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ABSTRACT

RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in
key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based
searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise
modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands
to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create
LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based
algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand
complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking
of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available
methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in
the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://
ligandrna.genesilico.pl.
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INTRODUCTION

Functions of many RNAs depend on their interactions with
other molecules in the cell (Rivas and Eddy 2001; Thomas
and Hergenrother 2008; Fulle and Gohlke 2010; Dieterich
and Stadler 2013). In particular, many regulatory RNAmole-
cules exert their function by interacting with small molecule
ligands. Examples include riboswitches, which are mRNA-
embedded elements that can directly bind a ligand and thus
regulate the gene function without the need for protein cofac-
tors (Montange and Batey 2008). Ligands that bind to ribo-
switches range from very simple molecules, such as ions (Baker
et al. 2012), to amino acids (Mandal et al. 2003) and to more
complex metabolites like vitamin B12 (Warner et al. 2007),
thiamine pyrophosphate (TPP) (Mironov et al. 2002), flavine
mononucleotide (FMN) (Winkler et al. 2002), andmany oth-
ers (Garst et al. 2011). The fact that riboswitches are common
in bacterial cells and rarely occur in eukaryotic cells makes
them particularly attractive as targets for antibacterial drugs
(Blount and Breaker 2006).

Another well-studied group of bacterial RNAs that are drug
targets (in particular antibiotics) are rRNAs, the molecules
that form the active site of ribosomes. Many antibiotics act
by binding specifically to themost important sites of the ribo-
some that are largely formed by the RNA: the peptidyl trans-
ferase center (PCT) in the large subunit, the decoding center
in the small subunit, or the protein exit channel (for review,
see Poehlsgaard and Douthwaite 2005). Viral RNA can also
be a drug target; e.g., aminoglycosides can also act as inhibi-
tors of the dimerization initiation site of HIV-1 RNA
(Ennifar et al. 2006), self-splicing group I introns (Park et al.
2000), ribozymes of hepatitis delta virus (Chen et al. 1997),
and hammerhead ribozymes of several plant viroids (Borda
and Sigurdsson 2004). Considerable effort has been direct-
ed at finding compounds that target HIV-1 TAR RNA
(Bannwarth and Gatignol 2005). Thus, RNA can be now
considered an important class of potential therapeutic targets
(for reviews, see Thomas and Hergenrother 2008; Aboul-ela
2010).
Another area of practical application of RNA–ligand inter-

actions is the use of RNA aptamers as biosensors (Wang et al.
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2011) and tools for imaging intracellular metabolites and sig-
naling molecules (Paige et al. 2012).

The analysis of the atomic details of RNA–ligand interac-
tions is greatly facilitated by the availability of high-resolution
structures of RNA–ligand complexes. However, the experi-
mental structure determination for RNA and its complexes
is challenging and currently cannot be accomplished in a
high-throughput manner. This has motivated the develop-
ment of computer software for modeling of RNA–ligand
complex structures based on the available structures of RNA
receptors. Some of these developments were inspired by anal-
ogousmethods created earlier formodeling of protein–ligand
complexes (for review, see Bottegoni 2011).

Morley andAfshar (2004)were among the first who created
a scoring function specific for RNA–ligand complexes. They
expanded their proprietary high-throughput docking pro-
gram by the empirical regression-based function RiboDock
(or rDock) to deal with RNA–ligand complexes. However,
this method was parameterized and tested on a limited
set of only 10 RNA molecules. Moitessier et al. (2006) devel-
oped another scoring function dedicated exclusively to the
prediction of interactions between RNA and aminogly-
coside antibiotics. The function was implemented in the
AutoDockprogram (Morris et al. 2009). An important feature
of this method is that it allows for both ligand and RNA
flexibility.

DrugScoreRNA is a general-purpose, knowledge-based
function for scoring RNA–ligand complexes developed by
the Gohlke group (Pfeffer andGohlke 2007). It employs a dis-
tance-dependent potential calculated on the basis of contacts
between ligand and receptor atoms, as in the DrugScore
method for scoring protein–ligand complexes (Gohlke et al.
2000). This approach presumes that the relative strength of in-
teractions between a ligand atom of type x and a nucleic acid
atom of type y separated by the distance r can be predicted
from the normalized radial pair-distribution function. The
distribution function was derived from known complexes in
the form of contact statistics. Ligand and nucleic-acid atom
typeswere patterned following the Tripos atom types notation
(SYBYL Molecular Modeling Software, 7.3).

Dock6 is a docking suite of programs originally developed
for docking small molecule ligands to protein structures, but
recently its functionalities were also extended to include
RNA–ligand docking (Lang et al. 2009). Dock6 is a highly
configurable program with many options, so expert knowl-
edge is required to run calculations. There are several ap-
proaches to the sampling of the poses (e.g., using chemical
matching), and there are nine built-in scoring functions, dif-
fering in speed and theoretical foundations. The default scor-
ing function is a grid-based score, based on the nonbonded
terms of the AMBER molecular mechanics force field
(Kuntz et al. 1982). The force-field type is defined by the
user, as both the receptor and the ligand require an initial
preparation with external tools, e.g., Chimera (Pettersen
et al. 2004).

