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Toward genomic prediction from whole-genome sequence
data: impact of sequencing design on genotype imputation
and accuracy of predictions

T Druet1, IM Macleod2 and BJ Hayes3,4,5

Genomic prediction from whole-genome sequence data is attractive, as the accuracy of genomic prediction is no longer bounded by
extent of linkage disequilibrium between DNA markers and causal mutations affecting the trait, given the causal mutations are in
the data set. A cost-effective strategy could be to sequence a small proportion of the population, and impute sequence data to the
rest of the reference population. Here, we describe strategies for selecting individuals for sequencing, based on either pedigree
relationships or haplotype diversity. Performance of these strategies (number of variants detected and accuracy of imputation) were
evaluated in sequence data simulated through a real Belgian Blue cattle pedigree. A strategy (AHAP), which selected a subset of
individuals for sequencing that maximized the number of unique haplotypes (from single-nucleotide polymorphism panel data)
sequenced gave good performance across a range of variant minor allele frequencies. We then investigated the optimum number of
individuals to sequence by fold coverage given a maximum total sequencing effort. At 600 total fold coverage (x 600), the optimum
strategy was to sequence 75 individuals at eightfold coverage. Finally, we investigated the accuracy of genomic predictions that
could be achieved. The advantage of using imputed sequence data compared with dense SNP array genotypes was highly dependent
on the allele frequency spectrum of the causative mutations affecting the trait. When this followed a neutral distribution, the
advantage of the imputed sequence data was small; however, when the causal mutations all had low minor allele frequencies, using
the sequence data improved the accuracy of genomic prediction by up to 30%.
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INTRODUCTION

Genomic predictions are now used routinely in selection of dairy
cattle (Dalton, 2009), as well as in some crops (Heffner et al., 2011).
An ongoing challenge is to improve the accuracy of these predictions,
as the genetic gain that can be achieved is proportional to their
accuracy. If single-nucleotide polymorphism (SNP) arrays are used,
the upper bound of the accuracy of genomic prediction will be the
proportion of the genetic variance captured by the array, determined
by the linkage disequilibrium (LD) between the SNP and the causative
mutations affecting the trait. In dairy cattle, a 50 000 SNP panel
explains between 5 and 88% of the genetic variation, depending on
trait (Haile-Mariam et al., 2012, Jensen et al., 2012). In some sheep
breeds, the same number of SNP capture a much lower proportion of
the variance (Daetwyler et al., 2012).

If full-genome sequence data were used in genomic predictions
rather than SNP arrays, the accuracy that can be achieved is no longer
bounded by LD between SNP and causative mutations, as the causal
mutations are in the data set. Meuwissen and Goddard (2010)
demonstrated in simulations that genomic predictions based on
sequence data were 5–10% more accurate than predictions based
even on quite dense markers, because the causal mutations were used
in prediction. This increase in accuracy has not been observed in real

data as yet. Ober et al. (2012) found no increase in accuracy of
predictions for quantitative traits in 157 inbred lines of Drosophila
melanogaster, when comparing predictions from a dense SNP panel or
the full-genome sequence. However, the small size of that data set
makes it difficult to draw definitive conclusions about the value of
full-genome sequence data in genomic predictions—as the effect of
the causative mutations on the quantitative traits may be very small,
given the genetic architecture observed for many quantitative traits
(for example, Kemper et al. (2011) and Stahl et al. (2012)), large
numbers of individuals will still be required to estimate these effects
accurately.

While the cost of genome resequencing has fallen very dramatically,
it is still too expensive to consider resequencing the tens of thousands
of individuals that would be required to accurately estimate the likely
small effects of mutations. An alternative strategy in livestock and
some crop populations would be to exploit the fact that these
populations are typically derived from a small group of common
ancestors just a few generations in the past. For example, in Australian
Holstein Friesian dairy cattle, 50 of the elite ancestor bulls account for
51% of the genetic diversity in the current Holstein cow population
(Hayes and Goddard, 2008). Provided these ancestors are sequenced,
the descendant individuals need only be typed for a low-density SNP
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array in order to infer their genome sequence, as the low-density
SNPs will be sufficient to trace the large segments of chromosome
that have been inherited from the ancestors. In-silico resequencing of
large numbers of individuals, selected from the population because
they have high-quality phenotypes, would then enable highly accurate
genomic predictions from whole-genome resequence data.

To exploit this strategy, at least two key questions must be answered
given sequencing is expensive (1) what is the best method for selecting
the key ancestors to sequence, and (2) how many individuals should
be sequenced and at what fold coverage? In outbred species, such as
cattle, fold coverage is important—calling heterozygote genotypes
accurately is difficult at low fold coverage as both alleles may not be
sequenced. Calling heterozygote genotypes becomes more precise as
fold coverage increases.

In this paper, we propose several strategies for choosing individuals
to sequence. We then used a real Belgian Blue beef cattle pedigree,

with simulated sequence data gene-dropped through it, to choose

with each strategy a subset of individuals to in-silico sequence. For

each strategy both the percentage of real variants in the population

were detected, and the accuracy of imputing sequence variants into a

population with SNP panel data was evaluated. The optimum

sequencing fold coverage and number of individuals to sequence

when the total sequence effort was constrained was explored. Finally,

we assessed the increase in accuracy of genomic predictions that can

be achieved using the imputed sequence data, compared with that

from the SNP panels, in the same data set, and with quantitative trait

loci (QTL) allele frequency distributions from many rare alleles to

neutral models.

