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Until well into the 1990s, both preclinical and clinical 
research focused on finding “the” gene for human 
diseases, including alcoholism. This focus was rein­

forced by the emergence of technologies to either inactivate 
(i.e., knock out) a gene or add extra copies of an existing 
gene in a living organism, which clearly demonstrated that 
over- or underexpressing a single gene could have a profound 
effect on behavior. However, a small but vocal group of sci­
entists, including many alcohol researchers, argued that 
behaviors, including alcohol-related behaviors, were complex 
traits and therefore no one gene likely would have a large 
effect. This view was consistent with a large body of genetic 
research conducted in plants and fruit flies (e.g., Paterson et 
al. 1988) indicating that, for example, even a presumably 
simple characteristic, such as the size of a tomato, was deter­
mined by several genes. However, it was difficult to convince 
the scientific community that, in terms of its genetic deter­
mination, behavior was similar to the size of a tomato. Only 
with the advent of new genetic tools did it become possible 
to prove that many different genes contribute to complex 
behavioral characteristics. These tools included the following 
(see Phillips 2002): 

•	 Panels of recombinant inbred (RI) mouse strains. RI 
strains generally are generated by repeatedly inbreeding 
brother–sister pairs from the second-generation (F2) off­
spring of two genetically distinct parent inbred strains. 
Each F2 animal has a slightly different combination of the 
parental genes. By repeated inbreeding of brother– 
sister pairs, researchers can generate numerous distinct 
inbred animal strains. 

•	 Quantitative trait locus (QTL) mapping. Quantitative 
traits are characteristics such as height or sensitivity to 
alcohol that differ in the extent to which an individual 
possesses that characteristic. The variation in these traits 
is determined by both genetic and environmental factors. 
As noted above, the genetic contribution typically 
involves multiple genes, and each of these genes may exist 

in several variants (i.e., alleles). QTL analysis allows one 
to map, with some precision, the genomic position of 
these alleles. 

For many researchers in the alcohol field, the break­
through with respect to the genetic determination of alcohol-
related behaviors occurred when Plomin and colleagues 
(1991) made the seminal observation that a specific panel 
of RI mice (i.e., the BXD panel) could be used to identify 
the physical location of (i.e., to map) QTLs for behavioral 
phenotypes. Because the phenotypes of the different strains 
in this panel had been determined for many alcohol-
related traits, researchers could readily apply the strategy 
of RI–QTL mapping (Gora-Maslak et al. 1991). Although 
investigators recognized early on that this panel was not 
extensive enough to answer all questions, the emerging 
data illustrated the rich genetic complexity of alcohol-
related phenotypes (Belknap 1992; Plomin and McClearn 
1993). 

The next advance came with the development of 
microsatellite maps (Dietrich et al. 1992, 1996). 
Microsatellites are short pieces of DNA characterized 
by the repetition of short (i.e., two to four nucleotide) 
sequences.1 The number of repetitions of some microsatel­
lites differs among individuals or inbred strains and there­
fore can be used as a marker, allowing researchers to track 
how specific microsatellite sequences are inherited. Researchers 
have mapped the locations, of thousands of such 
microsatellites in the mouse as well as human genome. 
Tracking microsatellite markers at specific known sites in 
the genome is useful because one can simultaneously track 
the gene variants linked to these markers. With these tools 
available, the first QTL study mapping a behavioral trait 
(i.e., activity in a novel environment) in F2 offspring of two 
genetically distinct inbred mouse strains was published by 
Flint and colleagues (1995). This study detected numerous 
QTLs that were significantly associated with the behavior 

1 Nucleotides are the building blocks of DNA. There are four different nucleotides called 
adenosine (A), cytosine (C), guanosine (G), and thymidine (T). Microsatellites are char­
acterized by the repetition of two-to-four nucleotide pattens, such as CACACACA. 
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under investigation (see Lander and Kruglyak [1995] for a dis­
cussion of how a QTL is determined to be significant). 
Subsequently, there was an explosion of behavioral QTL 
mapping studies, including studies that focused on alcohol-
related traits. In a summary of the behavioral mapping data 
in mice and rats, Flint (2003) reported that hundreds of 
QTLs had been detected and that, as expected, most of 
these had very small effects (i.e., accounted for less than 5 
percent of the phenotypic variance). Although there has 
been no detailed summary of behavioral QTL mapping data 
since 2003, it is reasonable to assume that the number of 
QTLs detected just in animal models has increased by an 
order of magnitude. 

