

reconstructed exactly for a given population from a linear combination of

the eigenvectors of G that defined that population’s subspace for the

calculation of H. Eigenvalues less than p indicate that at least one population

cannot exactly reconstruct the corresponding eigenvector of H from a linear

combination of the eigenvectors of G that defined its subspace. For those

eigenvalues less than p, we can quantify how close the corresponding

eigenvector of H is to each population’s subspace.

The angle (d) between each eigenvector of H and each of the p population

subspaces is given by:

dt ¼ cos� 1 ðbT
i At AT

t biÞ0:5
� �

Although Krzanowski’s approach identifies common subspaces based on

their orientation, the magnitude of genetic variance contained in even identical

subspaces could vary substantially. For instance, differences in total matrix size,

or variation among G in eigenvector order could lead to differences among

populations in the genetic variance associated with a common subspace.

Insight into differences among populations in genetic variance associated with

common subspaces can be gained in this context by using projection to find

the genetic variance in each population for those bi that are judged to form

part of the common subspace. Statistically significant differences among

matrices in the magnitude of the genetic variation in the common space can

then be determined using the overlap among HPD intervals.

It is worth noting here the relationship between Krzanowski’s approach, and

the more comprehensive hierarchy of common space comparisons developed

by Flury (1988). Although Krzanowski’s approach is directed towards

determining if those eigenvectors explaining the most variance are similar,

the Flury hierarchy imposes no such restriction. For most applications in

quantitative genetics, Krzanowski’s approach is likely to have the greater utility

for two reasons. First, as shown by equation (1), it is that part of the space of

G that contains the most genetic variance that determines the extent of bias in

the response to selection, and therefore how differently populations might

respond to the same selection regime. Second, the Flury method was developed

for product-moment covariance matrices, and hence the degrees of freedom to

properly implement the full Flury hierarchy are unknown for all but the most

simple of genetic designs requiring variance-component estimation of G.

Application of the Flury method to the comparative analysis of G is therefore

strictly limited.

Method 3. The genetic covariance tensor
We now describe an approach that is designed to determine how matrices

differ without recourse to the random probing of the matrices as in method 1

above. For the simple case of a comparison of two matrices, two similar

approaches have been used to determine if the matrices are different. The first

is the resultant matrix of the difference, C¼A�B; and recently a likelihood

ratio tests of the rank of the difference have been developed (Schott, 2010). In

the evolutionary literature, the comparison of G-matrices through their

difference forms the basis of approaches exploring how much divergence

between populations can be caused by uniform linear selection (Hansen and

Houle, 2008), and also to assist in identifying dimensions for univariate

comparisons of genetic variance (Sztepanacz and Rundle, 2012). The second

metric is the resultant matrix of the ratio C¼A�1B. This metric forms the

basis of the comparisons of phenotypic covariance matrices in the morpho-

metrics literature (Mitteroecker and Bookstein, 2009). For both of these

approaches, the leading eigenvectors of the resultant matrix, C, reveal which

dimensions differ most between the two matrices, on the absolute scale in the

first instance or on the relative scale in the second.

A natural extension of the comparison of two matrices by analysing

their difference is the characterization of the variation among multiple

matrices with the fourth-order covariance tensor, R (Hine et al., 2009). The

order of a tensor indicates how many indices are required to reference its

elements; for example, vectors and matrices are first and second-order

tensors, respectively. A fourth-order tensor is required to describe the variation

among multiple matrices. The eigenanalysis of a covariance tensor (discussed in

detail below) calculated on two matrices returns the matrix of the difference

between two matrices. The elements of R represent the variances of, and

covariances among, the elements of the multiple covariance matrices:X
ijkl

¼ covðGij; GklÞ

Obtaining E, the set of nðnþ 1Þ
2 second-order eigentensors of R, is the first step

in exploring the variation among matrices that is summarized by R. The

eigentensors and eigenvalues of R are analogous to the eigenvectors and

eigenvalues of a product-moment G in several ways. First, the eigentensors

describe independent aspects of variation in covariance structure, the same way

eigenvectors describe uncorrelated dimensions of variation in trait space.

Second, the original G-matrices can each be expressed as a linear combination

of the eigentensors, the same way a given vector can be expressed as a linear

combination of eigenvectors. Third, the size of the eigenvalue corresponding to

an eigentensor reflects the variation among matrices with respect to how much

that eigentensor contributes to their covariance structure. Fourth, the max-

imum number of non-zero eigenvalues of a covariance tensor is equal to the

smaller of nðnþ 1Þ
2 and p�1, the same way the maximum number of non-zero

eigenvalues of a covariance matrix is the smaller of n and the sample size
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minus one. In practice, the eigentensors of R can be obtained by first mapping

R onto the symmetric nðnþ 1Þ
2 matrix S (Figure 1; see Hine et al. (2009) for

details). The elements of the i th eigenvector of S can then be scaled and

arranged to form Ei.