MATERIALS AND METHODS
Data simulation
In order to evaluate different methods for selection of individuals for

sequencing, we first required a population of individuals with full-sequence

data. To ensure the structure of the population was characteristic of livestock

populations, we used a real Belgian Blue beef cattle population as template to

do this. The population consisted of 1142 Belgian Blue beef cattle sires, for

which we had extensive pedigree data. The pedigree of these individuals

included 9375 animals and traced back to the 1970s.

The aim was to simulate sequence data in these 1142 individuals, which

would reflect realistic patterns of LD, similar to that observed among SNPs in

cattle populations, as well as reflecting a typical pedigree structure. To inform

the simulation of sequence data for the founders of this population, we relied

on the work of Macleod et al. (2012A), which used multilocus patterns of LD

in whole-genome sequence from two Holstein founder bulls (Larkin et al.,

2012) to reconstruct population genetic history. Based on this population

history (with variable effective population size), Macleod et al. (2012B)

simulated sequence data that closely matched the multilocus LD patterns in

the founder bull sequences. We observed that patterns of multilocus LD in

dense SNP data from Belgian Blue cattle were very similar to Holsteins.

Therefore, we used data simulated by Macleod et al. (2012B) with Fregene

(Chadeau-Hyam et al., 2008) as sequence data for founders of our Belgian Blue

cattle population. Figure 1 describes the overall simulation scheme.

A simulated genome consisted of five chromosomes of 10 Mb. Populations

of these genomes were simulated with random sampling of individuals to be

parents and recombination to form gametes, through the demography

described above. Then gametes were randomly assigned to the founder

individuals of the pedigree (4698 founders in total). These gametes were then

gene-dropped through the real pedigree of the 1142 Belgian Blue sires

described above using Mendelian segregation rules and recombination

probabilities (assuming 1 cM¼ 1 Mb).

Simulation of population
under mutation drift

model, contracting Ne

Gene dropping of
sequence data through

real Belgian blue
pedigree

Reference population of
1021 bulls with

phenotypes and SNP
panel genotypes

Validation population of
121 bulls genotypes for

SNP panel

Bulls selected for
sequencing (with RAN,

REL,AHAP or IDPT)

Imputation of sequence variants
Genomic predictions

Accuracy of genomic prediction

Figure 1 Simulation scheme. A base population was simulated according to the inferred demography of Bos Taurus cattle of Macleod et al. (2012A). The

demography has a large ancient effective population size contracting to a much smaller effective size following domestication and breed formation. Fregene

was used to simulate 50 MB of sequence under a mutation drift model with this demography. From this population, the founders of the real Belgian Blue

cattle breed-recorded pedigree were selected at random, and the sequence data were gene-dropped through the entire pedigree with recombination.

A subset of bulls was selected from the pedigree, on the basis that they had DNA samples available. These bulls were ‘genotyped’ for a dense SNP panel.

A much smaller subset of the bulls were selected for sequencing, with an Illumina sequencing process simulated. The sequence data was then imputed into

all bulls with SNP panel genotypes. A prediction equation, based either on SNP panel genotypes or imputed sequence data, was estimated in the reference

population. Finally, accuracies of genomic prediction were assessed in the validation population.
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The simulated sequence data were used to generate SNP panel data and ‘in

silico’ next-generation sequencing data (NGS). For the SNP panel, we selected

20 SNPs per Mb (one per 50 kb window) with a minor allelic frequency (MAF)

higher than 0.05 (resulting in a 1000 SNPs panel per simulated genome). For

the NGS data, for each sequenced individual we simulated 100 bp reads with

random starting positions in the sequence. The total number of reads

generated was equal to desired cover x-fold*10 Mb per 100 bp. For SNP

positions, we sampled at random one of the two alleles carried by the

individual. The probability that the allele was incorrectly sequenced was set

equal to e¼ 0.005 (for example, Li et al. (2011)). To call genotypes in the NGS

data for each animal (that is, to derive genotype probabilities), reads at each

basepair were summarized into a genotype probability based on the likelihood

of a binomial distribution. Conditional on the genotype, the likelihood of

observing n1 reads with allele 1 and n2 reads with allele 2, L(y|G), is equal to:

ð1� eÞn1en2 if G¼ 0110

0:5ðn1þ n2Þ if G¼ 0120or0210

ð1� eÞn2en1 if G¼ 0220

Strategies for selection of sequenced individuals
Owing to the cost of sequencing and the accessibility of imputing sequence

data from SNP arrays, we compared five different strategies for selecting

subsets of N individuals for sequencing. All 1142 bulls were genotyped for the

SNP panel but only a subset N was selected to be sequenced at cover x-fold.

The five strategies are described in detail below.

