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Abstract
We consider the problem of decomposing a signal into a linear combination of features, each a
continuously translated version of one of a small set of elementary features. Although these
constituents are drawn from a continuous family, most current signal decomposition methods rely
on a finite dictionary of discrete examples selected from this family (e.g., shifted copies of a set of
basic waveforms), and apply sparse optimization methods to select and solve for the relevant
coefficients. Here, we generate a dictionary that includes auxiliary interpolation functions that
approximate translates of features via adjustment of their coefficients. We formulate a constrained
convex optimization problem, in which the full set of dictionary coefficients represents a linear
approximation of the signal, the auxiliary coefficients are constrained so as to only represent
translated features, and sparsity is imposed on the primary coefficients using an L1 penalty. The
basis pursuit denoising (BP) method may be seen as a special case, in which the auxiliary
interpolation functions are omitted, and we thus refer to our methodology as continuous basis
pursuit (CBP). We develop two implementations of CBP for a one-dimensional translation-
invariant source, one using a first-order Taylor approximation, and another using a form of
trigonometric spline. We examine the tradeoff between sparsity and signal reconstruction accuracy
in these methods, demonstrating empirically that trigonometric CBP substantially outperforms
Taylor CBP, which in turn offers substantial gains over ordinary BP. In addition, the CBP bases
can generally achieve equally good or better approximations with much coarser sampling than BP,
leading to a reduction in dictionary dimensionality.

I. Introduction
The decomposition of signals into sparse linear combinations of features is an important and
well-studied problem, and plays a central role in many applications. A surge of recent effort
focuses on representing a signal as a noisy superposition of the smallest possible subset of
features drawn from a large finite dictionary. However, many real signals are generated by
processes that obey natural invariances (e.g., translation-invariance, dilation-invariance,
rotation-invariance). For example, the acoustic features of many sounds can occur at
arbitrary times, dilations, or frequencies. In photographic images, features can occur at
various spatial locations, scales, and orientations. Radar [1] and seismic [2] signals are often
composed of elementary features that are translated and frequency-modulated. For these
signals, a desirable goal is to identify features in the signal along with their associated
amplitudes and transformation parameters.
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In the majority of published examples, this problem is solved by constructing a finite
dictionary that reflects the invariant structure: one discretely samples the transformation
parameters and applies these to a finite set of elementary features. For example, dictionaries
for sound processing, whether hand-constructed or learned, are commonly “convolutional”,
containing time-delayed copies of template waveforms (e.g., [3], [4], [5]). Dictionaries for
image representation typically contain features that are translated, and in some cases, dilated
and rotated (e.g., [6], [7], [8], [9]).1 Using this finite dictionary {φi(t)}, one then attempts to
optimize the corresponding coefficients:

(1)

where y(t) is a noisy observation, x⃗ is a coefficient vector, ε bounds the L2 norm of the noise,
and ||·||0 indicates the L0 pseudonorm (number of nonzero elements). In general, this
objective can only be minimized via exhaustive search of all 2d subsets of the dictionary,
making it infeasible in practice. However, two broad classes of approximate solutions have
been widely studied in the literature. The first consists of greedy methods, dating back to
variable selection methods in the 1970s ([13]). These methods are exemplified by the well-
known “matching pursuit” algorithm of Mallat and Zhang [14], and include a variety of
more recent “iterative thresholding” methods [15], [16], [17], [18], [19]. The general idea is
to solve sequentially for the nonzero coefficients, at each step choosing the dictionary
element(s) that best explain the current residual. The second category of solutions arises
from convex relaxations of Eq. (1), which typically employ the L1 norm [20], [21].

The use of a finite dictionary allows one to approximate the full nonlinear problem with a
more tractable linear inverse problem. However, the ability of this discrete dictionary to
compactly represent signals depends critically on the spacing at which the dictionary is
sampled. In general, a very fine sampling is required, resulting in a very large and ill-
conditioned dictionary. This ill-conditioning, in turn, is unfavorable for the approximation
methods mentioned above. Furthermore, it is unclear how to estimate the underlying
amplitudes and transformation parameters from the coefficients.