Of course the easiest, most convenient strategy to map 
QTLs in mice would be to cross animals from two inbred 
strains that differ in the behavior under investigation (e.g., 
sensitivity to alcohol) and then study the offspring to iden­
tify relevant QTLs and eventually determine which gene 
located in the vicinity of the QTL actually is responsible for 
the observed effect. The main problem with mapping 
QTLs in such simple intercrosses is that the DNA region, 
in which the QTL most likely is located (i.e., the 95 per­
cent confidence interval [CI]2 of the QTL), frequently is 
very large and may, in some cases, include an entire chro­
mosome. Darvasi and Soller (1995) provided a simple 
equation3 to calculate the 95 percent CI. Based on this 
equation, if researchers used 600 F2 animals to map a QTL 
with an effect size of 5 percent, the DNA region that would 
contain the QTL with 95 percent certainty would encom­
pass 25 centiMorgan (cM) or, for most chromosomes, 
between 35 and 50 million nucleotides—a region that typi­
cally contains hundreds of genes. To reduce this interval to 
a size that can be analyzed more easily (i.e., to about 1 cM), 
one would have to study 15,000 animals, which obviously 
is not feasible. It therefore seems safe to say that the issue 
of reducing the QTL interval (given the generally modest 
effect size of most behavioral QTLs) has been the biggest 
impediment in moving from identifying QTLs to identify­
ing the actual quantitative trait gene(s) (QTGs) and eventu­
ally even the relevant nucleotides in those genes (i.e., the 
quantitative trait nucleotide[s] [QTNs]). Accordingly, 
relatively few QTGs have been identified unambiguously 
that contribute to behavioral phenotypes (e.g., Yalcin et 
al. 2004), and only one of these—a gene called Mpdz— 
is associated with an alcohol-related trait (i.e., acute alcohol 
withdrawal) (Fehr et al. 2002; Shirley et al. 2004). 

In recent years, however, several strategies have 
emerged that may help reduce the QTL interval and there­
by facilitate the identification of QTGs. This article briefly 
describes two approaches—multiple cross and heteroge­
neous stock mapping. Additional approaches are described 
in the following article by Denmark and colleagues (pp. 
266–269). 

2 As with other parameters, the location of a QTL cannot be determined exactly based 
on measurements in just a few animals. Instead, a CI is calculated using statistical mod­
els that gives an estimated range of values which likely includes the unknown parameter. 
A 95 percent CI means that the likelihood of the estimated range including the actual 
value is 95 percent. The CI is calculated from a given set of sample data, and the more 
data are available, the more accurate the estimate will be and the smaller the range of 
values for the CI will be. A very wide CI indicates that more data should be collected 
before the parameter can be determined accurately. 

3 According to this equation, CI = 1,500/Nd2, where d = the standardized gene effect; 
the constant 1,500 was determined empirically from computer simulations and is not 
related to genome size. 

Multiple Cross Mapping 

The concept of combining (i.e., integrating) data obtained 
from intercrosses of several inbred strains (i.e., multiple 
crosses) is being used widely to improve QTL characterization 
for traits of agricultural value (see, for example, Christiansen 
et al. 2006; Khatkar et al. 2004). The application of this 
approach, which has been termed multiple cross mapping 
(MCM), to traits of physiological and behavioral interest 
also is becoming more frequent (e.g., Hitzemann et al. 2000, 
2002, 2003; Jagodic and Olsson 2006; Li et al. 2005; 
Malmanger et al. 2006; Park et al. 2003; Wergedal et al. 
2007; Wittenburg et al. 2005). Our interest in MCM was 
triggered by the observation that QTL data generated by 
three different mouse F2 intercrosses in three different labo­
ratories4 apparently all detected the same QTL on a part of 
mouse chromosome 1 that was associated with open-field 
activity (Flint et al. 1995; Gershenfeld et al. 1997; Koyner et 
al. 2000); however, the QTL was not detected in a cross of 
two other mouse strains5 (Hitzemann et al. 2000). Hitzemann 
and colleagues (2000) proposed that the information obtained 
with multiple crosses could be used to develop an empirical 
algorithm for sorting microsatellite markers in order to 
detect chromosomal regions with the highest probability of 
containing QTLs. 