The next step in exploring the variation among matrices summarized by R is

to obtain the eigenvectors and eigenvalues of the eigentensors, which can be

interpreted in a similar way to those of G. For example, if the largest eigenvalue

of an eigentensor is close to 1, the detected change in covariance structure can

be attributed to the change in genetic variance in a single trait combination.

Unlike a true covariance matrix, eigentensors can have a mix of positive and

negative eigenvalues, which will result when a co-ordinated change in genetic

variance involves an increase in genetic variance in some trait combinations

and a decrease in others.

The Bayesian framework can be utilised to determine which of the

independent aspects of genetic covariance structure identified by the tensor

exhibit significant variation among populations. First, for the i th MCMC

sample of the set of G, we determine the matrix respresentation of the tensor,

Si. Next, we calculate the elements of S from the corresponding posterior

means of the elements of the set of Si (i¼ 1 to 10 000). The j th eigenvector of

S is then projected onto Si (equivalent to projecting Ej onto R) to determine

aij, the variance among the i th MCMC sample of the G-matrices for the aspect

of covariance structure specified by Ej. Projecting an eigentensor onto a tensor

is analogous to projecting a vector onto a G-matrix to determine how much

variance is present in a particular direction. The posterior distribution of aj

summarizes the uncertainty in the variance in covariance structure represented

by Ej. This distribution of aj is then compared with a distribution of the aj

generated from the null model, where the variation among matrices is due to

sampling variation, not biologically meaningful differences.

Method 4. The decomposition of the multivariate breeders’
equation
The approaches discussed so far are generally applicable in the sense that no

further biological information is required other than the G themselves.

However, in the presence of information on the direction of selection, more

specific hypotheses concerning how differences among G bias the response to

selection can be addressed. For a single population, equation (1) can be

re-written to emphasize the responses of the individual traits. For example, in a

two trait analysis, (1) can be written as:

Dz1

Dz2

� �
¼ Dz1g1

Dz2g1

� �
þ Dz1g2

Dz2g2

� �
þ � � � þ Dz1gn

Dz2gn

� �

In this form, it can be seen how the i th eigenvector of G (gi) contributes a

proportion of the response for each of the individual traits. The magnitude of

this contribution is determined by how close b is to that particular eigenvector,

and how large its eigenvalue is. Using this decomposition in an empirical

setting, the differences between two populations in their response to the same

b can be partitioned into differences as a result of each eigenvector of G.

Uncertainty can be placed on the predicted multivariate response to

selection using the genetic covariance between fitness and the metric traits

included in the analysis. This approach incorporates uncertainty both in the

estimation of G and in the vector of selection gradients b. However, for many

biological systems, measures of fitness (and thus the estimates of selection)

might typically come from experiments that are independent of the breeding

designs used to estimate G. Here, we therefore consider only the situation

where uncertainty in the response to selection, and how G influences this

response, is a product of uncertainty in G itself and not in b.

For any pair of populations, a difference in overall predicted response for an

individual trait can be determined from the comparison of HPD intervals of

the linear transformation by b of the posterior samples of G. To determine

which eigenvectors of G have contributed to this difference, we use a slightly

modified version of equation (1). Here, we substitute li in equation (1) with

the genetic variance for each MCMC sample of G in the direction of the

eigenvectors of posterior mean G. This allows us to generate the posterior

distribution of eigenvector-specific components of the predicted response for

each population.

An alternative way to view the effects of differences in G on the response to

selection is to focus on the major changes in genetic variance among the

G matrices. This can be achieved by using an alternative decomposition

of the breeders’ equation that involves the eigentensors of the genetic

covariance tensor:

Dzj¼Gjb¼
Xnðnþ 1Þ=2

i¼ 1

CijEib

where Cij is the Frobenius inner product of Ei and Gj and reflects the weighting

of the i th eigentensor for the j th posterior mean. Then, similar to our

modification to equation (1) above, we can generate the posterior distribution

of Cij as the set of Frobenius inner products of Ei in each MCMC sample of Gj.