Guilbert and James (2008) have also addressed the RNA–
ligand docking problem by applying a classical molecular me-
chanics force field to the receptor and the ligand in their
docking procedure MORDOR, similar to the methodology
used by Dock6. Their method requires receptor and ligand
preparation and allows for both ligand and receptor flexibil-
ity. The predictive power of both Dock6 and MORDOR was
reported to be comparable, but Dock6 is three to 10 times
faster (Lang et al. 2009).
Almost all of the aforementioned scoring methods (except

DrugScoreRNA) are integrated with particular docking pro-
grams and cannot be easily used to evaluateRNA–ligand com-
plexes generated by other methods. Researchers interested in
RNA–ligand docking andmodeling of RNA–ligand structures
would benefit from the availability of a scoring function that is
software-independent and can rank and validate models of
RNA–ligand complexes regardless of the procedure used to
generate them. The lack of a user-friendly method available
as a web server capable of comparing RNA–ligand complexes
generated by different modeling/docking methods motivated
us to develop LigandRNA, a method for computational pre-
diction of RNA–ligand interactions, based on methodology
similar to that used successfully in ourmethods for predicting
RNA–cation complexes, MetalionRNA (Philips et al. 2012),
and RNA–protein complexes, DARS-RNP and QUASI-RNP
(Tuszynska and Bujnicki 2011).
LigandRNA is based on a statistical potential derived from

analysis of RNA–ligand contacts observed in 251 structures of
RNA–ligand complexes. As an input, LigandRNA takes an
RNA 3D structure in the Protein Data Bank (PDB) format
and ligand poses in MOL2 format. It returns a ranking of li-
gand poses according to the scores and four variants of PDB
files with the receptor structure, in which the B-factor values
for surface-exposed atoms are replaced by values of the poten-
tial (for O, C, and N atoms of the ligand separately, and for all
atoms combined), averaged for all cells of a grid within the
distance of 2 Å form a given atom. These output files allow
for visualization of relative preferences of different regions
of RNA surface to interact with different atoms of the ligand,
as well as to reveal regions that are potential “hotspots” for
binding of small molecules in general. Figure 1 illustrates
the main steps of our approach.

RESULTS AND DISCUSSION

Statistical potential

LigandRNA is an independent grid-based program dedicated
to scoring and ranking ligand poses in RNA 3D structures us-
ing a knowledge-based statistical potential. The potential is
obtained using the inverse Boltzmann scheme, which pre-
sumes that only those ligand poses are favorable that exhibit
interactions fitting the maxima of the statistical distribution
of RNA–ligand atom contacts derived from experimentally
determined structures of RNA–ligand complexes. We have
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used the same approach that we found successful in predic-
tion of RNA–metal ion interactions with our method
MetalionRNA (Philips et al. 2012). First, we defined a list of
RNA atom pairs [a, b] in nucleotides, of which b is an atom
that may directly interact with a ligand, and a is covalently
bound to b (Table 1). For post-transcriptionally modified nu-
cleotides in RNA molecules identified by ModeRNA (Rother
et al. 2011), we took into account only those pairs [a, b] that
were chemically identical to those in the unmodified “parent”
nucleotides (for details of RNA modification pathways and
relationships between the structures of modified residues
and their unmodified counterparts, see the MODOMICS da-
tabase) (Machnicka et al. 2013). This means that in the cur-
rent version of the potential additional functional groups of
modified residues (e.g., in the case of methylation) do not
contribute directly to the potential, so they are only consid-
ered as steric hindrance.
Second, we categorized ligand atoms into the following 21

Tripos atom types: carbon sp (C.1), carbon sp2 (C.2), carbon
sp3 (C.3), carbon in aromatic rings (C.ar), carbon in amidi-
nium and guanidinium groups (C.cat), nitrogen sp (N.1), ni-
trogen sp2 (N.2), nitrogen sp3 (N.3), nitrogen sp3 positively
charged (N.4), nitrogen in aromatic rings (N.ar), nitrogen
in amid bonds (N.am), nitrogen in amidinium and guanidi-
nium groups (N.pl3), oxygen sp2 (O.2), oxygen sp3 (O.3), ox-
ygen in carboxylate and phosphate groups (O.co2), sulfur sp2

(S.2), sulfur sp3 (S.3), sulfone sulfur (S.O2), phosphorus sp3

(P.3), fluorine (F), and chlorine (Cl). Finally, to obtain con-
tact statistics, all the ligand atoms c were described by the dis-
tance d to the respective atom b and by the angle α (a, b, c) of
an RNA pair [a, b]. To generate statistics from a set of mea-
sured values for d and α, they were discretized by statistical
binning, using steps of 0.25 Å and 5°, which corresponded
to a radial grid R. Next, the counts per bin were normalized
since the spatial units defined by discrete steps of d and α

had different sizes (the bin volume is dependent on the dis-
tance and angle). Accordingly, we divided the count of ligand
atoms obtained from each d and α pair by the corresponding
volume V of the radial grid R bin. Figure 3, below, illustrates
the examples of potential distributions.
Our potential for predicting RNA–ligand interaction is

to some extent similar to existing potentials such as
DrugScoreRNA (Pfeffer and Gohlke 2007) in the use of a dis-
tance-dependent scoring system for groups of ligand atoms.
However, it is more sophisticated, as it also takes into consid-
eration the angles between atom pairs in RNA and individual
atoms in ligands, thereby introducing anisotropy. Figure 2 il-
lustrates the difference between the orientation-dependent
potential in LigandRNA and orientation-independent poten-
tials. In LigandRNA, the search space is divided into well-
defined small regions, which enables the discrimination
between different orientations of the ligand atoms that are lo-
cated at the same distance with respect to the reference atom
in RNA. On the other hand, in the orientation-independent
potential, all such orientations are treated equally.
We calculated the LigandRNA statistical potential from se-

lected 251 RNA–ligand complexes derived from the PDB.We
chose complexes, inwhich a ligandwas organic and interacted
only with the RNA molecule. For RNAs with sequence iden-
tity >90% and interacting with the same ligand, only the
structure with the highest resolution was taken. For tests, all
previously selected RNA–ligand complexes were manually
clustered according to their ligand’s chemical structure class
(e.g., kanamycin, tobramycin, or geneticin belong to the
“kanamycin-like” cluster, arginine to the “amino acid” clus-
ter, and adenine to the “purine” cluster). In total we defined
62 different clusters.