Here, we propose an alternative linear approximation to the full nonlinear problem. We
focus on the problem of translation-invariant, one-dimensional signals (although the
methods generalize to other transformations, and higher dimensions). We construct a group
of functions that can span local translations of the feature templates via continuous variation
of their coefficients (as a concrete example, consider the original templates and their
derivatives, which can approximate local translations through a first-order Taylor
approximation). A signal of interest is then represented in this dictionary by “block-sparse”
coefficients, where each non-zero coefficient block represents an amplitude-scaled and
translated template. We formulate an objective function in which the coefficients are
constrained so as to only represent scaled/transformed templates, and use an L1 penalty to
impose sparsity on the blocks. The advantage of this approach over ordinary BP is three-
fold: (1) better approximation of translation-invariant signals, (2) a smaller basis, which
leads to sparser solutions via convex optimization, and (3) an explicit mapping from this
representation to amplitudes and transformation parameters. An early version of this work
was presented in [22].

1Many examples of sparse decomposition on images have been applied to non-overlapping square blocks of pixels (e.g., [10], [11],
[12]), but the effective dictionary for representing the entire image is the union of dictionary elements for each block, and thus consists
of translated copies of the block dictionary elements.
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II. Problem formulation
We begin by formulating a simple generative model for translation-invariant signals, as well
as the maximum-aposteriori (MAP) estimation framework for inferring the most likely
parameters given the observed signal. Assume we observe a signal that is a noisy
superposition of scaled time-shifted copies of a single known elementary waveform f(t) on a
finite interval [0, T]:

(2)

where η(t) is a Gaussian white noise process with power σ2, the event times {τj} are a
Poisson process with rate μ, and the event amplitudes {aj} are drawn independently from a
density PA(a). The inverse (inference) problem is to recover the most likely parameters {τj,
aj} given y(t). This amounts to maximizing the posterior distribution P ({τj, aj}|y(t)), which
reduces, on taking the negative log, to solving:

(3)

Unfortunately, solving Eq. (3) directly is intractable, due to the discrete nature of N and the
nonlinear embedding of the τj’s within the argument of the waveform f(·). It is thus desirable
to find alternative formulations that (i) approximate the signal posterior distribution well, (ii)
have parameters that can be tractably estimated, and (iii) have an intuitive mapping back to
the original representation.

III. Conventional solution: discretization and BP
A standard simplification of the problem is to discretize the event times at a spacing that is
fine enough that the Poisson process is well-approximated by a Bernoulli process. The
interval [0, T] is divided into NΔ = ⌈T/Δ⌉ time bins of size Δ, and μΔ approximates the
probability of an event in each bin.2 This discrete process is represented by a vector x⃗ ∈
ℝNΔ, whose elements xi are interpreted as the amplitude of any event in the interval

( ). The corresponding prior probability distribution on each xi is a mixture of
a point mass at zero, and PA(·):

(4)

By taking the log and applying standard approximations, the MAP estimation for this model
can be approximated by:

(5)

where FΔ is a linear operator representing a fixed dictionary of time-shifted copies of f(·):

2The probability of two or more events is O(Δ2), which is negligible for Δ small.
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(6)

The advantage of the time discretization is that the data fidelity term is now a quadratic
function of the parameters. Despite this, solving Eq. (5) exactly is NP-hard due to the L0
term [23], and so we must either resort to approximate algorithms, or introduce further
approximations in the objective. A well-known convex relaxation (known as the LASSO
[20] or basis pursuit denoising [21]) replaces the nonconvex prior terms in Eq. (5) with an L1
penalty term, resulting in:

(7)

where λ > 0 is a parameter to be determined. This was previously applied in the
convolutional setting, for example in [24], [25]. Note that probabilistically, the second term
indicates that we have effectively approximated the nonconvex mixture prior of Eq. (4) with
a Laplacian distribution, P (x) ∝ e−λ|x|.