RESULTS

Method 1. Random projections through G
If we treat our G-matrices as a set of unstructured populations
(randomly sampled geographic populations, for example), there are
15 pairwise comparisons that indicated significant differences in
genetic variance between populations. Of the 1000 random skewers,
166 have non-overlapping 95% HPD intervals for at least one
pairwise comparison of genetic variances for our six populations, a
typical example of which is displayed in Figure 2a (compare with
Figure 2b). To characterise the orientation of these 166 significant
random vectors, we then calculated their G (R). The projection of the
eigenvectors of R on the set of observed G revealed that only the
first eigenvector of R resulted in non-overlapping HPD intervals for
at least one pairwise comparison of genetic variances (r1 in Table 1).

Figure 1 Matrix representation of a fourth-order tensor. The top-left quadrant of the matrix contains the (co)variances of the variances (for example,

Rii, kk). The bottom-right quadrant of the matrix contains the (co)variances of the covariances (for example, Rij, kl). Finally, the upper-right and lower-left

quadrants contain the covariances of the variances and covariances (for example, Rii, kl).
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The leading eigenvector of R represented a trait combination that has
a high genetic variance in one of the m populations (Supplementary
Table S1a). We note that this eigenvector closely resembles the trait
combination captured by the leading eigenvector of the second
eigentensor in method 3 (vector correlation¼ 0.94; Table 1).

In our example, the six G-matrices represent three treatment
groups, each with two replicate populations. The posterior distribu-
tions of the replicate populations can be combined, and differences
among treatments identified in the same fashion as outlined above.
Thus, if we re-analyse our data, acknowledging the underlying
experimental design, at 95% HPD, none of the 1000 vectors differed
significantly in genetic variance between the b and c treatments,

whereas 90 differed between the m and c treatments. At 90% HPD,
this increased to 8 and 129 vectors, for the comparisons of b vs c and
c vs m, respectively. Unsurprisingly, the first eigenvector of R for the
90% HPD comparison of the b and c treatments shows a similarity
with the leading eigenvector of the first eigentensor in method 3
(vector correlation¼ 0.64) and describes an increase in genetic
variance in the b treatments (Supplementary Table S1b). The first
eigenvector of R for the 90% HPD comparison of the c and m
treatments captured significantly more variance in the m treatments
(Supplementary Table S1c), and was almost identical with the first
eigenvector of R for the analysis of the six populations without
consideration of the experimental design.

Method 2. Krzanowski’s common subspaces
There are two ways one could approach determining the presence of a
common subspace among the G using Krzanowski’s H. The first
includes a fixed number of eigenvectors for each G, while the second
allows the number of eigenvectors included for each matrix to differ.
In the first example analysis, we used the first four eigenvectors of
each G, while in the second example, we included the number of
eigenvectors required to account for at least 90% of the genetic
variance in the posterior mean G of each population. To determine if
the subspaces of our observed G were shared among the six
populations, we looked for a significant departure from the null
hypothesis of a common set of principal components. This is
analogous to testing if a genetic correlation is significantly different
from one, rather than zero.

The first four eigenvectors of G explained at least 81% of the
genetic variance in each of the six populations. The first two
eigenvalues of H estimated from these subspaces approached the
maximum value of 6 for this specific case, while the next two
eigenvalues dropped to below 5 and 4, respectively. However, for all
four interpretable eigenvectors of H (h1 to h4), the 95% HPD
intervals overlapped those of the null model, indicating that we had
no evidence for these subspaces having diverged among the popula-
tions (Figure 3a). Inspection of the angles (Supplementary Table S2a)
between the first four eigenvectors of H and the AtAt

T subspaces of
our observed set of G-matrices supported this conclusion: the 95%
HPD intervals for the angles of the first four eigenvectors of
H overlapped for all populations.

Our second example application of Krzanowski’s common sub-
spaces ensured that we captured at least 90% of the genetic variance
in each G. Figure 3b shows that the eigenvalues of this second H are
very similar to those of our first example (see also Supplementary
Table S2b). However, compared with the first example, we observed a
slower decay in size of the eigenvalues of H, and that the uncertainty
surrounding these eigenvalues was also reduced. This suggests that
allowing the distributions of variance in G to dictate the eigenvectors
to include uncovered greater similarity among the set of G-matrices.

Method 3. The genetic covariance tensor
With six populations, the genetic covariance tensor will have at most
five non-zero eigenvalues. The 95% HPD intervals of a for the non-
zero eigenvalues of the genetic covariance tensor suggested that only
E2 described significant variation among the observed G. At 90%
HPD, however, we found that posterior distribution of a for the first
two eigentensors (E1 and E2) of the observed and null sets of
G-matrices were non-overlapping, indicating marginal support for
the variation among G described by E1 (Figure 4a). The eigenanalyses
of these eigentensors revealed that the leading eigenvectors of E1 and
E2 accounted for 73% and 70% of the variation in these eigentensors,

Figure 2 Results from method 1. (a) An example of a random vector that

identified a significant difference in additive genetic variation among

populations. (b) An example of a random vector that resulted in overlapping
posterior distributions of additive genetic variation among populations.

