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The recent emergence of magnetic resonance (MR)­
based neuroimaging techniques has dramatically 
improved researchers’ ability to understand the neuro­

pathology of alcoholism. These techniques range from those 
that directly monitor the metabolism and the biochemical 
and physiological effects (i.e., the pharmacodynamics) 
of alcohol within the brain to techniques that examine the 
impact of heavy alcohol use on brain structure and function. 

In general, MR-based techniques measure electromag­
netic signals (the same type of signals detected by a radio 
antenna) generated by nuclei of endogenous molecules 
in the body of a person placed in a powerful magnet field. 
When influenced by a magnet, tissue itself transiently 
becomes magnetic. In part, this is because of the proper­
ties of atomic nuclei. Different MR-based techniques have 
been developed to utilize nuclear magnetism induced in 
tissue to generate images of internal structure. The most 
commonly used MR imaging (MRI) techniques rely on 
signals derived from hydrogen nuclei in water, which is by 
far the most concentrated molecular species in the body. 
The physical properties of water molecules vary from one 
region of tissue to another, and this influences the nuclear 
magnetism generated by water hydrogen nuclei. As a result, 
MRI can differentiate regions in soft tissue at a high level 
of detail. A second approach—MR spectroscopy (MRS)— 
uses the same strategy to detect electromagnetic signals, 
but they are derived from nuclei of atoms (hydrogen as 
well as some other atoms) on molecules other than water, 
such as lipids, amino acids, or even alcohol (i.e., ethanol). 
The resulting data on the molecule(s) under investigation 
can provide detailed information about the metabolic 
activity of various tissues, including the brain. The main 
advantage of MR-based techniques is that they do not 
expose the subject to radioactive tracers and therefore can 
be used repeatedly in the same subject, allowing researchers 
to track metabolic or structural changes over time. 

This article briefly summarizes how these techniques 
may be used to characterize the effects of alcohol depen­
dence on the brain. 

Direct Measurement of Alcohol in the 
Brain 

As indicated above, MRS is the most direct MR-based tech­
nique for studying alcohol in the brain. This approach has 
been used to characterize alcohol pharmacodynamics in 
rodents (Adalsteinsson et al. 2006), humans (Hetherington 
et al. 1999), and nonhuman primates (see figure 4). However, 
it is unclear whether this technique can measure ethanol 
concentrations in the brain accurately because in several 
quantitative studies, MRS-based estimates of alcohol con­
centrations in the brain were reported to be lower than 
expected, based on blood alcohol concentration measure­
ments (Chiu et al. 2004; Kaufman et al. 1994, 1996; 
Moxon et al. 1991). To explain this observation, Moxon and 
colleagues (1991) have argued that the hydrogen nuclei of 
some of the ethanol molecules (i.e., of those that are bound 
to membranes) possess certain characteristics1 that make 
them undetectable by in vivo MRS. This phenomenon may 
be relevant for alcoholism research because some evidence 
suggests that the amplitude of the MRS signal for alcohol 
that can be observed following a given alcohol dose changes 
with repeated alcohol exposure (Govendaraju et al. 1997; 
Moxon et al. 1991) and that this change potentially is related 
to the development of tolerance (Kaufman et al. 1994, 1996). 
To clarify the potential link between changes in alcohol MRS 
intensity and alcohol exposure, it is therefore important to 
determine whether alcohol truly is partially “invisible” to 
MRS in the brain (Chiu et al. 2004) and whether brain alco­
hol concentrations may be accurately measured by MRS if 
the relevant characteristics of the hydrogen nuclei are carefully 
determined (Hetherington et al. 1999; Sammi et al. 2000). 

The effects of chronic alcohol exposure on the brain 
and its neurochemistry also can be assessed through MRS 
measurements of endogenous compounds naturally pro­
duced in the body. One of these is a compound called N­
acetylaspartate (NAA), which is one of the most abundant 
molecules in neurons and usually provides a large signal in 
brain MRS measurements (see figure 4C) (Mason et al. 
2005, 2006). NAA levels are reduced in numerous neu­
ropathological conditions. According to one report, chronic 
heavy drinkers also exhibit reduced intensity of the NAA 
signal compared with control subjects (Mason et al. 2005), 

1 Moxon and colleagues (1991) suggested that the spin–spin relaxation time constants 
(T2) of the 1H nuclei of membrane-bound ethanol is so short that these nuclei cannot be 
detected by MRS. 
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with larger effects seen in females than in males. Although 
this observation is consistent with several potential expla­
nations (Mason et al. 2006), one popular interpretation 
of reduced NAA levels in drinkers is that it reflects some 
form of neuronal loss or pathology.  

Assessing Structural Changes Associated 
With Alcohol Use 

It is well known that chronic alcohol use is associated with 
gross anatomical changes in the brain. Structural MRI analy­
ses in particular have greatly enhanced our understanding of 
these alcohol-related changes. Based on differences in certain 
properties (i.e., spin relaxation properties) of water molecules 
in various types of brain tissue, researchers can classify indi­
vidual volume elements (i.e., voxels) on the MRI images into 
gray matter, white matter, and cerebral spinal fluid (see fig­
ure 5). Using these methods, several studies have revealed 
alcohol-related reductions in gross brain tissue volumes (Kril 
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Figure 4 Magnetic resonance spectroscopy (MRS) of ethanol in the nonhuman 
primate brain. A) MRS data acquired from a rhesus macaque over the 
course of a 2-g/kg intravenous infusion of alcohol. The image shows a 
lengthwise cut through the brain, with the white rectangle delineating 
the area that was used for the analysis. B) Specifically, spectra were 
acquired from each of the 24 regions delineated by the grid, which is 
projected on a horizontal image of the brain at the position indicated by 
the red dashed line in panel A. C) An example of an MRS spectrum 
obtained from the highlighted (yellow) brain region in B obtained prior 
to alcohol infusion (red trace) and again following alcohol infusion (black 
trace). The spectrum shows the ethanol peak as well as peaks for other 
endogenous compounds, such as N-acetylaspartate (NAA), choline-
containing compounds (Cho), and creatine (tCr). D) The alcohol signal 
is quantified versus time. 