RNA–small molecule statistical preferences

The distribution of statistical potential values reflects the
preferred interaction geometries. Figure 3 illustrates the

FIGURE 1. Theworkflow of LigandRNA. Input data are indicated as ar-
rows, calculations are indicated by boxes with rounded corners, and out-
puts are indicated by rectangular boxes. Contact statistics have been
derived from a representative set of 251 RNA–ligand complexes. For a
user-defined query RNA structure and ligand poses submitted to the
LigandRNA server, the score of each ligand pose is calculated on the basis
of potential distribution calculated for the query RNA structure.

TABLE 1. RNA atom pairs used to derive RNA–ligand contacts

Ribose/
phosphate
backbone

Adenine
base

Guanine
base

Cytosine
base

Uracil
base

C2′, C1′ N3, C2 N3, C2 N3, C2 N3, C2
C3′, C2′ C4, N3 C4, N3 C4, N3 C4, N3
C4′, C3′ C5, C4 C5, C4 C5, C4 C5, C4
C5′, C4′ C6, C5 C6, C5 C6, C5 C6, C5
O5′, C5′ N1, C6 N1, C6 N1, C6 N1, C6
O5′, P C2, N1 C2, N1 C2, N1 C2, N1
P, OP2 C6, N6 C6, O6 C2, O2 C2, O2
P, OP2 C8, N7 C8, N7 C4, N4 C4, O4
C5′, O5′ N9, C8 N9, C8
C4′, O4′ C4, N9 C4, N9
C3′, O3′ C2, N2
C2′, O2′
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preference for selected aromatic, polar, and charge–charge in-
teractions. In Figure 3A, favorable binding geometries are
shown for the cytosine atom pair [N1, C6] and the ligand
atom C.ar. Here, long-distance interactions are preferable
and are clearly orientation-dependent. The diagram shows
that the preference for aromatic interaction starts at the dis-
tance of ∼3.5 Å, with the minimum blurred at the angle
90°–180°. The grid cells marked white around the RNA atoms
[N1, C6] indicate the lack of RNA–ligand atoms’ contacts in
the training set. The potential distribution function for the
atom pair [C5′, O5′] from the RNA backbone and the ligand
atomO.3 (Fig. 3B) has a peak tuple (the darkest areas), which
corresponds to the favorable positions of a ligand atom O.3.
The peak tuple is present at a distance of ∼2–2.5 Å, with an
angle in the range of 60°–90°, which corresponds to a typical
direct interaction involving a hydrogen bond. Dark gray areas
on the plot indicate a general preference for indirect (e.g., wa-
ter-mediated) interactions between the RNAO5′ atom and li-
gand O.3 atoms positioned at larger distances, however,
without strong preference for any particular angle. Figure
3C shows the potential distribution for interactions between
the atom pair [P, OP1] from RNA backbone and the ligand
atom N.3. Here, the potential minimum is at a close distance
to the RNA atoms, at ∼2.5–3 Å, with an angle of 20°–65°. In
Figure 3D favorable binding geometries are shown for the
atom pair [P, OP1] and the ligand atom C.3. The interaction
is preferred at 2.25–2.75 Å with an angle of 10°–20° and at
3.25–3.75 Å with an angle of 145°–155°, while there are no
specific preferences for long-range interactions.

LigandRNA predicts RNA–ligand interactions
with high accuracy

To test the ability of LigandRNA to discriminate between na-
tive-like and non-native-like poses of small molecule ligands
with respect to their RNA receptors and to compare its perfor-
mance to other methods, we ran a benchmark with separate
training and test data sets. We clustered ligands accord-
ing to their chemical structure and applied a cross-valida-
tion procedure. We generated a series of leave-one-out data

sets that contained all ligands except the
group of small molecules belonging to
the particular cluster. Then, we derived a
series of LigandRNA potential variants,
in which small molecules belonging to a
particular cluster were excluded from
training (so they could be used for testing
that variant of the potential). Next, we se-
lected representative structures from each
cluster and generated a few hundred li-
gand poses with Dock6 (with the average
of 798 per ligand). For our benchmark,
we used 42 complexes, for which Dock6
was able to generate at least one pose
with root mean square deviation of all at-

oms (RMSD) ≤2 Å to the reference experimental structure
(this restriction results from the fact that LigandRNA and
DrugScoreRNA are scoring functions for evaluation of li-
gand poses and would never find a near-native solution
[RMSD ≤2 Å] in the data set, where such poses are not pre-
sent). The poses generated by docking were then scored with
LigandRNA, DrugScoreRNA, and combinations of the afore-
mentioned potentials (including the Dock6 scoring function)
(Tables 2, 3).
Users of docking methods are typically interested in ob-

taining a native-like model of a receptor–ligand complex,

FIGURE 3. The diagrams show the distribution of values for a normal-
ized potential derived from contact statistics for the following: (A) RNA
atom pair [N1, C6] from cytosine and ligand atom C.ar; (B) atom pair
[C5′, O5′] from the RNA backbone and ligand atom O.3; (C) atom pair
[P, OP1] from the RNA backbone and ligand atom N.3; and (D) atom
pair [P, OP1] from the RNA backbone and ligand atom C.3. The darker
the area, the smaller the value of the potential for the given bin. The grid
used for counting uses radial steps of 0.25 Å and 5° around atom b (co-
valently bound to a).

