Skip to main content
. 2013 Apr 10;112(1):48–60. doi: 10.1038/hdy.2013.16

Table 6. Mean correlations between the predicted grain yield values for three models (BL, RKHS regression and GBLUP) when the numbers of individuals in the training sets randomly taken from the entire population (50 different times) are 30, 40, 50, 70 and 90 for different numbers of SNPs.

Model_ number of individuals in the training population Number of SNPs
  238 SNPs 100 SNPs 50 SNPs
Bi-parental population 1(249 F2individuals; 238 SNPs)
BL_30 0.1348 0.1009 0.0640
RKHS-KA_30 0.1520 0.1144 0.0703
GBLUP_30 0.1643 0.1173 0.0672
       
BL_40 0.1539 0.1286 0.0899
RKHS-KA_40 0.1685 0.1380 0.0925
GBLUP_40 0.1789 0.1441 0.0906
       
BL_50 0.2093 0.1598 0.0918
RKHS-KA_50 0.2004 0.1555 0.0944
GBLUP_50 0.2165 0.1612
       
BL_70 0.2236 0.1814 0.1152
RKHS-KA_70 0.2153 0.1756 0.1147
GBLUP_70 0.2338 0.1839
       
BL_90 0.2484 0.2000 0.1251
RKHS-KA_90 0.2386 0.1952 0.1284
GBLUP_90 0.2574 0.2024
       
Bi-parental population 2 (250 F2individuals; 271 SNPs)
  271 SNPs
100 SNPs
50 SNPs
BL_30 0.2994 0.2765 0.2165
RKHS-KA_30 0.2924 0.2725 0.2136
GBLUP_30 0.2982 0.2770 0.2161
       
BL_40 0.3367 0.3156 0.2447
RKHS-KA_40 0.3371 0.3172 0.2471
GBLUP_40 0.3378 0.3146
       
BL_50 0.3471 0.3264 0.2585
RKHS-KA_50 0.3486 0.3271 0.2621
GBLUP_50 0.3467
       
BL_70 0.3717 0.3549 0.2818
RKHS-KA_70 0.3770 0.3605 0.2866
GBLUP_70 0.3714
       
BL_90 0.3919 0.3725 0.2998
RKHS-KA_90 0.4066 0.3859 0.3199
GBLUP_90 0.3903

Abbreviations: BL, Bayesian LASSO; RKHS, reproducing kernel Hilbert space; SNP, single-nucleotide polymorphism.

For each bi-parental population and for each number of markers (columns) the best predictive model is underlined.