The global optimum of Eq. (7) can be found using standard quadratic programming
methods. A well-known article by Candès et al. [26] provides sufficient conditions under
which L1-minimizing solutions are good approximations for L0-minimizing solutions (up to
a term that is linear in the L2 norm of the noise). Roughly speaking, the condition limits the
correlations between small subsets of dictionary elements. However, this condition is rarely
satisfied in the convolutional setting (even when f is smooth) because the validity of the
discrete approximation typically requires Δ to be quite small, resulting in a highly correlated
dictionary FΔ. In addition to these concerns about the tradeoff between the quality of
discrete approximation and the convex relaxation, the discretization of time also leaves us
with no well-defined mapping between the solution of Eq. (5) and the continuous parameters
{τj, aj} that optimize the original objective of Eq. (3).

One can understand the extent of these problems more concretely by focusing on a single
time-shifted waveform f(t − τ) with τ ∈ (0, Δ), and a dictionary containing the feature at two
gridpoints: FΔ = [f (t), f (t − Δ)]. Equation (7) is then a 2D problem, as illustrated in Fig.
2(a). The optimal solution corresponds to a point at which an elliptical level curve of the
first (L2) term is tangent to a straight-line level curve of the L1 term. Note that the ellipses
are stretched in the direction parallel to the L1 level lines, because trading off amplitude
between the two coefficients does not substantially change the reconstruction error when Δ
is small (specifically, one can show mathematically that the two right singular vectors of the
basis matrix are parallel and orthogonal to the L1 level curves). Also shown in Fig. 2(a) is
the family of solutions that are obtained as λ varies from 0 to +∞ (red path). Notice that
these solutions are not sparse in the L0 sense (i.e., they do not intersect either of the two
axes) until λ is so large that the signal reconstruction is quite poor. This is the case
regardless of how small Δ is, and is due both to the failure of the L1 norm to approximate the
L0 pseudonorm and to the inability of the discrete model to account for continuous event
times. In the following sections, we develop and demonstrate a proposed solution for these
problems.

IV. Continuous basis pursuit
The motivation for the discretization of the inference problem was tractability. Equation (5)
approximates the original model well in the limit as Δ goes to 0, but it is only tractably
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solvable in regimes where Δ is large enough so that correlations are limited and L1-based
relaxations can be employed. In this section, we augment the discrete model by
incorporating variables to account for the continuous nature of the event times, and adapt the
LASSO to solve this augmented representation. By accounting for continuous time-shifts,
the augmented model not only approximates the original model better (and for a larger range
of Δ), but also admits sparser solutions via an L1-based recovery method. We refer to this
method as continuous basis pursuit (CBP).

We return to the original formulation of Eq. (3), but we assume (without loss of generality)
that the waveform is normalized, ||f(t)||2 = 1, and that the amplitudes, {aj}, are all
nonnegative. Our noisy observation arises from a linear superposition of time-shifted
waveforms, f(t − τ) abbreviated as fτ (t). The set of all time-shifted and amplitude-scaled
waveforms constitute a nonlinear 2D manifold:

(8)

The discretized dictionary, FΔ, provides a linear subspace approximation of this manifold, as
illustrated in Fig. 1(a). But the representation of a single element of the manifold
(corresponding to a translated scaled copy of the waveform) will typically be approximated
by the superposition of several elements from the dictionary FΔ. We can remedy this by
augmenting the dictionary to include interpolation functions, that allow better
approximation of the continuously shifted waveforms. We describe two specific examples of
this method, and then provide a general form.

A. Taylor interpolation
If f(t) is sufficiently smooth, one can approximate local shifts of f(t) by linearly combining
f(t) and its derivative via a first-order Taylor expansion:

(9)

This motivates a dictionary consisting of the original shifted waveforms, {fi Δ (t)}, and their

derivatives, { }. We choose a basis function spacing, Δ, as twice the maximal time-
shift such that the first-order Taylor approximation holds within a desired accuracy, δ:

(10)

We can then approximate the manifold of scaled and time-shifted waveforms using
constrained linear combinations of dictionary elements:

(11)

There is a one-to-one correspondence between sums of waveforms on the manifold  and
their respective approximations with this dictionary:
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(12)

