Table 6. Mean correlations between the predicted grain yield values for three models (BL, RKHS regression and GBLUP) when the numbers of individuals in the training sets randomly taken from the entire population (50 different times) are 30, 40, 50, 70 and 90 for different numbers of SNPs.
Model_ number of individuals in the training population |
Number of SNPs |
||
---|---|---|---|
238 SNPs | 100 SNPs | 50 SNPs | |
Bi-parental population 1(249 F2individuals; 238 SNPs) | |||
BL_30 | 0.1348 | 0.1009 | 0.0640 |
RKHS-KA_30 | 0.1520 | 0.1144 | 0.0703 |
GBLUP_30 | 0.1643 | 0.1173 | 0.0672 |
BL_40 | 0.1539 | 0.1286 | 0.0899 |
RKHS-KA_40 | 0.1685 | 0.1380 | 0.0925 |
GBLUP_40 | 0.1789 | 0.1441 | 0.0906 |
BL_50 | 0.2093 | 0.1598 | 0.0918 |
RKHS-KA_50 | 0.2004 | 0.1555 | 0.0944 |
GBLUP_50 | 0.2165 | 0.1612 | — |
BL_70 | 0.2236 | 0.1814 | 0.1152 |
RKHS-KA_70 | 0.2153 | 0.1756 | 0.1147 |
GBLUP_70 | 0.2338 | 0.1839 | — |
BL_90 | 0.2484 | 0.2000 | 0.1251 |
RKHS-KA_90 | 0.2386 | 0.1952 | 0.1284 |
GBLUP_90 | 0.2574 | 0.2024 | — |
Bi-parental population 2 (250 F2individuals; 271 SNPs) | |||
271 SNPs |
100 SNPs |
50 SNPs |
|
BL_30 | 0.2994 | 0.2765 | 0.2165 |
RKHS-KA_30 | 0.2924 | 0.2725 | 0.2136 |
GBLUP_30 | 0.2982 | 0.2770 | 0.2161 |
BL_40 | 0.3367 | 0.3156 | 0.2447 |
RKHS-KA_40 | 0.3371 | 0.3172 | 0.2471 |
GBLUP_40 | 0.3378 | 0.3146 | — |
BL_50 | 0.3471 | 0.3264 | 0.2585 |
RKHS-KA_50 | 0.3486 | 0.3271 | 0.2621 |
GBLUP_50 | 0.3467 | — | — |
BL_70 | 0.3717 | 0.3549 | 0.2818 |
RKHS-KA_70 | 0.3770 | 0.3605 | 0.2866 |
GBLUP_70 | 0.3714 | — | — |
BL_90 | 0.3919 | 0.3725 | 0.2998 |
RKHS-KA_90 | 0.4066 | 0.3859 | 0.3199 |
GBLUP_90 | 0.3903 | — | — |
Abbreviations: BL, Bayesian LASSO; RKHS, reproducing kernel Hilbert space; SNP, single-nucleotide polymorphism.
For each bi-parental population and for each number of markers (columns) the best predictive model is underlined.