(1) Maximizing the expected genetic relationship, using pedigree, between the

group of sequenced bulls and the whole population (REL)

This strategy aims to maximize the proportion of the unique genomes

sequenced in the population, given a predetermined number of individuals

that can be sequenced, and was outlined by Hayes and Goddard (2008) but is

extended here. We must select a group of bulls that maximizes the relationship

with the remaining population, while accounting for relationships among the

selected group of bulls. The proportion of the genome of individual i, present

in the set of N sequenced individuals s¼ {s1, s2, y, sN} is:

Pi¼

as1s1
as1s2

: ::: as1sn
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as2s2
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:::: :::: ::: :::
asns1

asns2
::: as1sn

2
664

3
775
� 1

as1 i

as2 i

:::
asni

2
664

3
775

0
BB@

1
CCA

T
Ps1

Ps2

:::
PsN

2
664

3
775¼ A� 1

s as;i

� �T
Ps

Where Pi is the proportion of individual i’s genome sequenced (directly

through NGS or indirectly through sequenced relatives), aij is the additive

relationship between individuals i and j, As is the additive relationship matrix

between all sequenced individuals, asi is the vector of additive relationships

between the set of sequenced individuals s and individual i, and Ps is the vector

of proportion sequenced of the set of individuals s (which is equal to 1 for

sequenced individuals). The average value of Pi of all individuals of the

population must be maximized:

1
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Where NIND is the number of individuals in the population and asis the

vector of average relationships of individuals from set s and the population.

A stepwise strategy was used to select individuals in s: first, the individual

with the highest average additive relationship with the population is selected

and then, individuals that maximize the function when added to the group

selected in previous steps are sequentially selected.

(2) Maximizing the number of independent genomes sequenced (IDPT)

The second strategy was to select a group of individuals with their expected

genomes as different as possible. Therefore, we must avoid sequencing highly

related individuals and, ideally, sequence N individuals with the lowest level of

co-relationship (according to the pedigree). We will use a similar strategy as

REL above, but this time we maximize the number of independent (according

to the pedigree at least) sequenced genomes (NG) instead of the average

relationship between sequenced individuals and the population. The covar-

iance between a sequenced individual and the sum of independent genomes

sequenced is equal to 1, therefore we replace asby 1 (the number of genomes

sequenced per individual is also 1):

NG¼ A� 1
s 1

� �T
1s

We then use the same stepwise strategy as described for REL to maximize

NG. Again this strategy uses only pedigree information.

(3) Maximizing haplotypes coverage from the population: phasing with

DualPHASE (AHAP)

The third strategy is to use the SNP panel genotypes to estimate haplotypes

present in the population, then find a subset of animals that would maximize

the number of observed haplotypes sequenced. To define haplotypes, we use

the 1000 SNPs from the panel within each genome (of five chromosomes

10 MB in size) to assign genome segments to ancestral haplotypes at every

marker position, using DualPHASE from the PHASEBOOK package (Druet

and Georges, 2010). In DualPHASE, ancestral haplotypes are based on a

hidden Markov model, which assigns at each marker position a chromosome

segment to an ancestral haplotype. The number of ancestral haplotypes K was

set equal to 20, which is appropriate for cattle data (Druet and Georges, 2010).

Then a score was computed to estimate the proportions of haplotypes in the

population that were sequenced with a given subset of animals:

XNSNP

i¼ 1

XK

k¼ 1

fk;ipðsequenceðk; iÞÞ

where fk,i is the frequency in the whole population of ancestral haplotype k at

marker i and p(sequence(k,i)) is the probability of sequencing ancestral

haplotype k at marker i, which was approximated as (1�0.5nki) where nki is

the number of ancestral haplotypes k present in the pool of sequenced

individuals at marker i multiplied by the average fold coverage at which

individuals are sequenced. This approximation assumes that individuals are

heterozygotes and that sequencing coverage is uniform. Indeed, then 0.5nki

represents the probability that all sequenced reads of all individuals carrying

ancestral haplotype k at marker i carry the complementary ancestral haplotype

(and not the desired one). The formula takes into account the fact that even if

an individual carrying the haplotype has been selected, the ancestral haplotype

currently targeted has not necessarily been sequenced at adequate fold coverage

to call genotypes (this is an issue particularly at low fold coverage). At high

cover, only one individual carrying the haplotype must be sequenced, whereas

at low cover, several individuals might be necessary. Finally, the weighting on

haplotype frequency puts more emphasis on sequencing frequent haplotypes.

The goal is to identify and sequence as large as a proportion of the population

haplotypes as possible, and it relies on having SNP panel information to

identify haplotypes. An alternative strategy (forth strategy) was also tested

where the weights on haplotype frequency were not considered. In this case,

the goal is to sequence as best as possible all unique haplotypes, without regard

to their frequency (AHAP*).

(5) Selecting individuals randomly (RAN)

The RAN strategy was repeated five times (for example, individuals were

chosen randomly, the variant detection was run and variant imputation was

performed, five times on the sequence data from the same population) in

order to obtain a s.e. for comparison with other strategies.

