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Abstract
We describe a technique that uses tractography to visualize neural pathways in human brains by
extending an existing framework that uses overlapping Gaussian tensors to model the signal. At
each point on the fiber, an unscented Kalman filter is used to find the most consistent direction as
a mixture of previous estimates and of the local model. In our previous framework, the diffusion
ellipsoid had a cylindrical shape, i.e., the diffusion tensor’s second and third eigenvalues were
identical. In this paper, we extend the tensor representation so that the diffusion tensor is
represented by an arbitrary ellipsoid. Experiments on synthetic data show a reduction in the
angular error at fiber crossings and branchings. Tests on in vivo data demonstrate the ability to
trace fibers in areas containing crossings or branchings, and the tests also confirm the superiority
of using a full tensor representation over the simplified model.

1 Introduction
Diffusion-weighted magnetic resonance imaging has provided the opportunity for non-
invasive investigation of neural architecture of the brain. Neuroscientists use this imaging
technique to find out how neurons originating from one region in the brain connect to other
regions and how well-defined those connections are. The quality of the results of such
studies relies heavily on the chosen fiber representation and the reconstruction method, to
trace neural pathways.

For studying the microstructure of fibers, we need a model to interpret the diffusion-
weighted signal. There are two main categories for such models: parametric and non-
parametric models. The simplest parametric model is the diffusion tensor describing a
Gaussian estimate of the diffusion orientation and its strength in each voxel. Despite its
robustness, this model is inadequate in cases where several fiber populations cross, join or
split in one voxel [1,2]. Several parametric models have been introduced for handling more
complex diffusion patters such as mixtures of tensors [3–7], higher-order tensors [8],
diffusion orientation transforms [9] and directional functions [10–12]. When fitting the data,
one must make certain assumptions about the model. For example, the number of
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components present in a particular voxel must be determined [13]. As seen in this paper,
incorporating information from neighboring voxels helps in this process [14].

Usually non-parametric models contain more information about the diffusion pattern.
Instead of estimating a discrete number of fibers as in parametric models, non-parametric
techniques estimate the orientation distribution function (ODF) describing arbitrary fiber
configurations. Q-ball imaging [15] was invented to compute the ODF estimation
numerically using the Funk-Radon transform, and later on, the spherical harmonics would
simplify computations by providing an analytic form [16–18]. An algorithm for online direct
estimation of single-tensor and harmonic coefficients using a linear Kalman filter has
recently been introduced by [19]. Assuming a model for the signal response of a single fiber
and using spherical deconvolution provides another approach for obtaining an ODF [20–
22,11,23]. Good reviews of both parametric and non-parametric models are found in
[24,25].

Different techniques try to reconstruct neural pathways using the mentioned models. For
example, deterministic tractography methods directly follow the diffusion pathways. In the
case of a single-tensor model, one continuously follows the principal diffusion direction
[26]. Most multi-tensor techniques, on the other hand, try to find the number of fibers
present in a voxel and to detect branching pathways [27,6,28]. Particle and Kalman filters
have been used for path regularization in single-tensor streamline tractography [29–31]. A
further approach for regularizing single-tensor tractography uses a moving least squares
estimate which is weighted with the previous tensor [32]. Probabilistic tractography is an
alternative to deterministic path tracing methods. Typically these methods form probabilistic
notions of the connectivity based on sampling individual paths; it is an approach that
quantifies the uncertainty of connections [33,34,13,35]. Based on these local models, a third
class of algorithms has started to develop which attempts to optimize the fiber path instead
of just the local model [36–38].

While parametric methods directly describe the principal diffusion directions, interpreting
the ODFs from model independent representations usually involves finding the number and
orientation of principal diffusion directions present [39–41]. For example, one approach is to
deconvolve with a sharpening kernel before extracting maxima [25], while another approach
decomposes a high-order tensor into several rank-1 tensors [42].

Almost all of the listed approaches try to fit the model at each voxel independent of other
voxels, but tractography is a causal process, the next position on the fiber is always based on
the diffusion found at the previous position. Based on the unscented Kalman filter, Malcolm
et al. presented a filtering strategy that treats model estimation and tractography as a causal
process [43,44]. As the signal is examined at every new position, the filter recursively
updates the underlying local model parameters. Thereby the filter provides the variance of
that estimate and the most consistent direction in which the tractography is to be continued.
Using causal estimation in this way yields inherent path regularization and accurate fiber
resolution at crossing angles which is not found in independent optimization approaches.
The work proposed in this paper uses this filtering strategy as foundation.