The principle underlying this theory was that since 
the inbred mouse strains used actually are closely related, 
the data described above suggests that there must be a 
region or regions on chromosome 1 where three strains 
(i.e., DBA/2J, BALB/cJ and A/J strains) are identical and 
different from the fourth strain (i.e., C57BL/6J strain). 
It is perhaps easiest to visualize this in binary terms, where 
0 and 1 represent different nucleotides; in a region of 
interest, the three similar strains could have the structure 
“0100011100” while the C57BL/6J strain would have the 
structure “1011100011.” These different patterns are 
termed differences in haplotype structure. Accordingly, 
the three strains carry one unit of haplotype structure and 
the C57BL/6J strain carries a different unit. The haplotype 
difference could involve a single nucleotide polymorphism 
(SNP) or, as in the example above, multiple SNPs. 
Knowing the regions where the strains are similar and 
where they differ enhances QTL analyses because it pro­
vides additional information and thus greater statistical 

4 The studies involved crosses of C57BL/6J mice with BALB/cJ mice (Flint et al. 1995), 
A/J mice (Gershenfeld et al. 1997), and DBA/2J mice (Koyner et al. 2000). 

5 This intercross involved BALB/cJ mice and LP/J mice (Hitzemann et al. 2000). 
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power. Even more details of this haplotype structure 
became available when researchers developed dense maps 
that showed the location of SNPs in multiple mouse 
strains (e.g., Wade et al. 2002). These maps confirmed 
that some regions of the genome contain very few SNPs, 
whereas others contain many SNPs. A QTL was pre­
sumed to have a greater likelihood of being associated 
with the SNP-dense region than with the SNP-poor 
region where there is very little genetic variation. 

When conducting MCM analyses, researchers often 
use “crosses of convenience”—that is, they draw on data 
obtained in studies that they and other groups have con­
ducted with the strains they were using to address specific 
research questions. One problem associated with this 
approach, however, is that often there are missing data. 
For example, consider the data that originally led to our 
development of MCM. The three studies on which the 
analysis was based involved four different inbred mouse 
strains, but only three different crosses of these animals 
were analyzed; data for the remaining possible crosses 
were not available. Without this information, however, 
the true haplotype structure of the QTL cannot be deter­
mined. To address this issue, we created a balanced panel 
of crosses from four inbred strains in which every strain 
was crossed with every other strain and have used this 
panel to map QTLs for open-field activity and alcohol-
induced locomotion (Hitzemann et al. 2003; Malmanger 
et al. 2006). With this approach, the MCM algorithm 
markedly reduced the QTL CIs and correctly predicted 
QTL position and haplotype structure as determined by 
heterogeneous stock (HS) mapping, which is described in 
the following section. 

Heterogeneous Stock Mapping 

The problem associated with conducting de novo MCM 
rather than using a convenience sample of already available, 
but incomplete, crosses is that it requires a lot of work and 
many animals. Assuming that, as described above, at least 
about 600 animals are needed to identify a QTL using an 
intercross of two inbred strains, then the genetic makeup 
(i.e., genotype) and relevant behavioral and physical charac­
teristics (i.e., the phenotype) of 2,400 animals would have to 
be determined to obtain a balanced panel for four inbred 
strains. Although genotyping has become much easier with 
the availability of high-throughput devices to map SNPs, the 
overall effort is still considerable and costly. These considera­
tions have prompted the emergence of HS mapping as an 
alternative strategy that is precise and provides good infor­
mation on haplotype structure. 

In heterogeneous populations, all individuals have 
diverse genetic backgrounds. For example, one commonly 
used heterogeneous mouse stock was generated by inter­
breeding animals from eight genetically diverse inbred 
strains (Phillips 2002). HS mapping was first described 
by Talbot and colleagues (1999) who used it to identify 

QTLs associated with the phenotype of open-field activity. 
The investigators were able to map numerous QTLs with 
high precision. However, the analyses did not detect 
QTLs associated with this phenotype that previously had 
been mapped in an F2 intercross population. Mott and 
colleagues (2000) provided a solution to this problem by 
developing a mapping algorithm termed HAPPY, which 
was designed to map QTLs in any HS population derived 
from known inbred strains without requiring further 
pedigree information.6 The HAPPY algorithm found the 
previously detected QTLs in the HS mapping and also 
determined that the QTLs had the expected haplotype 
structure. Knowing the QTL signature is of considerable 
value when integrating QTL, gene expression, and gene 
sequence data. 