We tested all five strategies for the accuracy of imputing sequence variants in

non-sequenced individuals that had been genotyped for the 1000 SNP panel,

given that the sequencing budget was sufficient to sequence 50 individuals at

cover � 12 (50@� 12). Then, we used the AHAP strategy to investigate the

effect of number of individuals sequenced by fold coverage, keeping the total

sequencing effort (� 600) constant. Either 25 individuals were sequenced at

� 24 (25@� 24), 40 individuals at � 15 (40@� 15), 50 individuals at � 12

(50@� 12), 60 individuals at � 10 (60@� 10), 75 individuals at � 8

(75@� 8), 100 individuals at � 6 (100@� 6), 150 individuals at � 4

(150@� 4) or 300 individuals at � 2 (300@� 2). Finally, we investigated

the increase in proportion of variants discovered and accuracy of imputation

with � 1200 total sequencing effort, and � 2400 total sequencing effort, with

individuals sequenced either at � 6, � 8 or � 12.
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SNP calling and genotype imputation
Sequence SNPs were ‘called’ if the following statistic was higher than 10

(Li et al., 2010):

w¼
XN

i¼ 1

n2iðn2iþ 1Þ
2

Where n2i was the number of alternative alleles observed in individual i. This

means that a SNP was identified if it was observed in five reads of an

individual, in three reads in two individuals or in one read for 11 individuals.

Through simulation, we estimated that using a threshold of 10 would result in

calling B1 false SNP every kb. Only true polymorphic sites were considered

(we simulated sequencing errors only at true SNP locations).

Sequence SNP were imputed from the 1000 SNP panel in all genotyped

individuals based on called SNP likelihoods (of sequenced individuals, as

estimated above) using Beagle (Browning and Browning, 2007). Accuracy of

imputation was obtained by estimating squared correlations between true allele

dosage (number of copies of allele 1 at each variant) and those estimated by

Beagle (only for called variants). Only those alleles in the central 5 Mb of each

region were considered to avoid edge effects (that is, imputation accuracy is

lower on the border of the chromosomes (for example, Druet et al. (2010) and

our segments are particularly small, and therefore likely to suffer from edge

effects). Results were averaged over all the 25 replications of genome

simulations.

Genomic selection
We simulated breeding values for all individuals by applying QTL effects to 500

variant positions selected from the sequence data (20 QTL per Mb). For some

simulations, a much lower number of QTL were chosen (five QTLs). We first

chose the allele frequency range for QTL: either MAF o1%, MAF o10% or

no restriction on MAF, in which case the QTL allele frequencies are as expected

under a Neutral model. The QTLs were selected from the five central Mb

(as for estimated accuracy of imputation described above) of five chromosome

segments defining a genome. QTL effects for the ancestral allele were sampled

from a double-exponential distribution (Laplace distribution) with rate equal

to 1. Many of the effects were very small. Genetic values were obtained as the

sum of individual QTL effects and standardized by dividing by the square root

of the total genetic variance (equal to the sum over all QTLs of 2pqa2), where p

is the frequency of the 1 allele, q is the frequency of the 2 allele and a is the

substitution effect of the SNP (additive effect in this case as no dominance was

simulated). Finally, a normally distributed random error term with variance 1.5

was added to genetic values to obtain a phenotype with a heritability of 0.40.

SNP effects and genomic breeding values were estimated with BayesR (Erbe

et al., 2012), but using allele dosage obtained from Beagle (and using only

called alleles), rather than discrete genotypes. Briefly, BayesR uses a mixture of

four normal distributions as the prior for SNP effects, including one

distribution that set SNP effects to zero. The BayesR parameters (starting

values for proportion of SNP in each distribution, with the first one being the

zero effect distribution, expected proportion of genetic variance explained by a

SNP in each of these distributions, and Dirchelet prior pseudo counts of SNP

in each distribution) were (0.55;0.40;0.049;0.001/0.00;0.0001;0.001;0.01/

1;1;1;1). BayesR uses Gibbs sampling to sample from the posterior distribu-

tions of SNP effects and other parameters. Thirty thousand rounds of

sampling, with the first 10 000 discarded as burn in, were used. Individuals

born after 2004 (in our real Belgian Blue Cattle population) were selected as

validation population (121 without phenotype) and the remaining 1021

individuals formed the reference population, where the effects of the variants

were estimated using BayesR. Genomic-estimated breeding values for the 121

validation bulls were then calculated as their genotypes (dose of the second

allele for each SNP) multiplied by the prediction equation from BayesR (effect

of the second allele for each SNP). Reliability of genomic predictions was

estimated in the validation population of 121 bulls as the squared correlation

between true genetic values and the genomic-estimated breeding values.

Genomic predictions were based on either the SNP panel, true genotypes in

the sequence or imputed sequence data. Results are averages over 25 complete

replicates.

RESULTS

Simulations
On average, there were 28 477 SNPs per 10-Mb simulated segment, or
one SNP every 351 bp. This is similar to the SNP frequency observed
in cattle populations (The Bovine Hap Consortium, 2009).

The average r2 statistic between SNPs (with MAF 40.10) at
different distance classes is presented in Table 1. These r2 values were
calculated from simulated SNP genotypes in 275 of the 1142 bulls, as
this allowed direct comparison with real r2 values. The r2 values
obtained from the simulation are comparable, though slightly higher
than those observed in the real Belgian Blue population, where these
values were calculated from SNP on a 777 K panel in 275 genotypes
sires. These sires were the same individuals in the pedigree as those
used to calculate r2 in the simulated data.