1.1 Our contributions
We take the approach of Malcolm et al. but change the underlying fiber model. The
framework based on the unscented Kalman filter is generic and can be applied to arbitrary
fiber models with a finite dimensional parameter space. The unscented Kalman filter is a
good choice for the filter since the signal reconstruction is non-linear. Tractography works
with the filter first finding the estimates of the model parameters and then propagating in the
most consistent direction.
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The existing method of [44] models the diffusion signal with a subset of Gaussian tensors
where the second and third eigenvalues are identical, i.e., the diffusion ellipsoids are
cylindrical. In this work, we extend this framework such that diffusion can be modeled by an
arbitrary ellipsoid (no assumption on the eigenvalues).

By transforming these parameters, it is possible to describe the diffusion with three Euler
angles and three eigenvalues. In our experiments, we compare both methods; in particular,
we test the behavior in regions where crossing fiber populations are present.

Our implementation can model the diffusion signal with one, two or three Gaussian tensors.
The method also enables tractography directly from the raw signal data without separate
preprocessing or regularization steps.

2 Approach
Our approach traces neural fibers by using estimations from previous positions to guide the
estimation at the current position. An unscented Kalman Filter is used in a loop that
estimates the model at the current position, moves one step in the most consistent direction,
and then starts estimating again. Recursive estimation improves the accuracy of resolving
individual orientations and yields inherently smooth tracts despite the presence of noise and
uncertainty. Each iteration begins with a near-optimal solution provided by the previous
position’s estimation, and therefore, the convergence of model fitting is improved and many
local minima are naturally avoided.

First we explain in Section 2.1 how we model the signal with a mixture of tensors and how
our fiber model works. Then we show in Section 2.3 how this model can be estimated using
the unscented Kalman filter framework introduced in [43,44].

2.1 Modeling local fiber orientations
In diffusion-weighted imaging, the contrast is connected to the strength of water diffusion.
Our goal is to relate these signals to the underlying fiber model.

The water diffusion is measured in each voxel along a set of gradients, u1, …, un ∈ (on the
unit sphere). For each gradient, we record the corresponding signal, s = [s1, …, sn]T ∈ ℝn.
For voxels containing several fiber populations, the diffusion pattern can generically be
described by a mixture of several weighted Gaussian tensors. The signal values can then be
written as:

(1)

where s0 is the baseline signal which is obtained without applying any gradients, b is an
acquisition-specific constant known as b-value (which is a measurement of the strength of
the diffusion weighting), wj are convex weights, and Dj is a tensor matrix characterizing the
diffusion pattern.

Given the generic mixture model (1), we choose to work with two tensors. Our
implementation also supports one or three tensors but several studies have shown that a two-
fiber model performs best in our environment with b = 1000 s mm−2[4,6,28,39,7,13].
Second, we decided to weigh both tensors equally as suggested in the study of [39]. At a
first glance, this might seem to limit flexibility, but the unscented Kalman filter adjusts the
eigenvalues to better fit the signal. This has almost the same effect as scaling the tensors
[44].
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With those assumptions we end up with the following formulation of the fiber model:

(2)

where D1, D2 can each be written as D = λ1mmT + λ2ppT + λ3qqT, with m, p, q ∈ 
forming an orthonormal basis aligned with the axes of the diffusion ellipsoid. Our
implementation restricts each λ to be positive, and without loss of generality, we assume the
eigenvalues in decreasing order, i.e., λ1 ≥ λ2 ≥ λ3. m is the principal diffusion direction since
it corresponds to largest eigenvalue λ1. The model parameters are m1, p1, q1, λ11, λ21, λ31,
m2, p2, q2, λ12, λ22 and λ32. Malcolm et al. use a simplified model in [43,44] where the
second and third eigenvalues are equal, which yields the following formulation: D = λ1mmT

+ λ2 (ppT + qqT). Our model overcomes this simplification and allows for a better fit to the
signal. At first, it appears that the large number of free parameters in our new model might
be a drawback (the simpler model only has the parameters m1, λ11, λ21, m2, λ12 and λ22).
But as we are about to show in Section 2.2 it is possible to represent the orientation of the
diffusion tensor with Euler angles. Then we end up with six parameters per tensor, three
Euler angles plus three eigenvalues (the existing simpler model stores the principal diffusion
direction and two eigenvalues per tensor).