This correspondence holds as long as  (which corresponds to the situation where
the the waveform is displaced exactly halfway in between two lattice points, and can thus be
equally well represented by the basis function and associated derivative on either side). This
is illustrated in Fig. 1(b). The inequality constraint on d is essential, and serves two
purposes. First, it ensures that the Taylor approximation is only used when it is accurate, so
that only time-shifted and scaled waveforms are used in reconstructing the signal. Second, it

discourages neighboring pairs (fiΔ, ) and (f(i+1)Δ, ) from explaining the same event.
The inference problem is now solved by optimizing a constrained convex objective
function:

(13)

where the dictionary FΔ is defined as in Eq. (6), and  is a dictionary of time-shifted

waveform derivatives { }. Equation (12) provides an explicit mapping from
appropriately constrained coefficient configurations to event amplitudes and timeshifts.
Figure 2(b) illustrates this objective function for the same single-waveform example
described previously. The shaded regions are the level sets of the L2 term of Eq. (13)
visualized in the (x1, x2)-plane by minimizing over the derivative coefficients (d1, d2). Note
that unlike the corresponding BP level sets shown in Fig. 2(a), these are no longer elliptical,
and that they allow sparse solutions (i.e., points on the x1 axis) with low reconstruction
error. As a result, for λ sufficiently large, the solution of Eq. (13) is not only sparse in the L0
sense, but also provides a good reconstruction of the signal.

B. Polar interpolation
Although the Taylor series provides the most intuitive and well-known method of
approximating time-shifts, we have developed an alternative interpolator that is much more
accurate. The solution is motivated by the observation that the manifold of time-shifted
waveforms, fτ(t), must lie on the surface of a hypersphere (because the waveform L2-norm is
preserved under translation), and furthermore, must have a constant curvature (by
symmetry). This leads to the notion that it might be well-approximated by an arc of a circle.
As such, we approximate a segment of the manifold, { }, by the unique circular
arc that contains the three points {f−Δ/2, f0, fΔ/2}, as illustrated in Fig. 3(a). The resulting
interpolator is an example of a trigonometric spline [27], in which the three time-shifted
functions are linearly combined using trigonometric coefficients to approximate
intermediate translates of f(t):

(14)

The functions {c(t), u(t), v(t)} are computed from linear combinations of {f−Δ/2, f0, fΔ/2}:
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(15)

The constants r and θ are the radius and half the subtended angle of the arc, respectively,
both of which depend on f(t) and can be computed in closed form. These relationships are
illustrated in Fig. 3(b). Combining Eq. (14–15) gives:

(16)

where A is the matrix in Eq. (15). The approximation can be more clearly understood in the
frequency domain by taking the Fourier transform and dividing both sides by f̂(ω):

(17)

where

Figure 4 compares nearest neighbor (implicitly used in BP), first-order Taylor, and polar
interpolation in terms of their accuracy in approximating time-shifts of a Gaussian derivative
waveform, f(t) ∝ te−αt2. For reference, the second-order Taylor interpolator is also included.
The polar interpolator is seen to be much more accurate than nearest-neighbor and 1st-order
Taylor, and even surpasses 2nd-order Taylor by an order of magnitude (although they have
the same asymptotic rate of convergence). This allows one to choose a much larger Δ for a
given desired accuracy.

We now construct a dictionary of time-shifted copies of the functions used to represent the
polar interpolation, {ciΔ, uiΔ, viΔ}, and form a convex set from these to approximate the
manifold:

(18)

The constraints on the coefficients (x, y, z) ensure that they represent a scaled translate of
f(t), except for the second, which is a convex relaxation of the true constraint, y2 + z2 = x2r2

(see below). As with the Taylor approximation, we have a one-to-one correspondence
between event amplitudes/time-shifts and the constrained coefficients:

(19)
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as long as zi/yi ≠ tan(θ) for all i. The inference problem again boils down to minimizing a
constrained convex objective function:

(20)

where CΔ, UΔ, VΔ are dictionaries containing Δ-shifted copies of c(t), u(t), v(t), respectively.
Equation (20) is an example of a “second-order cone program” for which efficient solvers
exist ([28]). After the optimum values for {x⃗, y⃗, z⃗} are obtained, time-shifts and amplitudes
can be inferred by first projecting the solution back to the original constraint set:

(21)

and then using Eq. (19) to solve for the event times.