The similarity between r2 values in the real and simulated data gives
some confidence that the LD structure in the real and simulated data
would be broadly comparable.

Selection of sequenced individuals
For the REL strategy (maximizing relationships between the group
sequenced and the remaining population), the expected value of the
average proportion of genomes of individuals of the population
captured by the set of sequenced individuals rose rapidly with the
number of individuals sequenced. The first animal chosen by this
strategy captured 12.6% of the genomes of individuals of the
population, while the 10 highest ranked individuals captured almost
50% (Figure 2). The value increased to 72% with 50 sequenced
individuals and 81% with 100 sequenced individuals.

Using the IDPT strategy (maximizing representation of different
genomes), for the 20 first sequenced individuals, it is almost
possible to obtain 20 independent genomes (Figure 2). For the
1142 sires, there are only 87 independent genomes defined by the
pedigree.

Similarly, for the strategies based on SNP panel haplotypes
(AHAP and AHAP*), the majority of haplotypes were captured
by a relatively small number of sequenced individuals, though
many individuals were needed to capture all the haplotypes in the
population.

Table 1 Linkage disequilibrium (r2) among SNP in real and

simulated Belgian Blue cattle data

SNP distance (in Mb) r2 From real data r2 From simulated data

0.00–0.05 0.368 0.374

0.05–0.10 0.180 0.223

0.10–0.25 0.115 0.166

0.25–0.50 0.086 0.127

0.50–1.00 0.073 0.114

1.00–1.50 0.065 0.094

1.50–2.00 0.059 0.081

2.00–2.50 0.055 0.073

2.50–3.00 0.052 0.067

3.00–3.50 0.048 0.061

3.50–4.00 0.046 0.057

4.00–4.50 0.044 0.054

4.50–5.00 0.042 0.050

Abbreviation: SNP, single-nucleotide polymorphism.
The real data are derived from 777K SNP genotypes in 275 Belgian Blue sires and the
simulated data are from the same 275 sires in the Pedigree. Note that r2 was only calculated
when MAF was 410% in both real and simulated data, as recommended by Hudson (1985).
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Accuracy of imputation: sequencing strategies all compared for 50
bulls sequenced at � 12 cover
The 50 bulls selected by each strategy were ‘in-silico sequenced’ as
described in the methods. Variant calling was performed, followed by
imputation of genotypes for bulls in the reference and validation sets
at each variant. The variants called as a percentage of the real variants
did not differ greatly between strategies for SNP at moderate
frequencies, and all strategies found 100% or close to 100% of the
variants at moderate frequencies. However, there was a dramatic
difference in strategies for SNPs at low to very low frequencies
(Figure 3a). This difference is much greater than the variation among
the five RAN replicates, as shown by the s.e. bars in the Figure.

Although no strategy detected more than 60% of very low-frequency
variants (MAF o1%), AHAP* gives the greatest percentage of variants
detected for this class. This is consistent with the fitness function of
AHAP*, which weights rare and common haplotypes equally. When
considered across all classes of variant, AHAP and AHAP* appear to be
the best strategies. The fact that more than 50% of rare variants can be
detected using these strategies, when only 50 individuals are sequenced,
suggests that rare variants may be clustered in some individuals.

Greater differences between strategies were observed in the accuracy
of imputation (Figure 3b). All strategies were better than RAN
except REL for low and very low-frequency variants and IDPT for
frequent variants. In fact, the performance of the strategies reranked
across variant MAF classes compared with variant detection. IDPT
outperformed the other strategies for low and very low variants, while

AHAP performed well across the range of frequency classes (this
strategy also resulted in more variants being detected). The best
strategy, averaging performance across all variants, was AHAP (0.860).
All haplotype strategies perform similarly, REL is quite close (0.854),
and was actually the best strategy for variants with MAF 45%.
Overall IDPT is the least precise (0.840).

Accuracy of imputation: comparison of constant sequencing effort,
� 600, but different number of individuals sequenced at different
fold coverage
Next, we investigated the question, with a total sequencing effort
available of � 600, is there an optimum number of individuals to
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sequence, if the aims are to detect as many variants as possible, and
impute the variants accurately into a target population? For example,
is it better to sequence 25 individuals at � 24 (abbreviated as
25@� 24), or 300 individuals at � 2 (300@� 2)? The strategy AHAP
was used to select individuals for sequencing in all cases. One
hundred percentage of the moderate to high-frequency variants were
detected by all combinations of number individuals sequenced and
fold coverage (Figure 4a). For very low-frequency variants (MAF
o1%), 20% more variants were detected with 60 individuals
sequenced at � 10 than with either 25@� 24 or 300@� 2.

There was a large difference between the sequencing strategies in
accuracy of imputation, even for moderate to high-frequency variants
(Figure 4b). Except for very low MAF variants, 75@� 8 was the
optimum strategy. The two extreme strategies performed poorly,
except 300@� 2 for the very low-frequency variants.

Effect of increasing total sequencing effort on proportion of
variants detected and accuracy of imputation
As total sequencing effort was increased, a much greater proportion of
the low-frequency and very low-frequency variants were detected

(Figure 5a). There was relatively little difference between sequencing
strategies in overall proportion of variants detected.