The formulation for the two-tensor model can directly be extended to a three-tensor version:

(3)

which uses the additional parameters m3, p3, q3, λ13, λ23, λ33.

2.2 Tensor representation with Euler angles
We use singular value decomposition to rewrite the diffusion tensor matrix D (in this special
case it is identical to using the eigenvalue decomposition since D is real, symmetric and
positive-definite) which yields:

(4)

with Q being a rotation matrix whose columns are the orthonormal eigenvectors of D and Λ
being a diagonal matrix containing the eigenvalues:

(5)

As in [45], we use the ZYZ Euler angle convention that allows splitting Q up into three
individual rotations around the z-axis, the y-axis and around the z-axis again. The amount of
the rotations is given by the Euler angles ϕ, θ, ψ:

(6)

where Ry, Rz are the rotation matrices around the y-and the z-axis, respectively:
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(7)

Fully written out, Q looks as follows:

(8)

(9)

(10)

Extracting the Euler angles from Q can be carried out as explained in [45]. θ = cos−1(Q33) is
trivial, and then, if θ ≠ 0 the other two angles can be obtained through ϕ = atan2(Q23, Q13)
and ψ = atan2(Q32, Q31), where atan2 is a function commonly defined in programming
languages. Otherwise if θ = 0, ϕ and ψ are not uniquely determined. One solution is ψ = 0,
and ϕ = atan2(−Q12, Q22) [45].

2.3 Estimating the fiber model
Given the scanned signal at a particular voxel, we want to estimate the underlying model
parameters that best explain this signal. Every fiber is treated as a trajectory of a particle. At
each step, we examine the measured signal, estimate the underlying model parameters, and
propagate forward in the most consistent direction, which is the principal diffusion direction
most aligned with the incoming vector.

Following we define the components used by the unscented Kalman filter:

1. The system state x: the model parameters

2. The state transition function f[·]: how the model changes as we trace the fiber

3. The observation function h[·]: how the signal appears given a particular state

4. The measurement y: the actual signal obtained from the scanner

The state vector is given by:

(11)

where ϕ, θ, ψ, ∈ ℝ and λ ∈ ℝ+. Since the local fiber configuration does not drastically
change from one position to the next, we assume identity dynamics for the state transition
function f[·]. Our observation h[·] is the signal reconstruction, s = [s1, …, sn]T which is given
as the left hand side of (2). Using (6) and (4) allows to calculate the diffusion tensor matrix
Dfrom the Euler angles, which is then plugged into (2). The measurement y is the actual
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signal from the diffusion-weighted images. At subvoxel positions, we interpolate directly on
the signal.

The signal reconstruction is a non-linear process, and therefore, we use an unscented
Kalman filter. A Kalman filter tries to reconcile the predicted state of the system with the
measured state. The prediction and measurement processes can be non-linear in the
unscented version, whereas they are only linear in the classic Kalman filter. The extended
Kalman filter would have been an alternative. However, the extended Kalman filter is only a
first-order approximation whereas the unscented version is accurate up to the second-order
moment of the state distribution. See [46,47] for more details about the unscented Kalman
filter, particularly [23] shows the superiority of the unscented Kalman filter over the
extended Kalman filter.

Particle filters would be another approach for non-linear estimation, but their number of
particles used is exponential to the state dimension n. In contrast, the unscented Kalman
filter requires a linear number of particles (2n + 1 sigma points) and is therefore
computationally less complex [43,44] (especially in the three-tensor case). Further, the
distribution of the state is not likely to be highly complex (which would warrant the use of a
particle filter), and therefore, it can be sufficiently captured by the unscented Kalman filter.