FIGURE 2. Schematic representation of a distance-dependent statistical potential (A) and
LigandRNA distance- and angle-dependent potential (B).
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and for that purpose, a few top-scored poses are usually ex-
amined. We have therefore identified the three top-scoring
poses reported for each RNA–ligand pair, and we identified
the fraction of solutions, in which either the top-scoring
pose or one among the three top-scoring poses exhibited a
native-like structure.

If only the top-scoring pose was considered, LigandRNA
found the best solution with RMSD ≤2 Å to the native struc-
ture in 15 cases, DrugScoreRNA in 13 cases, and Dock6 in
15 cases; the combined potential of LigandRNA and Dock6
gave the best result among all methods, as it found solutions
with RMSD ≤2 Å to the reference structure in 20 cases

TABLE 2. The results of test for 42 RNA–ligand complexes

PDB
Identification LigandRNA

DrugScore
RNA Dock6

LigandRNA
+Dock6

RiboDock
according to
Morley and
Afshar (2004)

Amino-
glycoside–

specific potential
(Moitessier et al.

2006)

Original
DrugScore RNA
according to
Pfeffer and

Gohlke (2007)

MORDOR
(Guilbert and
James 2008)

1Q8N 1.3 1.1 7.7 2.0 — — 3.7 1.9
2F4U 1.0 3.0 1.9 1.0 — — — 2.0
1UTS 4.4 9.5 4.2 9.7 — — 11.0 4.9
2OE5 0.7 15.7 5.6 0.7 — — — 1.8
1UUD 6.4 5.4 5.4 5.4 — — 1.6 8.9
1UUI 5.6 1.5 1.5 1.5 — — 5.7 8.4
2ET8 0.8 4.6 0.7 0.8 — 0.9 — 1.6
2O3X 0.7 2.4 2.1 0.8 — — — —

1NBK 3.0 1.5 2.6 2.1 — — 8.2 3.6
1KOC 2.3 2.1 2.6 2.2 2.7 — 1.6 1.6
1AJU 2.3 5.6 5.3 2.3 — — 7.3 4.5
1F1T 1.1 1.2 1.2 1.2 — — 0.3
1FMN 2.9 2.2 2.9 2.9 0.8 — 1.6 1.4
2FCZ 0.6 7.2 0.9 0.6 — — — 1.7
1BYJ 6.8 2.0 7.4 6.8 1.8 — 2.0 5.4
1MWL 6.8 0.7 9.2 7.5 0.7 9.0 1.0
1TOB 2.6 3.5 4.8 2.3 9.8 — 1.5 2.6
2TOB 1.0 1.0 1.5 1.5 1.5 — 1.5 0.9
2G5Q 0.7 0.5 1.6 1.4 — 1.5 — —

1PBR 6.2 8.3 8.5 8.9 1.8 — 1.1 1.6
1FYP 5.1 5.1 3.2 1.2 — — 1.5 2.5
1NEM 9.3 1.1 0.7 1.2 8.7 — 0.7 1.0
1J7T 8.6 2.6 1.1 8.6 — 1.9 3.8 1.1
1EI2 6.9 6.9 5.9 6.6 — — 0.8 3.2
2BE0 10.7 9.5 3.5 10.7 — 2.1 2.0
2PWT 7.6 4.3 11 2.1 — — — —

2FD0 4.6 3.5 3.5 4.6 — — — 1.0
2BEE 9.3 4.5 9.3 9.2 — 1.5 — 2.1
1XBP 8.1 1.8 8.9 8.1 — — — —

2OGN 8.6 2.1 8.5 8.6 — — — —

1EHT 4.5 3.8 0.3 1.4 3.6 — 2.0 1.3
1Y26 0.5 30.5 0.5 0.5 — — — 0.5
1AM0 4.6 5.7 1.4 1.7 1.8 — 2.9 0.9
3GX2 0.6 5.3 4.7 0.7 — — — —

3D2X 1.6 6.9 1.9 1.9 — — —

1XPF 3.4 6.6 6.6 3.3 — — — 5.3
1KOD 1.9 5.1 5.3 2.0 3.2 — 1.9 2.0
1FJG 6.3 0.3 0.3 0.5 — — — —

1HNW 8.3 5.0 5.0 8.2 — — — —

3SUX 0.4 0.4 0.5 0.4 — — — —

2GDI 1.8 2.1 2.1 2.1 — — — 2.1
1F27 6.7 1.5 6.9 7.0 — — 4.3 1.0

The first column presents the Protein Data Bank (PDB) codes of the reference RNA–ligand structures determined experimentally. The second
to fifth columns show RMSD values (in Ångströms) for top-scored poses returned by the methods that we tested: LigandRNA, DrugScoreRNA,
Dock6, and the combined potential of LigandRNA and Dock6. Columns sixth to ninth show RMSD values for top-scored poses reported by
investigators of the other methods for prediction of RNA–ligand interactions (RiboDock, scoring function for aminoglycosides, original
DrugScoreRNA, and MORDOR). We present results only for complexes that were included in both test sets (ours and the other method’s).
Hits with RMSD ≤2 Å to the reference structure, identified by one or more method, are indicated in bold.