For the accuracy of imputation, however, the � 8 strategies
performed well across all variants, with greatest differences in
performance for the low MAF variant class. For the very low MAF
class, the � 6 strategies performed the best at all three levels of
sequencing effort. With larger amounts of sequencing effort, there is a
trend toward lower fold coverage giving the best performance.

Additional gains in imputation accuracy for rare variants become
harder and harder to achieve as the total sequencing effort increases.
For example, if animals are sequenced at � 6, doubling the number
sequenced from 100 to 200 gives a large increase in the accuracy of
imputation for very low MAF variants from 30 to 60%. However,
sequencing an additional 200 animals, to give 400@� 6, only
increases imputation accuracy of this class to 70%.

Accuracy of genomic selection from SNP panels and imputed
sequence
The accuracy of genomic predictions from both the SNP panel and
the sequence data (when the true sequence of all individuals in the
population was used) were very dependent on the frequency of the

Figure 4 Percentage of sequence variants detected (a), and accuracy of

imputation of genotypes of sequence variants (b) when the sequencing

effort was constant (�600) but increasing numbers of individuals were

sequenced at decreasing fold coverage. Strategy AHAP was used to select

individuals for sequencing.

Figure 5 Percentage of sequence variants detected (a), and accuracy of

imputation of genotypes of sequence variants (b) when the sequencing

effort was constant at �600, �1200 or �2400, but increasing numbers

of individuals were sequenced at decreasing fold coverage. Strategy AHAP

was used to select individuals for sequencing.
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QTL. High accuracies of genomic prediction were achieved when
QTL had the same distribution as all variants (for example, QTL
frequencies followed a distribution expected under a Neutral model).
Much lower accuracies were achieved when the QTL all had o 1%
MAF (Table 2).

The advantage of the sequence data over the SNP panel was very
small, 1.5%, for the Neutral model, but increased to 4 and 28% when
the QTL had MAF o10% and MAF o1%, respectively.

When the sequence was imputed, the advantage over the SNP panel
was reduced. Comparing strategies for selection of individuals, AHAP
performed the best when the QTL allele frequencies followed a
distribution as expected under a neutral model, while IDPT
performed the best when the QTL were at very low (o1%) frequency.
This reflects the fact that this strategy gave a good balance between the
number of low-frequency variants detected and the accurate imputa-
tion of genotypes at these loci (Figure 3a).

The optimal sequencing strategy when the total sequencing effort
was constrained to � 600 was 75@� 8 (using AHAP to select
individuals for sequencing). This is consistent with the accuracies of
imputation in Figure 4. When the QTL were at low frequency, this
strategy gave a 4.5% improvement over the SNP panel. Interestingly,
sequencing a small number of individuals at high fold coverage
(25@� 24) and using these individuals to impute to sequence data
resulted in worse predictions than from the SNP panel when QTLs are
rare. This is because with this strategy for many of the rarer QTL
variants, heterozygous individuals are wrongly imputed as
homozygous.

Much larger improvements were observed with greater sequencing
effort, with a 20% improvement over the SNP panel observed
for 300@� 8, for the scenario of QTL at o1% MAF, which is close
to the 28% observed when actual sequence data on all individuals
were used.

DISCUSSION

Our results demonstrate accurate imputation of sequence data can be
achieved in populations with a structure typical of most livestock
species. If the variants have low minor allele frequency, the strategy
used to choose individuals to sequence (as a reference for subsequent
imputation) becomes important. In this situation, strategies for
selecting individuals to sequence either based on pedigree (for
example, IDPT) or haplotypes of SNP panel variants (for eple,
AHAP) both perform well. Sequencing as many individuals as
possible at � 8, for a given total sequencing effort, appears to give
a good balance between detecting rare variants and having enough
sequence reads to call genotypes accurately at these variants. The
actual optimal value for fold coverage depends on the total sequen-
cing effort that is available—as this increases, it becomes advanta-
geous to sequence a larger number of animals at lower fold coverage.

Our results are generally in agreement with Le and Durbin (2011).
Those authors concluded that for a given sequencing effort, more
variants with low MAF would be detected by sequencing as many
individuals as possible at low fold coverage. Certainly, we found many
more variants using 75@� 8 than 25@� 24. However, with very low
fold coverage at this sequencing effort (� 600), for example,
300@� 2, there were insufficient sequence reads covering the low-
frequency allele to confidently call genotypes. One potential strategy
would be to sequence animals at variable fold coverage—for example,
key ancestors are sequenced at � 8, to ensure their alleles that are
widespread in the population are called correctly, then a large number
of individuals are sequenced at lower fold coverage, say � 4, to
attempt to capture rare alleles.

The advantage of real or imputed sequence data in genomic
predictions, as measured by the accuracy that can be achieved
compared with SNP panels, was critically dependent on the allele
frequency distribution of the QTL. If the QTL allele frequencies follow
the same distribution as other variants in the sequence (Neutral), our
results suggest the advantage of using sequencing data will be small.
However, if the QTL alleles are at extremely low frequencies, the
advantage of using sequence data over SNP panels can be a 28%
increase in the accuracy of prediction if all individuals are sequenced,
or 20% if the sequence variants are imputed from 300@� 8.