The system of interest is at time t, and we have a Gaussian estimate of its current state with
mean, xt ∈ ℝn, and covariance, Pt ∈ ℝn × n. Prediction begins with the formation of a set
sample states called sigma points, Xt = {χi} ⊂ ℝn of 2n + 1. Each of these states has an
associated convex weight, wi ∈ ℝ. The covariance, Pt, is used to deterministically distribute
the sigma points around the current state:

(12)

with [A]i denoting the ith column of matrix A and κ is an adjustable scaling parameter (we
use κ = 0.01 in all our experiments). In a next step the sigma points are propagated through
the state transition function, χ̂ = f[χ] ∈ , and a new set of predicted sigma points is
obtained: Xt+1|t = {f[χi]} = {χ̂i}.

As mentioned, we assume that the fiber configuration does not change abruptly from one
voxel to the next. This is modeled with an identity transition function: xt+1|t = f[xt] = xt.
Next, the predicted system mean state and covariance are predicted:

(13)

where Q is the Kalman filter’s process noise which ensures a non-null spread of sigma
points and a positive-definite covariance. The explained sampling technique is known as the
unscented transform, and it is used to estimate the behavior of a non-linear function. The
sigma points are spread based on the current uncertainty, propagated and then their spread is
measured.

The predicted observation is obtained by applying the unscented transform again, this time
using the predicted states, Xt+1|t, to estimate what we expect to observe from the
hypothetical measurement of each state: γ = h[χ̂] ∈ . Since the observation is the
reconstructed signal, this step estimates the diffusion-weighted signal. Then, we calculate
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the predicted set of observations, Yt+1|t = {h[χ̂i]} = {γi}, and we obtain their mean and
covariance,

(14)

where R is the observation noise of the Kalman filter. The cross-correlation between the
estimated state and observation are calculated as:

(15)

As in the classic linear Kalman filter, the final step uses the Kalman gain, , to
correct the prediction and provide the final estimated system mean and covariance,

(16)

(17)

where yt ∈ ℝm is the actual signal measurement taken at this time.

In a few cases erroneous estimation of the reconstruction signal may result in fibers which
do not exist in reality. A solution for detecting and removing such false positives was
introduced in [48].

2.4 The algorithm
In summary we use the unscented Kalman filter to estimate the local model parameters as
we trace each fiber. For each fiber, we store the position at which we are currently tracing it
and the current estimate of its model parameters (mean and covariance). Each iteration of
the algorithm predicts the new state (which is identity in our case): xt+1|t = xt. The
observation yt in (16) is the diffusion-weighted signal coming from the scanner, s. With
these, we use the above equations to find the new estimated model parameters, xt+1. Last,
we use first-order forward Euler integration to move a small step in the most consistent
principal diffusion direction, m, which is given as the first column of the rotation matrix Q,
see (6). Afterward, the same is repeated for the new position. Fractional anisotropy (FA)
[49] is a measurment of a diffusion tensor’s anisotropy, and it is used as break condition for
the tractography. A fiber is followed until the FA falls below a certain level (in our
experiments meaning full FA thresholds lay in [0.1, 0.15]). The full procedure is presented
in Algorithm (1).

Algorithm 1—Main tractography loop repeated for each fiber

1. Initialize x0 and P0

2. repeat

3. Form the sigma points Xt around xt

4. Predict the new sigma points Xt+1|t and observations Yt+1|t
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5. Compute weighted means and covariances, e.g. x̄t+1|t, Pxy

6. Update estimate (xt+1, Pt+1) using scanner measurement yt

7. Obtain the tensors’ principal diffusion directions from the state by putting the Euler
angles into (8)

8. Use the principal diffusion direction mj most aligned to the incoming vector to
proceed

9. until estimated model appears isotropic

For initializing x0 before the main loop of the algorithm is started, we use a one-tensor
model which is easily derived from (1):

(18)

This is an overdetermined system (assuming s0 is known and that more than 6 gradients are
used, what commonly is the case), and the diffusion tensor matrix D can be obtained by
using a least squares method. No matter how many tensors are used, the initial state of each
tensor is the same. P0 is initialized as a diagonal matrix with small values (0.01I in our
experiments, with I being the identity matrix).

3 Experiments
First, we use synthetically generated diffusion-weighted images to validate our technique
against ground truth. We perform tractography through crossing fiber fields of different
angles and examine the resulting orientations and branchings. Our new full two-tensor
algorithm is compared with the existing simpler model of Malcolm et al. [43,44] on the
same synthetic crossings. For the comparison we measure several statistics to show that the
full model performs better. Lastly in Section 3.3, we examine a real data set to demonstrate
that our full model works on in vivo data too and that it finds fibers that do not appear with
the simpler model (but are known to exist anatomically).