LigandRNA: predictor of RNA–ligand interactions

www.rnajournal.org 1609



(Table 2). Our test set comprises mostly complexes included
in test sets of other methods described in the Introduction
(RiboDock, scoring function for aminoglycosides, original
DrugScoreRNA, andMORDOR), so wewere able to compare
the results obtained in our study for a subset of these complex-
es to the results reported for the aforementioned methods in
original publications. RiboDock found solutions with RMSD

≤2 Å in five cases out of 10; Moitessier’s potential for amino-
glycosides returned a pose with RMSD ≤2 Å in five out of six
cases; the original DrugScoreRNA potential found a near-na-
tive pose in 12 out of 21 cases; andMORDOR generated near-
native poses in 20 out of 32 cases. If three top-scoring poses
were considered, LigandRNA, DrugScoreRNA, and Dock6
performed similarly and found the near-native pose (with
RMSD≤2 Å to the reference structure) in 19, 18, and 19 cases,
respectively. The combined potential of LigandRNA and
Dock6 again gave the best result among all methods, as it
found a solution with RMSD ≤2 Å to the reference structure
in 23 cases (Table 3).
Further, we checked whether the top-ranked pose identi-

fied by LigandRNA, DrugScoreRNA, Dock6 and the combi-
nation of LigandRNA and Dock6 fulfilled the criterion of
being “native-like,” i.e., whether its RMSD from the experi-
mentally determined reference pose was below a threshold
of 1.0, 1.5, or 2 Å, respectively. We performed calculations
for two groups of targets: all cases, where Dock6 was able to
generate at least one pose with RMSD to the reference exper-
imental structure≤2Å (Table 4), and a subset of that group, in
which at least one pose had RMSD to the reference ≤1 Å
(Table 5).
Our benchmarks show that individual potentials are mod-

erately effective in identifying poses that are close to the ex-
perimentally determined structures. Among 42 structures
of RNA–ligand complexes, for which the docking proce-
dure was able to generate at least one pose with RMSD ≤2 Å
to the native structure, top-scored solutions proposed by
LigandRNA, DrugScoreRNA, and Dock6 had RMSD ≤2 Å
in 35.7%, 31.0%, and 35.7% of the cases, respectively. If the
criterion is relaxed to considerationof thebest solution among
three top-scoring poses, the percentage of successful solutions
identified by the above-mentioned methods increases to
45.2%, 42.9%, and 45.2%. The number of top-scoring poses
with RMSD to the reference structure ≤1 Å was lower,
21.4%, 9.5%, and 16.7%, respectively, and 23.8%, 16.7%,
and 21.4% if three top-scoring solutions were considered. If
only complexes for which the docking procedure was able to
generate at least one posewith RMSD≤1Å to the native struc-
ture were considered, top-scoring solutions proposed by
LigandRNA, DrugScoreRNA, and Dock6 had a RMSD ≤1 Å
in 42.9%, 19%, and 33.3% of all cases and a RMSD ≤2 Å in
42.9%, 38.1%, and 47.6% of cases, respectively. If three top-
scoring solutions were taken into consideration, one of them
had RMSD ≤1 Å in 47.6%, 33.3%, and 42.9% of all cases
and RMSD ≤2 Å in 52.4%, 47.6%, and 66.7% of all cases for
LigandRNA, DrugScoreRNA, and Dock6, respectively. Thus,
LigandRNA was generally better than DrugScoreRNA and
comparable to Dock6.
We tested various combinations of the individual scoring

functions (data not shown), and we found that a “meta-pre-
dictor” comprising Dock6 and LigandRNA improves the ac-
curacy of individual predictions. The combination of the
Dock6 and LigandRNA scoring function achieves 47.6%

TABLE 3. The results of test for 42 RNA–ligand complexes

PDB id LigandRNA DrugScoreRNA Dock6
LigandRNA +

Dock6

1Q8N 1.3 1.1 7.6 2.0
2F4U 1.0 2.9 1.9 1.0
1UTS 4.4 8.1 3.9 4.5
2OE5 0.7 13.6 5.6 0.7
1UUD 3.4 5.4 5.4 5.4
1UUI 1.4 1.5 1.4 1.4
2ET8 0.8 4.6 0.7 0.7
2O3X 0.7 0.9 1.7 0.7
1NBK 2.1 1.5 2.5 1.5
1KOC 2.0 2.1 2.6 1.9
1AJU 2.3 5.1 4.9 2.3
1F1T 1.1 1.1 1.2 1.1
1FMN 2.9 2.0 2.2 2.9
2FCZ 0.6 4.8 0.9 0.6
1BYJ 6.7 1.8 1.1 6.7
1MWL 6.8 0.4 0.4 6.8
1TOB 2.2 3.5 4.8 2.3
2TOB 1.0 1.0 1.5 1.5
2G5Q 0.6 0.5 1.6 0.6
1PBR 6.2 0.5 8.5 6.2
1FYP 5.0 5.1 3.2 0.7
1NEM 5.4 1.0 0.7 1.1
1J7T 8.2 1.1 1.1 8.2
1EI2 6.6 6.7 5.9 6.6
2BE0 10.7 3.5 3.5 10.7
2PWT 7.6 3.4 11.2 2.1
2FD0 4.6 3.5 3.5 3.5
2BEE 9.3 3.0 9.3 9.2
1XBP 6.9 1.7 8.8 8.1
2OGN 8.6 2.0 7.9 8.6
1EHT 1.4 3.8 0.3 0.5
1Y26 0.4 14.4 0.4 0.4
1AM0 4.3 3.0 1.2 1.4
3GX2 0.6 5.3 0.7 0.6
3D2X 1.6 2.3 1.9 1.9
1XPF 3.3 5.4 6.5 3.3
1KOD 1.9 5.1 5.3 2.0
1FJG 0.5 0.3 0.3 0.5
1HNW 8.2 5.0 5.0 5.0
3SUX 0.4 0.4 0.4 0.4
2GDI 1.7 2.1 2.1 1.9
1F27 6.7 1.5 6.9 6.7