The results differ both from those reported by Meuwissen and
Goddard (2010), based on simulated data, and those from Ober et al.
(2012), based on real data from Drosophila. Meuwissen and Goddard
(2010) simulated QTL allele frequencies following that expected
under a neutral model. They reported an advantage of 2.3–3.7% in
the accuracy of genomic predictions of sequence data over that
achieved with these densest SNP panel data they simulated. The
advantage we observed (when the QTL allele frequencies followed a
neutral model) was smaller at 1.4%. The difference is likely a result of
the smaller recent effective population size (B100) in our simulation,
and hence greater LD, than in theirs, where a constant Ne of 1000 was
used. In fact, the accuracies of genomic prediction we achieved in our
simulations was high, reflecting the small effective population size,
leading to extensive LD and the small size of the genome we
simulated (50 MB, in five segments of 10 MB), leading to a small
number of independent chromosome segment effects to be estimated
(for example, Goddard, 2008) (however, considering a larger genome
would not change the relative ranking of performance for the
strategies for selecting animals to be sequenced). Clark et al. (2011)
simulated a population with a broadly similar demography to ours.
They observed larger gains in use of sequence data than those
observed here (when the number of QTL was similar), perhaps a
result of the larger reference population they used.

Table 2 Comparison of accuracy of genomic selection for QTL with

different minor allele frequency when predictions are based on SNP

panel genotypes, sequence variant genotypes (all individuals

sequenced) or imputed sequence variant genotypes

QTL frequency (MAF)

o1% o10% Neutral

SNP panel 0.324 0.786 0.894

All individuals sequenced 0.448 0.817 0.907

Comparing strategies for selection of individuals (50@�12 for all strategies)

AHAP 0.338 0.804 0.904

REL 0.341 0.801 0.902

IDPT 0.360 0.805 0.903

Comparison of sequencing strategies

25@�24 0.315 0.786 0.898

50@�12 0.338 0.804 0.904

75@�8 0.339 0.806 0.904

100@�6 0.331 0.799 0.904

Effect of increasing sequencing effort

150@�8 0.381 0.812 0.905

300@�8 0.405 0.815 0.906

Abbreviations: MAF, minor allelic frequency; QTL, quantitative trait loci; SNP, single-nucleotide
polymorphism.
Accuracies are the average of 25 replicates.
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Ober et al. (2012), on the other hand, observed no advantage
(over dense SNP data) of using whole-genome sequence data for
genomic predictions of starvation response in D. melanogaster. In fact,
it is difficult to compare our results to those of Ober et al. (2012),
because the valid comparison depends on an assumption regarding
the frequency of QTL alleles for starvation response. If we assume that
starvation response in Drosophila has been under strong selection,
and QTL alleles are at MAF o1%, then our results are not consistent
with the results of Ober et al. (2012), as we did see an advantage
of the sequence data in this situation. If, however, the QTL allele
frequency is similar to that expected under a neutral model, our
results are consistent with theirs. Another explanation for the
results of Ober et al. (2012) is the small number of inbred lines used
in that study (172).

So, the key question for assessing the advantage of whole-genome
sequencing for genomic prediction becomes what is the allele
frequency distribution for QTL affecting the target trait? Unfortu-
nately, the allele frequency distribution of QTL for complex traits is
unknown, in livestock, or in fact in any other species. In humans, for
disease traits at least, both common and rare variant hypotheses, and
combinations of both, have been argued for. Park et al. (2011),
investigating the relationship between the effect of SNP alleles with
validated associations to a range of traits, found that across all traits,
an inverse relationship existed between the size of effects and allele
frequencies. They reported that this trend was very pronounced for
type I diabetes, a trait they suggested is likely to be influenced by
selection, but the trend was less dramatic for human height and late
onset diseases, suggesting QTL allele frequencies for these traits follow
a distribution closer to that expected under a neutral model. Yang
et al. (2010) demonstrated they could capture B50% of the genetic
variance for human height with SNP arrays, where the SNPs on the
array were at high MAF, and argued this was evidence that a
reasonable proportion of the QTL were at MAF 410%. However,
they concluded that the genetic variance not captured by these arrays
could be explained by a proportion of the QTL with MAF o1%.
Stahl et al. (2012) investigated potential alternate genetic models
underlying rheumatoid arthritis, a complex disease trait, and con-
cluded that results from genome-wide association studies that have
been performed for this trait were most likely generated by hundreds
of associated loci harboring common causal variants, and a smaller
number of loci harboring multiple rare causal variants. However, the
definition of ‘common’ included SNPs with MAF 45% so overlaps
with our low-frequency class (o10%).

In cattle populations, the proportion of variance captured by
common SNPs is typically larger than in human populations. Haile-
Mariam et al. (2012) reported that B50 000 SNPs were sufficient to
capture 80% of the additive genetic variance for milk production
traits, suggesting a high proportion of QTL affecting these traits are at
moderate frequencies (otherwise LD between QTL and SNP would be
limited and the genetic variance captured would be reduced). The
increase in the proportion of variance captured by common SNP,
compared with hman populations, likely reflects the fact that recent
inbreeding in dairy catle (in fact, most livestock species) has flattened
the allele frequency spectrum of QTL (for example, MacEachern et al.,
2009A, B). In commercial chickens, Muir et al. (2008) observed a
significant absence of rare alleles, and also attributed this to recent
inbreeding.