There can be differences between the results achieved 
with HS mapping and those achieved with mapping in F2 
intercross populations (see figure 15). For example, when 
analyses of a QTL on chromosome 2 that is associated 
with alcohol-induced locomotor response were conducted 
using F2 animals obtained by crossing C57BL/6J and 
DBA/2J mice, the resulting QTL interval was very broad 
(Demarest et al. 1999). Moreover, the investigators deter­
mined that those QTL alleles that the animals had inher­
ited from the C57B6/6J mice were associated with a 
decreased response to alcohol. The same researchers then 
attempted to map the QTLs related to the ethanol response 
phenotype in an HS that was formed by crossing eight 
inbred mouse strains, including C57BL/6J and DBA/2J 
animals (Demarest et al. 2001). The analysis relied on 
microsatellite genotyping and simply classified alleles as 
either being similar to those found in C57BL/6J or being 
different from C57BL/6J alleles. This analysis detected 
multiple QTLs in the region of interest; furthermore, the 
C57BL/6J alleles were associated with both increased and 
decreased ethanol response. These findings suggest that 
the HR mapping approach is more sensitive than the F2 
intercross approach and generates a greater variety of 
QTLs because none of the data suggest that these multi­
ple QTLs also were present in the F2 intercross (although 
they also would have been invisible to the type of analysis 
used by Demarest and colleagues [1999]). Finally, Malmanger 
and colleagues (2006) performed QTL mapping for the 
ethanol response phenotype in an HS population generated 
by crossing four inbred strains (i.e., C57BL/6J, DBA/2J, 
LP/J, and BALB/cJ mice).7 This approach also detected a 
QTL peak in the region of interest that spanned a region 
of 1 to 2 million nucleotides. Moreover, the investigators 
determined the haplotype structure of the QTL and noted 
that the B6 allele was associated with decreased ethanol 

6 With this algorithm, the analysis basically occurs in two steps: (1) the ancestral haplo­
type is reconstructed using dynamic programming and then (2) QTLs are analyzed using 
linear regression. 

7 The mapping was done at generation 19, which represents an approximately 10-fold 
expansion of the genetic map because with each generation additional recombinations are 
added that allow for finer mapping. In addition, the researchers used a dense SNP panel. 
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response. The integration of these data
(i.e., position and haplotype of the 
QTL) with gene expression databases 
suggests a strong candidate QTG 
called Scgn5 (also known as 7B2 and 
Sgne1), which encodes a protein called 
secretogranin 5 (Malmanger et al. 2006). 

Currently, four mouse HS popula­
tions are available to investigators. 
One of these, the HS/Ibg, which was 
formed by crossing eight inbred labo­
ratory mouse strains,8 is available 
through the Institute for Behavioral 
Genetics. The other three populations 
are maintained by the first author and 
include the HS4 population described 
in the previous paragraph, the HS– 
NPT population (see Valdar et al. 
2006), and the HS–CC population 
(an eight-way cross that contains three 
mouse strains derived from the wild). 
These HS populations are freely available. 
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Figure 15 	Three strategies for mapping a quantitative trait locus (QTL) on mouse 
chromosome 2 that is associated with acute ethanol locomotor response. 
The characteristic (i.e., phenotype) tested is the difference in activity 
between the administration of saline and the administration of 1.5 g/kg 
ethanol, measured in 5-minute intervals between 0 and 20 minutes after 
the injection. The top panel illustrates the result of a QTL mapping analysis 
in a C57BL/6J x DBA/2J F2 intercross (N = 600) (Demarest et al. 1999). 
The second panel illustrates mapping of the same phenotype in heteroge­
neous stock [HS-NPT] mice (N = 500) at generation 32 (Demarest et al. 
2001). Data were analyzed in a marker-by-marker design; all markers 
were microsatellites and were classified as C57BL/6J–like or different. A 
positive F value indicates that a non-C57 allele is associated with an 
increased ethanol response. The HS analysis detected several QTLs that 
were not found in the F2 intercross analysis. The bottom panel shows the 
results of mapping the same phenotype using heterogeneous stock [HS4] 
animals (N = 575) at generation 19 and using a panel of closely spaced 
SNPs as markers (Malmanger et al. 2006). The bar at the top shows the hap­
lotype structure across the region of interest. 

NOTE: The LOD (logarithm [base 10] of odds) is a measure of the degree of linkage between a given DNA region 
or gene and a specific trait. 

Conclusion 

QTL mapping has become an impor­
tant aspect of efforts to determine the 
genetic basis of complex behaviors, such 
as alcohol-drinking behaviors. With new 
approaches to gene mapping, such as 
multicross mapping and HS mapping, 
which improve the accuracy with which 
QTLs can be located on the chromosomes, 
the identification of additional candidate 
QTGs likely is only a matter of time.  ■ 

8 Two of these strains are no longer available. 
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