The first column presents the PDB codes of the reference RNA–
ligand structures determined experimentally. The second to fifth
columns show RMSD values (in Ångströms) for the pose with the
best RMSD among three top-scored poses returned by the
methods that we tested: LigandRNA, DrugScoreRNA, Dock6, and
the combined potential of LigandRNA and Dock6. Hits with
RMSD ≤2 Å to the reference structure, identified by one or more
method, are indicated in bold.
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correctly identified ligand poses (with RMSD ≤2 Å to the na-
tive structure) when all 42 structures are considered and
achieves 66.7% correctly identified ligand poses for data sets
where at least one pose exists with RMSD to the native struc-
ture ≤1 Å. If three top-scoring ligand poses are considered,
the percentages are of 54.8% and 66.7%. As expected, the
combination of the potentials not only increases the chances
of the top-scoring pose to be close to the experimentally
determined structure but also gives the best overall correla-
tion coefficient between score and RMSD values of the corre-
sponding ligand poses. Thus, the combination of LigandRNA
and Dock6 scoring outperforms both individual methods
alone. Figure 4 illustrates examples of eight complexes where
the combined potential improved the correlation and identi-
fied a native-like ligand pose.

Web server

To make our method available to the research community,
we developed the LigandRNA web server available at http://
ligandrna.genesilico.pl (server mirror is available at http://
ligandrna.biol.amu.edu.pl). The server was implemented in
Python using the Django web framework. The LigandRNA
potential available on the server was derived from all 251
PDB structures used in this work for training and testing.
The submission form accepts coordinates of an RNA receptor

structure in thePDB format and a ligand conformers file in the
MOL2 format. ForDock6 output files, it is possible to obtain a
consensus score (combination of Dock6 and LigandRNA po-
tentials); however, the current implementation of the server is
unable to calculate Dock6 scores by itself, so poses generated
with other methods are scored only with the LigandRNA po-
tential. The results returned by the server are made available
on a separate web page, which provides a file with the ranked
ligand conformers in text format. Moreover, LigandRNA re-
turns four PDB files containing the RNA receptor structure
with the four variants of the LigandRNA potential mapped
on individual atoms of the receptor (averaged for all grid cells
within 2 Å from a given atom), for O, C, and N atoms of the
ligand separately and for all atoms combined.With suchmod-
ifiedPDB files, the distribution of LigandRNApotential values
on surface atoms can be easily displayed in all commonly used
structure visualization systems by coloring atoms according to
the B-factor field.
The output files are kept on the server for 1 wk. The time

required for LigandRNA to return predictions depends
mainly on the size of the RNA molecule and the number of
ligand poses to score. Currently we use a simple queuing sys-
tem that allows running one prediction at a time. For a bac-
terial ribonuclease P RNA (PDB identification 2A64) that
is 417 nucleotides long and has 236 paromycin poses to
score, it takes ∼20 min to obtain the results. For comparison,

TABLE 4. The results of the test conducted for 42 RNA–ligand complexes with at least one ligand pose with RMSD ≤2 Å

RMSD

LigandRNA DrugScoreRNA Dock6 LigandRNA +Dock6

Top-
scored
pose

Best RMSD
among three top-
scored poses

Top-
scored
pose

Best RMSD
among three top-
scored poses

Top-
scored
pose

Best RMSD
among three top-
scored poses

Top-
scored
pose

Best RMSD
among three top-
scored poses

≤1 Å 21.4% 23.8% 9.5% 16.7% 16.7% 21.4% 21.4% 28.6%
≤1.5 Å 28.6% 35.7% 21.4% 28.6% 23.8% 33.3% 35.7% 42.9%
≤2 Å 35.7% 42.9% 31.0% 42.9% 35.7% 45.2% 47.6% 54.8%

The percentages of near-native ligand poses correctly identified by LigandRNA, DrugScoreRNA, Dock6, and the combination of LigandRNA
and Dock6 in the test set containing 42 RNA–ligand complexes, for which ligand poses with RMSD ≤2 Å to the reference experimental pose
were generated. Near-native poses have been defined with three different thresholds of RMSD (≤1.0, ≤1.5, and ≤2 Å, respectively). The best
results are indicated in bold.

TABLE 5. The results of the test conducted for 21 RNA–ligand complexes with at least one ligand pose with RMSD ≤1 Å

RMSD

LigandRNA DrugScoreRNA Dock6 LigandRNA +Dock6

Top-
scored
pose

Best RMSD
among three top-
scored poses

Top-
scored
pose

Best RMSD
among three top-
scored poses

Top-
scored
pose

Best RMSD
among three top-
scored poses

Top-
scored
pose

Best RMSD
among three top-
scored poses

≤1 Å 42.9% 47.6% 19.0% 33.3% 33.3% 42.9% 42.9% 57.1%
≤1.5 Å 42.9% 52.4% 23.8% 33.3% 38.1% 52.4% 61.9% 66.7%
≤2 Å 42.9% 52.4% 38.1% 47.6% 47.6% 66.7% 66.7% 66.7%