Table 1 Summary of vectors representing matrix comparison metrics

r1 h1a h1b e11 e21

lc2 0.506 �0.087 �0.088 �0.095 0.247

lc3 �0.825 �0.082 �0.090 �0.075 �0.949

lc4 �0.214 �0.064 �0.064 �0.099 �0.137

lc5 0.008 �0.218 �0.214 �0.148 �0.062

lc6 0.071 �0.204 �0.207 �0.238 0.072

lc7 0.063 �0.285 �0.285 �0.302 �0.037

lc8 0.009 �0.828 �0.827 �0.807 �0.090

lc9 �0.092 �0.356 �0.353 �0.393 �0.023

lc2—lc9 are the log-contrasts of the ratios to Z,Z-5,9-C24:2 of, respectively: Z,Z-5,9-C25:2,
Z-9-C25:1, Z-9-C26:1, 2-Me-C26, Z,Z-5,9-C27:2, 2-Me-C28, Z,Z-5,9-C29:2, 2-Me-C30. See Hine
et al. (2011) for full details of these traits.
r1 is the first eigenvector of the R matrix for an unstructured experimental design. h1a and h1b

are the first eigenvectors of H for our two examples (first four eigenvectors and eigenvectors
capturing 90% of observed variance, respectively). e11 and e21 are the first eigenvectors of the
first and the second eigentensors, respectively.

Comparing G across multiple populations
JD Aguirre et al

26

Heredity



respectively. Projection of e11 and e21 onto the observed G-matrices
indicated that the change in genetic variance captured in e11 was
driven by the two b populations, while in e21 the change in genetic

variance was attributable to a single m population (Figures 4b, c).
Both of these vectors are associated with those identified by the
random projection analysis (Table 1; Supplementary Table S1a-b). e21

was found to be almost coincident with the first eigenvector of R from
the among-population random projection analysis, while e11 was
similar to the first eigenvector of R from the among-treatment analy-
sis, with weakly significant differences between the b and c treatments.

Method 4. The decomposition of the multivariate breeders’
equation
The vector of directional sexual gradients was determined in the base
population of the selection experiment (Iss in Hine et al. (2011)).
Using this as our estimate of b in the multivariate breeders’ equation,
we determined if there was any significant difference between any pair
of the populations in the predicted response to selection of any
individual traits. Two traits, lc2 and lc6, displayed at least one
significant difference in response (Figures 5a, b; Supplementary

Figure 3 Results from method 2. (a) Eigenvalues of H for a comparison of

the first four eigenvectors of each G matrix. (b) Eigenvalues of H for a

comparison of the minimum number of eigenvalues required to account for

90% of the variation of the posterior mean observed G. Shaded regions of

the plots indicate eigenvectors of H 4 min(ki).

Figure 4 Results from method 3. (a) Variance accounted for by each

eigentensor (a) for the observed G and the null G. (b, c) The additive

genetic variance in each population in the direction of e11 and e21,

respectively.

Figure 5 Results from method 4. (a, b) The posterior means and 95% HPD

intervals for the predicted response to selection for each population for the

two traits (lc2 and lc6) for which there were significant among-population

differences in Dz (indicated by asterisk). (c, d) The contribution of gmax to

differences in Dz for lc2 and lc6 in the populations where Dz differed

significantly. (e, f) The contribution of the remaining eigenvectors of G to the

predicted differences in responses to selection. Note the change in scale for

the y axis between c, d vs e, f.
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Table S3a), indicating that the differences in G among populations are
predicted to result in different evolutionary responses. In both cases,
at least one of the b populations was shown to be different from the
c2 population as a result of the divergence in G identified by the
analyses above.

Decomposition of the breeders’ equation into the response to
selection along each of the eigenvectors of G showed that the
predicted differences in the lc2 and lc6 traits among populations
were mostly due to differences in gmax (Figures 5c–f). The tendency
for a bias in the predicted response in the direction of gmax is because
of the magnitude of the eigenvalue of gmax relative to the other vectors
(Chenoweth et al., 2010). Closer examination of the orientation of
gmax in each population revealed that the significant differences in the
selection response were due to changes in orientation of gmax, which
evolved to reflect the sizeable increases of genetic variance in the
direction of e11 and e21 in the b treatments (that is, b1 and b2
populations) and the m2 population, respectively.