and Halliday 1999). In addition, the high resolution of MRI 
has facilitated the measurement of smaller structures in the 
brain, and studies have shown reductions in the volume of 
various brain structures, including the hippocampus (Agartz 
et al. 1999; Beresford et al. 2006), corpus callosum 
(Hommer et al. 1996; Pfefferbaum et al. 1996), striatum 
(Sullivan et al. 2005), and cerebellum (Shear et al. 1996), in 
people with alcohol use disorders. Because MRI analyses can 
be performed repeatedly in the same subject, the technique 
allows for longitudinal followup of alcohol-dependent people 
after treatment. Such studies have suggested that structural 
recovery in the brain may be possible in people achieving sus­
tained abstinence (Cardenas et al. 2007; Shear et al. 1994). 

An additional MRI-based technique, termed diffu­
sion tensor imaging (DTI), allows investigators to study 
brain pathology on a microstructural scale. This technique 
exploits the passive movement (i.e., diffusion) of water 
molecules within a tissue or structure. For example, many 
neurons have one long extension (i.e., the axon) that con­
nects to other nerve cells and transmits signals to them. 

This axon typically is surrounded by 
a sheath made up of a molecule called 
myelin. Furthermore, the myelin-
covered axons of several nerve cells 
may be held together in axon bundles. 
Because the myelin gives these bundles 
a whitish appearance, brain areas con­
taining many of these bundles also are 
referred to as white matter (as opposed 
to gray matter, which is made up of 
nerve cell bodies). In healthy white 
matter, myelinated axon bundles selec­
tively restrict water diffusion, so that 
the water molecules tend to move 
along the white matter tracts but not 
in a perpendicular direction. As a result, 
diffusion is orientation dependent, or 
anisotropic. DTI measurements have 
identified reduced diffusion anisotropy 
within the frontal white matter of 
chronic alcoholics (Harris et al. 2008; 
Pfefferbaum et al. 2005, 2006), which 
is interpreted as a manifestation of 
alcohol-related white matter damage. 
This interpretation is further supported 
by findings that deficits in diffusion 
anisotropy are associated with impair­
ments in working memory (Pfefferbaum 
et al. 2000). 

Functional MRI Studies 
Related to Alcohol 
Dependence 

Functional MRI (fMRI) is a powerful 
tool that allows researchers to assess 
blood flow, and thereby brain function, 

Alcohol Research & Health 244 



 

  

TECHNOLOGIES FROM THE FIELD
 

in a specific brain region. In general, blood flow is increased 
in brain regions that are active at a given time and decreased 
in inactive regions or areas affected by illness or damage. One 
way of assessing blood flow is by using positron emission 
tomography (PET), which uses radioactive tracer molecules 
to track blood flow. (For more information, see the article by 
Thanos et al., pp. 233–237.) However, the use of radioactive 
compounds is an obvious disadvantage of that approach, 
which can be avoided by fMRI. It is based on the observation 
that blood supplies oxygen to active neurons at a greater rate 
than to inactive neurons. The increased delivery of oxygen to 
a specific brain region leads to a magnetic signal variation 
that can be detected using an MRI scanner. By taking rapid 
sequences of images and tracking these variations, researchers 
can examine brain functioning during a variety of cognitive 
and behavioral tests. 

fMRI has furthered alcohol research by allowing inves­
tigation of the neural circuits that are impacted by alcohol 
use. For example, fMRI has revealed abnormal responses 
in the frontal lobe during verbal and spatial working mem­
ory tasks in alcoholics (Desmond et al. 2003; Tapert et al. 
2001). In addition, it has enriched researchers’ understand­
ing of the course of alcohol abuse, dependence, and recov­
ery by allowing repeated studies at various points during 
the course of the disease. However, beyond detecting such 
functional abnormalities in brain response associated with 
cognitive tasks, fMRI has tremendously helped scientists 
identify the neural substrates of alcohol dependence itself. 
Thus, fMRI studies have elucidated the neural substrates 
of alcohol craving (Park et al. 2007). Another fMRI study 
of alcohol cue–related reactivity demonstrated increased 
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Figure 5 Example of an MRI image of the brain, showing gray matter (blue), white 
matter (yellow), and cerebral spinal fluid (red). 

NOTE: The image is a segmented skull-stripped T1-weighted anatomical image. This automated segmentation 
was performed using Oxford Centre for Function Imaging of the Brain’s (FMRIB) Automated Segmentation Tool 
(FAST). 

reward-based activity in response to alcohol cues in a brain 
region called the ventral striatum, whereas non–alcohol­
related rewards elicited a reduced brain response (Wrase et 
al. 2007). Abnormal brain responses in these regions have 
been associated with susceptibility to relapse (Sinha et al. 
2007), and pharmacological treatments of alcoholism have 
shown to reduce abnormalities in alcohol cue–related 
responding in the ventral striatum (Myrick et al. 2008). 

Conclusions 

Different MR-based technologies have allowed researchers to 
monitor alcohol levels in the brain, identify alcohol-induced 
structural changes in the brain, and study the impact of alcohol 
on brain function. To date, most of these studies have been 
conducted in human subjects. As described in the following 
article by Boudreau and colleagues, recent technological 
advances have allowed the application of these approaches 
also for studying various aspects of alcohol dependence in 
mouse models. ■ 
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