For some cattle traits, however, Haile-Mariam et al. (2012) found
the proportion of variance explained by common SNP was much
lower than 80%: for both fertility and longevity, only 55% of the
genetic variance was captured by the 50 000 SNP panel (note that in

our simulation, the SNP panel had equivalent density to a 50 000 SNP
panel in cattle). In this case, a reasonable proportion of the genetic
variance could be explained by many QTL with low allele frequencies,
arguably because they are more likely to have been under long-term
natural selection. So while for traits, such as milk production, the
increase in accuracy of genomic predictions using sequence data
compared with that from SNP panels will be small, the advantage for
fertility and survival traits could be expected to be worthwhile. A
possible counter argument to this would be that much of the genetic
variation not captured by the common SNP for fertility and longevity
in the study of Haile-Mariam et al. (2012) is non-additive variation.
This cannot be ruled out; however, it should be pointed out that the
comparison was with additive genetic variation estimated using a
pedigree-based analysis.

One potential advantage of the sequence data not explored here
is improving the persistence of accuracy of genomic predictions across
generations, and to individuals less related to the reference set
where the marker effects are estimated. In dairy cattle, at least,
Habier et al. (2010) demonstrated that the accuracy of genomic-
estimated breeding values decayed reasonably rapidly as the selection
candidates were less and less related to the reference population.
In that study, B50 000 SNPs were used in the genomic predictions.
As the causative mutations are actually in the sequence data, the issue
of decay in associations between causative mutations and SNP, which
results in the decline in accuracy over time, may be overcome or at
least reduced. Both Meuwissen and Goddard (2010) and Clark et al.
(2011) were able to demonstrate this in simulations. Improving
the persistence of accuracy is particularly important if genomic
predictions are to be used for expensive and/or hard to measure
traits (for example, feed conversion efficiency or methane emission
levels in cattle). Otherwise, very large numbers of individuals will
have to be continually phenotyped and genotyped to maintain
acceptable accuracy of genomic prediction for such traits. An extreme
example of the decay of accuracy of genomic predictions is when the
predictions are made across breeds or distantly related lines, for
example, when the reference population is one breed and the selection
candidates are another breed. Using 50 000 SNP markers, Hayes et al.
(2009) demonstrated that the accuracy of genomic predictions in
Jersey cattle when Holstein cattle were used to derive the reference
was approximately zero. If genomic predictions are made across
breeds, using full-sequence data is likely to be particularly advanta-
geous, as there is no longer the need to rely on marker—associations
that may not persist across breeds (though this does assume some
of the same causative mutations segregate across the breeds or lines).
It should be pointed out that selection will also contribute to the
decay in accuracy of genomic selection over generations, as QTL
become fixed. This was demonstrated in simulations by Muir (2007).
Using sequence data will not reduce decay in accuracy of genomic
predictions due to selection. The relative contribution of selection,
compared with breakdown in LD, to the decay of persistency,
will depend, however, on the number of QTL segregating. If this is
large, the contribution of selection to decay in persistency will be
reduced as the changes in allele frequency at individual QTL will be
small, at least for the limited number of generations we are
considering here.

For fine mapping of QTL, sequence data will potentially have a
large advantage over SNP panels, as the causal mutation is in the data
set. However, the power of discovering the causal mutation (for
example, the probability that the causal mutation will have the highest
significance value in a genome-wide association study) will depend on
the extent of LD (if other variants are in perfect LD with the causal
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variant, they will be impossible to distinguish from the true variant)
and sample size.

In conclusion, in typical livestock populations, most of the
advantage of using sequence data for genomic predictions (over
and above SNP panels) can be captured by sequencing a relatively few
individuals, and then imputing genotypes for the variants discovered
in the sequence into the whole population. The accuracy of this
imputation is greatly improved, particularly for low MAF variants, if
animals are selected such that the haplotypes in the population,
constructed from the SNP panel data, are present in the sequenced
individuals (for example, strategy AHAP and AHAP*). The advantage
in terms of accuracy of genomic predictions from this imputed
sequence data, over and above that achieved from SNP panels, is
determined both by the accuracy of imputation and, more impor-
tantly, by the allele frequency distribution of the QTL. Our results
suggest that if the MAF of QTL is very low, genomic predictions from
imputed sequence data can have up to 20% advantage in accuracy of
genomic predictions from SNP panels. In dairy cattle, such genetic
architecture is most likely for fertility, longevity and perhaps health
traits. To accurately impute the rare variants that may affect such
traits into reference populations for genomic selection, large numbers
of individuals will need to be sequenced.

Finally, comparison of our results to those from Meuwissen and
Goddard (2010) and Ober et al. (2012) suggest (1) the advantage in
accuracy of genomic predictions from sequence data will be greater for
populations with a larger effective population, and (2) large numbers of
phenotyped and genotyped (for SNP panel) individuals will be required
to take advantage of the sequence data, otherwise effects of the causative
mutations, which are likely to be small, will be estimated with too much
error resulting in little advantage of the sequence information.
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