Figure 2(c) illustrates the optimization of Eq. (20) for the simple example described in the
previous section. Notice that the solution corresponding to λ = 0 (yellow dot) is substantially
sparser relative to both the CBP-T and BP solutions, and that the solution becomes L0 sparse
if λ is increased by just a small amount, giving up very little reconstruction accuracy.

C. General interpolation
We can generalize the CBP approach to use any linear interpolation scheme. Suppose we

have a set of basis functions  in L2([0, T]) and a corresponding interpolation map
 such that local shifts can be approximated as:

(22)

(e.g., Eq. (9) and Eq. (14)). Let S be the set of all nonnegative scalings of the image of
[ ] under the interpolator:

In general, S may not be convex (as in the polar case), and we denote its convex hull by . If
we have a set of coefficients x⃗ ∈ ℝNΔ×m where each block x⃗i := [xi1, …, xim] is in , then the
signal given by:

(23)

approximates a sum of scaled and translated waveforms. If D is invertible, the amplitudes
and shifts are obtained as follows:

(24)
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(25)

where PS(.) projects points in  onto S. Note that in this general form, the L2 norm of (the
projection of) each group x⃗i governs the amplitude of the corresponding time-shifted
waveform.3 Finally, we can obtain the coefficients by solving:

(26)

where the linear operator ΦΔ is defined as:

Equation (26) can be solved efficiently using standard convex optimization methods (e.g.,
interior point methods [28]). It is similar to the objective functions used to recover so-called
“block-sparse” signals (e.g., [12], [29]), but includes auxiliary constraints on the coefficients
to ensure that only signals close to span( ) are represented. Table I summarizes the
Taylor and polar interpolation examples within this general framework, along with the case
of nearest-neighbor interpolation (which corresponds to standard BP).

The quality of the solution relies on the accuracy of the interpolator, the convex
approximation  ≈ S, and the ability of the block-L1 based penalty term in Eq. (26) to
achieve L0-sparse solutions that reconstruct the signal accurately. The first two of these are
relatively straightforward, since they depend solely on the properties of the interpolator (see
Fig. 4). The last is difficult to predict, even for the simple examples illustrated in Figure 2.
The level sets of the L2 term can have a complicated form when taking the constraints into
account, and it is not clear a priori whether this will facilitate or hinder the L1 term in
achieving sparse solutions. Nevertheless, our empirical results clearly indicate that solving
Eq. (26) with Taylor and polar interpolators yields substantially sparser solutions than those
achieved with standard BP.

V. Empirical results
We evaluate our method on data simulated according to the generative model of Eq. (2).
Event amplitudes were drawn uniformly from the interval [0.5, 1.5]. We used a single
template waveform f(t) ∝ te−αt2 (normalized, so that ||f||2 = 1), for which the interpolator
performances are plotted in Fig. 4. We compared solutions of Eqs. (7), (13), and (20).
Amplitudes were constrained to be nonnegative (this is already assumed for the CBP
methods, and amounts to an additional linear inequality constraint for BP). Each method has
two free parameters: Δ controls the spacing of the basis, and λ controls the tradeoff between
reconstruction error and sparsity. We varied these parameters systematically and measured
performance in terms of two quantities: (1) signal reconstruction error (which decreases as λ
or Δ decreases), and (2) sparsity of the estimated event amplitudes, which increases as λ
increases. The former is simply the first term in the objective function (for all three
methods). For the latter, to ensure numerical stability, we used the Lp norm with p = 0.1

3Our specific examples used the amplitude of a single coefficient as opposed to the group L2 norm. However, the constraints in these

examples make the two formulations equivalent up to O(Δ). For the Taylor interpolator, . For the polar interpolator,

.
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(results were stable with respect to the choice of p, as long as p < 1 and p was not below the
numerical precision of the optimizations). Computations were performed numerically, by
sampling the functions f(t) and y(t) at a fine constant spacing. We used the convex solver
package CVX [30] to obtain numerical solutions.