Note the importance of the matrices that inject process noise Q and observation noise R (see
(13) and (14)). Their magnitude can be determined by the data itself by running our
synthetic experiments with different values and choosing those that yield the best results.
Usually the noise matrices are diagonal matrices. The process noise determines how much
variance is allowed in the model: high values allow for more variation but if it gets too high
the estimation could become inaccurate. We found that the best results are obtained with
qϕ,θ,ψ, ∈ [0.001, 0.002] and with qλ1,2,3 ≈ 100 (those values are placed on Q’s diagonal in
the same order as the variables appear in the state x). These values allow an appropriate
amount of angular and diffusive flexibility. The injected observation noise governs how
much variance is expected in the measurement: higher values mean we expect more variance
and hence trust our measurement less. For our experiments, we found rs ∈ [0.01, 0.03] to
work quite well (R is also a diagonal matrix and all the values on the diagonal are rs) but
experimentation might be necessary since this value depends on the amount of physical
noise present, which again varies depending on the scanner, protocol or preprocessing.

3.1 Synthetic fiber crossings
We generated synthetic MR signals according to (2) using {1700, 500, 300}μm2 msec−1

(FA = 0.73) as the tensor’s eigenvalues to form an anisotropic tensor at b = 1000 s mm−2.
The used eigenvalues are typical for brain white matter. We use 81 gradient directions
uniformly spread on the hemisphere. We assume s0 = 1, and we perform each experiment
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with two different levels of Rician noise (SNR ≈ 5 dB for low noise and SNR ≈ 20dB for
high). We also ran all the experiments with b = 3000 s mm −2.

Since the algorithm depends on previous estimations, it is not enough to inspect individual
voxels for testing. We construct a 2D field with crossings which the fiber has to navigate
through. Figure 1a depicts a schematic of one such field with a 60° crossing. The fibers start
on the left in a region with only one true fiber population present, and they try to find their
way to the right side. In the middle the fibers encounter a region with crossing fibers at a
fixed angle. Figure 1b shows the resulting fibers. In blue we present the simpler model and
in red our new full model. The simpler model drifts off shortly after entering the crossing
region while our full model maintains a straight path for longer. Outside the crossing region,
where only one fiber exists, the second component is aligned with the first. The filter begins
estimating a single-tensor until it hits the crossing region where the two components start to
point in different directions. After the crossing both components will realign again. We
generated a set of similar fields for crossings angles of [0°, 5°, …, 90°].

In Figure 1c we take a closer look at several points along the fibers as they enter the crossing
region (the close-up area is marked with a yellow frame in Figure 1b). At every fiber point
the principal diffusion directions of both tensors are shown. Again the simpler model is in
blue and the full one in red. The principal diffusion directions adapt stepwise, until they are
aligned 60° angle in the crossing region. Our full model adapts quicker than the simple
model.

3.2 Measurements
Having verified the underlying behavior, we then began a more comprehensive evaluation.
We measured the following three different statistics: the average angular error in the non-
crossing regions, the average angular error in the crossing region, and the average absolute
FA error. With angular error we mean the difference in angle between the principal diffusion
directions of the tensors. The estimated values of each fiber point in a certain region
(crossing or non-crossing) are compared to the ground truth, the difference is calculated, and
the average is taken. The FA error is calculated over both regions at once.

Figure 2 shows the angular error in the non-crossing regions, Figure 3 depicts the angular
error in the crossing region and Figure 4 displays the absolute FA error. Each graph plots the
crossing angle, from 0° to 90°, versus the error. As mentioned we ran every experiment for
two different noise levels and for b = 1000 s mm−2 and b = 3000 s mm−2. We seeded from
18 different voxels in each test scenario, and also, our crossing region is quite large as you
can see in Figure 1. This guarantees a fair number of used tensors for averaging. In each
graph the trendlines indicate the mean error while the bars indicate the standard deviation.