Differences attributable to E1 were not significant (Supplementary
Table S3a), a somewhat surprising result given that a difference in
genetic variance between b and c2 populations is associated with
E1 (method 3 results), and the significant differences in predicted
response between these populations (described above). This apparent
inconsistency can be explained by the differences in the uncertainty
associated with estimating genetic variance in the various trait
combinations represented by gmax across the six populations (for
example Figures 5c, d). This uncertainty is sufficiently large to ensure
the sizeable change in genetic variance in e11 between the posterior
mean G-matrices for the b populations resulted in overlapping
posterior density intervals. In contrast, the uncertainty in estimating
the genetic variance in the trait combination represented by gmax in c2
is sufficiently small that the difference between this population and
one of the b populations is significant (Figure 5c). Finally, significant
differences as a consequence of the change in genetic variance
captured by E2 were predicted for the response of all traits in the
pairwise comparisons of population m2 with the m1, c1 and c2
populations (Supplementary Table S3b).

DISCUSSION

Although many approaches have been developed for comparisons of
G-matrices, the majority of these approaches suffer from limitations
either in the evolutionary hypotheses that can be addressed (Hansen
and Houle, 2008), or in the types of experimental designs to which
they can be applied (Roff et al., 2012). Furthermore, the interpretation
of results is not always clear (Houle et al., 2002), and the application
of different approaches to the same data has revealed that different
methods often do not agree on whether the matrices are considered
similar or not (Calsbeek and Goodnight, 2009; Roff et al., 2012).

There are three particular attributes of the approaches we have
detailed here that go some way to addressing these issues. First, our
goal in this paper has been to supply a series of approaches that
facilitate the biological interpretation of variation in G. All approaches
focus on a change in genetic variance, rather than other metrics that
attempt to describe more holistic ways in which matrices may differ
(for example, proportionality, equality or matrix correlation). This is
important because it is ultimately the level of genetic variance in
particular directions that result in the biologically important con-
sequences of differences in G, such as influencing the response to
selection (Chenoweth et al., 2010), or the evolution of genetic
variance itself (Hine et al., 2011).

Second, we have chosen a robust and flexible statistical framework
within which all methods can be accommodated. The Bayesian

framework carries through the uncertainty known to be associated
with estimates of genetic variance and directly incorporates this
uncertainty into determining if the distribution of multivariate genetic
variance differs among populations. This framework can be used for
pedigreed populations, as in our example, or for more traditional
breeding designs. In addition to accommodating any experimental
design, our approaches can be readily modified to include genetic
variances measured on different scales; the evolvability and respond-
ability of Hansen and Houle (2008), for example.

Finally, although each of these methods concentrates on different
aspects of the distribution of the genetic variance within populations,
the analyses should be able to be interpreted in a consistent manner.
In our worked example, the differences found by the random skewers
approach were supported by the partitioning of differences in genetic
variance among populations using the covariance tensor. Nonetheless,
the Krzanowski subspace comparisons revealed that the majority of
genetic variance for the six populations was still found in the
coincident space. The final approach, using the decomposition of
the breeders’ equation, showed how differences among G alter the
predicted response selection, and emphasised that differences in the
response are biased in the direction of greatest genetic variation.

Although we have shown here how both the tensor and random
skewers approaches consistently identify the trait combinations that
differ in genetic variance, it is likely that the tensor will be the most
direct and efficient approach to determining how a set of G differ. All
the variation among the G-matrices is captured concisely by the
genetic covariance tensor, allowing the direct identification of trait
combinations that differ in the magnitude of their genetic variance.
Non-orthogonal trait combinations can even be identified if their
changes in genetic variance are uncorrelated across populations.
In contrast, the random skewers approach relies on a summary of
the random trait combinations that differ in genetic variance among
populations to infer a subset of the multivariate genetic variance that
differs in genetic variance, defined by orthogonal trait combinations.
It is therefore a much less precise or direct approach than the tensor.

Analyses of how G-matrices differ among populations can easily
become mired down in the vast number and variety of hypotheses
that could potentially be tested. By focusing on differences in genetic
variance, and how those differences are distributed within the
phenotypic space, it is possible to generate a consistent picture of
how G vary among populations, and the effect such differences will
have on the response to selection. Combined with the flexible nature
of Bayesian approaches for placing uncertainty on complex metrics,
the analyses we describe provide a comprehensive solution to the
complex problem of characterizing differences among G sampled
from any experimental design.
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