The percentages of near-native ligand poses correctly identified by LigandRNA, DrugScoreRNA, Dock6, and the combination of LigandRNA
and Dock6 for a subset of the complexes tested, in which ligand poses with RMSD ≤1 Å to the reference experimental pose were generated
(21 complexes out of 42 analyzed in Table 4). Near-native poses have been defined with three different thresholds of RMSD (≤1.0, ≤1.5, and
≤2 Å, respectively). The best results are indicated in bold.
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FIGURE 4. Score-RMSD dependence for the selected RNA–ligand complexes from the test set. Each black dot corresponds to a single ligand pose.
Arrows indicate top-scored poses according to each method.
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the same number of poses for this complex can be scored
by DrugScoreRNA in a few seconds and by Dock6 in a few
minutes.
LigandRNA is a novel computational tool for scoring and

ranking three-dimensional poses of small molecule ligands
bound to RNA 3D structures. It uses an anisotropic statistical
potential trained on a database of known RNA–ligand com-
plexes. The current implementation is capable of making pre-
dictions for RNA structures in the PDB format and ligand
poses in the MOL2 format. The LigandRNA scoring function
was trained and tested on a representative set of 251 RNA–li-
gand complexes, using a leave-one-out cross-validation. The
test proved the predictive power of LigandRNA, as themethod
successfully reproduced the experimentally determined posi-
tions of ligands in many different RNA molecules and the
fraction of its best solutions was comparable to or better
than other methods. LigandRNA was able to find correct
docking solutions in two cases, where native-like solutions
were missed by the other methods tested in this study: for cit-
rulline bound to an RNA aptamer (PDB identification 1KOD;
pose RMSD of 1.9 Å) and for the apramycin antibiotic bound
to the ribosomal decoding center (PDB identification 2OE5;
pose RMSD of 0.7 Å). Both structures are shown in Figure
5. Dock6 proposed poses with RMSD of 5.3 Å for citrulline
and with RMSD of 5.6 Å for apramycin as the best solutions,
DrugScoreRNA similarly proposed poses with RMSD of 5.1
Å and 15.7 Å for the two ligands, respectively. However,
there are structures for which LigandRNA failed in finding a
near-native ligand pose but other methods succeed (e.g.,
PDB identifications 1UUD and 1NEM). For that reason, we
decided to score ligand poses with a combination of scores re-
turned by two methods with very different scoring functions,
i.e., LigandRNAandDock6. Both scoreswere scaled to a range
of <0,1> and added to each other with equal weights of 0.5, as
their separate predictive powers were similar (Tables 4, 5).
The number of best solutions identified by the combined po-
tential was higher than the number of best solutions reported
by either of the methods used separately. In our test set, we
also found two cases where the combined potential identified
a native-like pose that was missed by all potentials applied
alone: for an aminoglycoside with the L-HABA group bound
to the bacterial ribosomal decoding site (PDB identification
2PWT, pose RMSD of 2.0 Å) and for paromycin bound to
the decoding region A-site (PDB identification 1FYP; pose
RMSD of 1.2 Å) (Fig. 6).
The added value of the combination of LigandRNA

and Dock6 results most likely from the very different, and
hence complementary, character of both scoring functions.
LigandRNA is a knowledge-based statistical potential, while
Dock6 scores ligand poses on the basis of a physics-based
force field. The advantage of Dock6 is that it models the phys-
ical chemistry of the system; however, the use of this method
is computationally costly and requires specialized expertise to
set up and run the docking, and it is impossible to use Dock6
to score the poses obtained by other methods.

Conclusions

We have developed LigandRNA, a novel bioinformatics tool
for the prediction of RNA–small molecule interactions. The
anisotropic potential in LigandRNA contributes significant
added value to the previously published scoring functions.
In particular, the combination of the LigandRNA statistical
potential and the Dock6 physics-based force field leads to
much better identification of native-like poses. Thus, wher-
ever it is possible to use Dock6 for RNA–ligand docking,
we recommend using LigandRNA together with that method.
LigandRNA is relatively fast and can be accessed via a freely
available web server at http://ligandrna.genesilico.pl/ and at
http://ligandrna.biol.amu.edu.pl. The input ligand poses are
ranked according to their score, which can be used to infer
the relative strength of binding.
One of the weaknesses of the statistical approach present-

ed in this work is the relative paucity of RNA–ligand complex-
es. Thus, once per week (every Saturday at 1200 h Central
European Time) the LigandRNA web server downloads

FIGURE 5. (A) The RNA aptamer structure in complex with citrulline
(PDB identification 1KOD). (B) The ribosomal decoding center in com-
plex with apramycin (PDB identification 2OE5). The experimentally
identified ligand poses are shown in light blue, and the poses from com-
putational docking identified as best-scored by LigandRNA are depicted
in pink.
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structures of RNA–ligand complexes newly released in the
PDB, which fulfill the conditions described in the section
“Data set of RNA–ligand complex structures.” These struc-
tures are added to the original training set, and the statistical
potential is recalculated. In time, the number of structures
will increase, hopefully leading to a constant improvement
of the potential. The LigandRNAwebsite allows the user to se-
lectwhether to performpredictionswith the original potential
described in this article or with the one that is being continu-
ally updated.

MATERIALS AND METHODS

Data set of RNA–ligand complex structures

To generate a knowledge-based potential, we used a representative
set of 251 crystallographically determined and NMR-determined
structures containing RNA and ligands (including structures of,
e.g., protein–RNA complexes), available from the PDB. The list of
PDB identifications and PDB files is provided on the LigandRNA

server home page. Initially, we downloaded all the structures that
contained an RNA molecule and a ligand and subsequently applied
a series of criteria to select representative structures: For RNAs with
sequence identity >90% containing the same ligand, we used only
one structure with the highest resolution. For NMR structures, we
always used the first model in the file. For residues with more
than one alternative conformation, we used the first variant only.
We excluded ligands closer than 6 Å to any atom other than RNA,
water, or a cation, as we intended to take into account only ligands
interacting exclusively with RNA atoms, whose binding is not
caused by other molecules.