The graphs for the angular errors show that our new full model generally performs better. In
the non-crossing region our model is more stable, especially for the cases with higher
crossing angles of 60°–90°. For these angles the simpler model’s error raises quickly while
our full model is almost constant. In the crossing region the full model performs better for
lower angles 0°–45°. Working with different b-values or with a different noise levels does
not significantly change the errors. The absolute FA error is lower and yields a lower
variance with our new full tensor algorithm (see Figure 4). This is the expected result of
having independent second and third eigenvalues. In the simpler model the second and third
eigenvalues have to be identical, which makes it more difficult to match the signal.

Lienhard et al. Page 9

EURASIP J Adv Signal Process. Author manuscript; available in PMC 2013 December 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.3 In vivo tractography
We tested our approach also on a real human brain scan which was weighted with 51
gradients directions. The diffusion-weighted images have a voxel size of 1.66 × 1.66 × 1.7
mm2 and b = 900 s mm−2. Figure 5 shows the results from a tractography started in the right
Thalamus of the human brain. The blue fibers were obtained with the simpler fiber model
whereas the red fibers were traced with our new full model. At a first glance both methods
seem similar but the separated close-ups in Figure 5b, c show that our approach finds fibers
in certain areas where the simpler model stops.

4 Conclusions
We used the tractography framework of Malcolm et al. [43,44] which is built on an
unscented Kalman filter and extended the used fiber model. By changing the fiber model
and allowing it to have three different, independent eigenvalues, the tractography procedure
was improved and the angular and FA errors were minimized. By representing the
orientation of the diffusion ellipsoid with Euler angles, the Kalman filter’s state only
contains one variable more per tensor than the simpler model. The small increase in
calculation time due to this additional variable is negligible. We confirm that using a causal
filter for tractography performs much better than independent alternatives. We believe that
exploring more alternative fiber models and plugging them into the filtering framework will
provide new insights into neural pathways and that they, ultimately, will enhance non-
invasive diagnosis of human brains. Furthermore, exploring filtering techniques other than
the unscented Kalman filter might yield promising results.
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Figure 1. Synthetic tractography experiment testing the behavior of fibers crossing at a 60° angle
As can be seen, our full tensor model performs better. The background in (b) and (c)
displays the FA from a single-tensor estimation. The crossing region’s FA is lower and
therefore darker. a Sketch of our synthetic testing scenario. Tractography is started on the
left side in a one tensor region, and the fiber has to go through a crossing region in the
middle. b Results of the tractography: The existing simpler model is displayed in blue and
our proposed full model is seen in red. c Close-up of the area where the fibers enter the
crossing region [yellow rectangle in (b)]. The principal diffusion directions of both tensors
are displayed.
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Figure 2. These graphs depict the average angular error between the principal diffusion
directions of all tensors and the ground truth in non-crossing regions
The simpler model’s values are displayed in blue while our new full model is in red. Our full
model yields a smaller error. a Angular error in non-crossing region with low noise on the
left and high noise on the right, b = 1000 s mm−2. b Angular error in non-crossing region
with low noise on the left and high noise on the right, b = 3000 s mm−2.
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Figure 3. These graphs depict the average angular error between the principal diffusion
directions of all tensors and the ground truth in crossing region
The simpler model’s values are displayed in blue while our new full model is in red. Our full
model yields a smaller error. a Angular error in crossing region with low noise on the left
and high noise on the right, b = 1000 s mm−2. b Angular error in crossing region with low
noise on the left, and high noise on the right, b = 3000 s mm−2.
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Figure 4. Here we present average absolute FA error of all tensors
The FA obtained from the estimated eigenvalues are compared the constant ground truth
({1700, 500, 300}μm2 msec−1 as eigenvalues which yields FA = 0.73). The simpler model’s
values are displayed in blue while our new full model is in red. Our model’s estimated FA
values are more constant and precise than those of the simpler model. a Absolute FA error
with low noise on the left, and high noise on the right, b = 1000 s mm−2. b Absolute FA
error with low noise on the left, and high noise on the right, b = 3000 s mm−2.
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Figure 5. This is an example of the fiber bundles obtained from an in vivo data set
The tractography was seeded in the right Thalamus in the brain. a The result of the
tractography. The simpler model is displayed in blue and the new model in red. Close-ups of
the marked area are shown in (b) and (c). b Close-up of the simpler model of the marked
region. c Close-up of the full model of the marked region.

Lienhard et al. Page 17

EURASIP J Adv Signal Process. Author manuscript; available in PMC 2013 December 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