A small temporal window of the events recovered by the three methods is provided in Fig. 5.
The three plots show the estimated event times and amplitudes for BP, CBP-T, and CBP-P
(upward stems) compared to the true event times/amplitudes (downward stems). The figure
demonstrates that CBP, equipped with either Taylor or polar interpolators, is able to recover
the event train more accurately, and with a larger spacing between basis functions (indicated
by the tick marks on the x-axis). As predicted by the reasoning laid out in Figure 2(a), basis
pursuit tends to split events across two or more adjacent low-amplitude coefficients, thus
producing less sparse solutions and making it hard to infer the number of events and their
respective amplitudes and times. Sparsity can be improved by increasing λ, but at the
expense of a substantial increase in approximation error.

Figure 6 illustrates the tradeoff between sparsity and approximation error for each of the
methods. Each panel corresponds to a different noise level. The individual points, color-
coded for each method, are obtained by running the associated method 500 times for a given
(Δ, λ) combination, and averaging the errors over these trials. The solid curves are the
(numerically computed) convex hulls of all points obtained for each method, and clearly
indicate the tradeoff between the two types of error. We can see that the performance of BP
is strictly dominated by that of CBP-T: For every BP solution, there is a CBP-T solution that
has lower values for both error types. Similarly, CBP-T is strictly dominated by CBP-P,
which can be seen to come close to the error values of the ground truth answer (which is
indicated by a black dot). Note that the reconstruction error of the true solution and of all
methods is bounded below by the variance of the noise that lies outside of the subspace
spanned by the set of shifted copies of the waveform.

We performed a signal detection analysis of the performance of these methods, classifying
identification errors as misses and false positives. We match an estimated event with a true
event if the estimated location is within 3 samples of the true event time, the estimated

amplitude is within a threshold  of the true amplitude (one standard deviation of the
amplitude distribution Unif ([0.5, 1.5])), and no other estimated event has been matched to
the true event. We found that results were relatively stable with respect to the threshold
choices. For each method and noise level we chose the (λ, Δ) combination yielding a
solution closest to ground truth (corresponding to the large dots in Figure 6). Figure 7 shows
the errors as a function of the noise level. We see that performance of all methods is
surprisingly stable across SNR levels. We also see that BP performance is dominated at all
noise levels by CBP-T, which has fewer misses as well as fewer false positives, and CBP-T
is similarly dominated by CBP-P.

Finally, Fig. 8 shows the distribution of the amplitudes estimated by each algorithm, and
compare with the distribution of the source, as given by Eq. (4). We see that CBP-P
produces amplitude distributions that are far better-matched to the correct distribution of
amplitudes.

A. Multiple features
All the methods we described can be extended to the case of multiple templates by taking as
a dictionary the union of dictionaries associated with each individual template. We
performed a final set of experiments using two “gammatone” features (shown in upper left
of Fig. 9), which are commonly used in audio processing. Event times were sampled from
two correlated Poisson processes with the same marginal rate λ0 and a correlation of ρ = 0.5.
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These were generated by independently sampling 2 Poisson process with rate λ0(1 − ρ) and
then superimposing a randomly jittered “common” Poisson process with rate λ0ρ. As before,
event amplitudes were drawn uniformly from the interval [0.5, 1.5]. We compared the
performance of BP and CBP-P, in both cases using dictionaries formed from the union of
dictionaries for each template with a common spacing, Δ, for both templates. In general, the
spacing could be chosen differently for each waveform, providing more flexibility at the
expense of additional parameters that must be calibrated. The upper right and lower left
plots in Fig. 9 show the error tradeoff for different settings of (Δ, λ) at SNR levels of 48 and
12, respectively (the results were qualitatively unchanged for SNR values of 24 and 6). The
lower right plot in Fig. 9 plots the total number of event identification errors (misses plus
false positives) for each method as a function of SNR, at each method’s optimal (Δ,λ)
setting.