To test the predictive power of LigandRNA, we clustered ligands
according to their chemical structure. Ligands were grouped manu-
ally according to the following criteria: (1) Ligands smaller than 13
atoms were classified into the “small organic” group; (2) ligands
belonging to a major class of metabolites or organic species (pyra-
noses, amino acids, etc.) were grouped together according to that
class; (3) antibiotics sharing a central chemical structure (e.g., tetra-
cyclins) were grouped together; (4) compounds sharing a common
substructure of at least six atoms were grouped together; and (5)
the remaining compounds remained as single members of their
respective classes. Next, we performed docking using Dock6 with
default parameters with respect to the usage of the following:
grid-score function, flexible ligand docking, all atom model, auto-
mated matching, internal energy calculation, with special options
such as bump filter, chemical matching, secondary scoring, etc., dis-
abled (for details, see Supplemental File 1). The standard all-atom
CHARMM27 force field (MacKerell et al. 2000) for the RNA recep-
tors and the general AMBER force field for ligands (Case et al. 2005)
were used. We performed docking for at least one representative
of each cluster of related ligands (more than one if their RNA targets
were different) to guarantee the diversity of receptors and ligands.
In our selection of representatives, we favored complexes that
were previously used for training and testing RNA docking methods
by other groups. In our test set, we included all 10 cases used by
RiboDock (Morley and Afshar 2004), six out of 11 from a scoring
function specific for aminoglycosides (Moitessier et al. 2006), 21
complexes out of 32 from the test set used by DrugScoreRNA
(Pfeffer and Gohlke 2007), 32 out of 57 used by MORDOR
(Guilbert and James 2008), and 30 out of 52 used by Dock6 (Lang
et al. 2009). Our test set includes complexes used for the accuracy
assessment with respect to how docking programs developed
for protein–ligand complexes perform against RNA–ligand com-
plexes (20 targets out of 36 used by Detering and Varani 2004
and 33 targets out of 60 used by Li et al. 2010). Altogether, we ob-
tained between 69 and 1000 ligand poses (with the average of 798
per ligand) for 42 RNA receptors (for details, see Supplemental
Table 1), for which we were able to generate at least one ligand
pose with≤2 Å RMSD to the experimentally determined one, which
was regarded as a reference pose structure. All receptor–ligand com-
plexes had their Dock6 score associated, and they were subjected to
additional scoring using the LigandRNA and DrugScoreRNA scor-
ing functions (we used all of the poses generated, regardless of their
Dock6 scores).

Compilation of an anisotropic statistical potential

For the derivation of the statistical potential, we applied the same
formalism as already described for MetalionRNA, a program for
the prediction of RNA–metal ion binding sites (Philips et al.

FIGURE 6. (A) The ribosomal decoding site in complex with amino-
glycoside with the L-HABA group (PDB identification 2PWT). (B)
The A-site decoding region in complex with paromycin (PDB identifi-
cation 1FYP). The experimentally identified ligand poses are shown in
light blue, and the poses from computational docking identified as
best-scored by a combination of LigandRNA and Dock6 potentials are
depicted in pink.
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2012). We developed a distance- and angle-dependent anisotropic
potential describing interactions between ligand atoms and RNA
atom pairs. An n-particle correlation function parametrized by in-
terparticle distances and angles g(n)(d1, α1;… dn, αn) is translated
into a knowledge-based potential W(n)(d1, α1;… dn, αn) via the fol-
lowing equation:

W (n)(d1,a1; . . . dn,an) = −RT ln g(n)(d1,a1; . . . dn,an),
where g(n) indicates the observed frequency of contacts of a ligand
atom c with all adjacent atom pairs [a, b] (d is the distance between
a ligand atom and atom b; α is the angle (a,b,c)), andW(n) indicates
the potential for a given position. We derived the function g(n)(d1,
α1;… dn, αn) from 3D structures by sampling the frequencies of
RNA atom pair and ligand atom contacts.
The maximum radius of interaction between an RNA atom pair

and a ligand atom to be considered for the statistical potential was
limited to 6 Å. This radius directly influences the specificity of the
potential. A short distance emphasizes specific interactions between
ligand and the atoms of its binding site.

Algorithm for scoring of ligand poses

We implemented a grid-based function for scoring ligand poses
bound to a receptor structure. The most important advantage of us-
ing a grid is that the discretization of space obviates the need to solve
the potential function analytically and allows mapping of the statis-
tical data into well-defined portions of space. A grid-based approach
has been successfully applied in our previous studies on RNA–metal
ion interactions (Philips et al. 2012) and in small molecule docking,
e.g., in the AutoDock program (Morris et al. 2009).
For eachRNAatompair [a, b], the LigandRNAprogramcomputes

thepotential valuesW(n) in all cells of cubic gridCwithin the radius of
6 Å around the atom b. The potential values are computed for all of
the atom types present in the ligand. The potential W(n) is additive
for cells of grid C at the distance of 6 Å from more than one RNA
atom pair. Finally, all ligand poses are scored and ranked. The pose
score is a sum of its atoms’ potentials. (All cells within the van der
Waals radius of a certain ligand atom type are examined.)

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article at http://ligandrna.
genesilico.pl/site_media/supplementary/supp_mat.pdf.
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