VI. Discussion
We have introduced a novel methodology for sparse signal decomposition in terms of
continuously shifted features. The method can be seen as a continuous form of the well-
known basis pursuit method, and we thus have dubbed it continuous basis pursuit. The
method overcomes the limitation of basis pursuit in the convolutional setting caused by the
tradeoff between discretization error and the effectiveness of the L1 relaxation for obtaining
sparse solutions. In particular, our method employs an alternative discrete basis (not
necessarily the features themselves) which can explicitly account for the continuous time-
shifts present in the signal. We derived a general convex objective function that can be used
with any such basis. The coefficients are constrained so as to represent only transformed
versions of the templates, and the objective function uses an L1 norm to penalize the
amplitudes of these transformed versions . We showed empirically that using simple first-
order (Taylor) and second-order (polar) interpolation schemes yields superior solutions in
the sense that (1) they are sparser, with improved reconstruction accuracy, (2) they produce
substantially better identification of events (fewer misses and false positives), and (3) the
amplitude statistics are a better match to those of the true generative model. We showed that
these results are stable across a wide range of noise levels. We conclude that an interpolating
basis, coupled with appropriate constraints on coefficients, provides a powerful and tractable
tool for modeling and decomposing sparse translation-invariant signals.

We believe our method can be extended for use with other types of signal, as well as to
transformations other than translation. For example, for one-dimensional signals such as
audio, one might also include dilation or frequency-modulation of the templates. Both the
Taylor and polar basis constructions can be extended to account for multiple
transformations. In the Taylor case, one only needs to add incorporate waveform derivatives
with respect to each transformation (with a separate constraint for each of their coefficients).
In the polar case, one can model the manifold of local (renormalized) translations and
dilations as a 2D patch on the surface of a sphere, ellipsoid, or torus (instead of a 1D arc)
which can be parameterized with two angles. For images, one could include rotation along
with dilation (e.g., [31]). In general, the primary hurdles for such extensions are to specify
(1) the form of the linear interpolation (for joint variables, this might be done separably, or
using a multi-dimensional interpolator), (2) the constraints on coefficients (and a convex
relaxation of these costraints), and (3) a means of inverting the interpolator so as to obtain
transformation parameters from recovered coefficients. Another natural extension is to use
CBP in the context of learning optimal features for decomposing an ensemble of signals, as
has been previously done with BP (e.g., [8], [10], [4], [11], [32]).

Although we have described the use of an interpolator basis in the context of L1-based
recovery methods, we believe the same representations can be used to improve other
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recovery methods (e.g., greedy or iterative thresholding methods with a convolutional basis).
Furthermore, our polar approximation of a translational manifold can provide a substrate for
new forms of sampling (e.g., [33], [34], [35]). By introducing a basis and constraints that
explicitly model the local geometry of the manifold on which the signals lie, we expect our
method to offer substantial improvements in many of the applications for which sparse
signal decomposition has been found useful.
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Fig. 1.
Illustration of the three approximations of the manifold of translates of the waveform, 
(a) The standard basis pursuit (BP) dictionary, FΔ, as used in Eq. (7), consists of discrete
time-shifts of the waveform f(t). (b) Continuous basis pursuit with first-order Taylor

interpolator (CBP-T), as specified by Eq. (13). Each pair of functions, (fiΔ, ), with
properly constrained coefficients, represents a triangular region of the space (shaded
regions). (c) Continuous basis pursuit with polar interpolation (CBP-P), as specified by Eq.
(20). Each triplet of functions, (ciΔ, uiΔ, viΔ), represents a section of a cone (see Fig. 3(b) for
parameterization).
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Fig. 2.
Geometry of convex objective functions for BP, CBP-T, and CBP-P methods, illustrated in
two dimensions. Signal consists of a single waveform, f(t − 0.65Δ), and the dictionary
contains two shifted copies of the waveform, {f(t), f(t − Δ)}, along with interpolating
functions appropriate for each method. Each plot shows the space of coefficients, {x1, x2},
associated with the two shifted waveforms. Contours of gray-scale regions indicate level
surfaces of reconstruction error (L2 norm term of the objective function). The blue star
indicates the true L0-minimizing solution. The L1 sparsity measure is the sum of the two
coefficient values, corresponding to the vertical position on the plot. Red curve indicates
family of solutions traced out as λ is increased from 0 (yellow dot) to infinity. Red points
along this path indicate equal increments in reconstruction accuracy, with enlarged point
indicating a common value for comparison across all three methods. (a) Standard BP
solution (Eq. (7)). (b) Continuous basis pursuit with Taylor interpolator (Eq. (13)), using a

basis of {f0, , fΔ, }. In this case, the iso-accuracy contours are computed by minimizing
the L2 error over all feasible values of the derivative coefficients, and are thus no longer
elliptical. (c) CBP with polar interpolation (Eq. (20)).
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Fig. 3.
Illustration of the polar interpolator. (a) The manifold of time shifts of f(t) (black line) lies
on the surface of a hypersphere. We approximate a segment of this manifold, for time shifts

, with a portion of a circle (red), with center defined by c(t). (b)
Parameterization of the circular arc approximation.
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Fig. 4.
Comparison of the nearest neighbor, first-order Taylor, and polar interpolators (as used in
BP, CBP-T, and CBP-P, respectively) for a waveform f(t) ∝ te−αt2. Second-order Taylor
interpolation are also shown. The estimated log-domain slopes (asymptotic rates of
convergence) are indicated in parenthesis in the legend.
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Fig. 5.
Sparse signal recovery using BP (Eq. (7)), CBP-T (Eq. (13)), and CBP-P (Eq. (20)). The
source was a sparse superposition of arbitrarily time-shifted copies of the function f(t) ∝
te−αt2. The SNR (defined as ||f||∞/σ) was 12 with identical signal and noise for all three
examples. For each method, the values of Δ and λ were chosen to minimize the sum of
squares of sparsity and reconstruction error (large dots in Fig. 6). Upward stems indicate the
estimated magnitudes, placed at locations determined by the interpolation coefficients via
Eq. (24). Amplitudes less than 0.01 were eliminated for clarity. Ticks denote the location of
the basis functions corresponding to each upward-pointing stem. Downward stems indicate
true locations and magnitudes.
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Fig. 6.
Error plots for 4 noise levels (SNR is defined as ||f||∞/σ)). Each graph shows the tradeoff
between the average reconstruction error and sparsity (measured as average L0.1 norm of
estimated amplitudes). Each point represents the error values for one of the methods, applied
with a particular setting of (Δ, λ), averaged over 500 trials. Colors indicate the method used
(blue:BP, green:CBP-T, red:CBP-P). Bold lines denote the convex hulls of all points for
each method. The large dots indicate the “best” solution, as measured by Euclidean distance
from the correct solution (indicated by black dots).
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Fig. 7.
Signal detection analysis of solutions at three SNR levels. (see text). Misses, false positives,
and total errors (sum of misses and false positives), as a fraction of the mean number of
events, were computed over 500 trials for each method, and for each SNR (defined as |f||∞/
σ)).
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Fig. 8.
Histograms of the estimated amplitudes for BP, CBP-T, and CBP-P, respectively. All
methods were constrained to estimate only nonnegative amplitudes, but no upper bound was
imposed. The true distribution of amplitudes is given by Eq. (4), and is indicated in red.
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Fig. 9.
Sparse signal decomposition with two wavefoms. Upper-left: Gammatone waveforms, fi(t) =
atn−1e−2πbt cos(2πωit) for i = 1, 2. Upper-right and lowe-left: Sparsity and reconstruction
errors for BP (blue) and CBP-P (red), as in Figure 6, with SNR’s of 48 and 12, respectively
(again, SNR is defined as ||f||∞/σ)). Lower right: total number of misses and false positives
(with same thresholds as in bottom plot of Figure 7) for each method.
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TABLE I

Property BP (nearest neighbor) CBP - Taylor interp CBP - polar interp

basis: 
[f(t)] [f(t), f′(t)] [c(t), u(t), v(t)]

interpolator: D⃗(τ) 1 [1, τ]T

constrained coefficient set: S {x1 ≥ 0}
{x1 ≥ 0, } {x1 ≥ 0, , rx1 cos(θ) ≤ x2 ≤ rx1}

convex relaxation: S S

{x1 ≥ 0, , rx1 cos(θ) ≤ x2 ≤ rx1}

projection operator: PS(x⃗) x⃗ x⃗
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