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In biparental species, parents may be in conflict over how much they invest into their offspring. To understand this conflict, parental 
care needs to be accurately measured, something rarely done. Here, we quantitatively describe the outcome of parental conflict in 
terms of quality, amount, and timing of incubation throughout the 21-day incubation period in a population of semipalmated sandpipers 
(Calidris pusilla) breeding under continuous daylight in the high Arctic. Incubation quality, measured by egg temperature and incuba-
tion constancy, showed no marked difference between the sexes. The amount of incubation, measured as length of incubation bouts, 
was on average 51 min longer per bout for females (11.5 h) than for males (10.7 h), at first glance suggesting that females invested more 
than males. However, this difference may have been offset by sex differences in the timing of incubation; females were more often 
off nest during the warmer period of the day, when foraging conditions were presumably better. Overall, the daily timing of incubation 
shifted over the incubation period (e.g., for female incubation from evening–night to night–morning) and over the season, but varied 
considerably among pairs. At one extreme, pairs shared the amount of incubation equally, but one parent always incubated during the 
colder part of the day; at the other extreme, pairs shifted the start of incubation bouts between days so that each parent experienced 
similar conditions across the incubation period. Our results highlight how the simultaneous consideration of different aspects of care 
across time allows sex-specific investment to be more accurately quantified.

Key words:  Arctic, Calidris pusilla, continuous daylight, incubation pattern, incubation timing, negotiation, nest attendance, 
parental care division, semipalmated sandpiper, sexual conflict.

Introduction
Parental care is beneficial to offspring, but it is also costly, both 
energetically and in terms of  lost opportunities for other activities 
such as self-maintenance or mating. Whereas these costs are paid 
by each parent individually, the benefits are shared by both. This, 
Trivers (1972) argued, creates potential for conflict between the 
parents because it is advantageous to minimize one’s own invest-
ment while capitalizing on the benefits that arise from the invest-
ment of  the partner.

Theoretical models predict the outcomes of  this conflict by con-
sidering 2 strategies (reviewed by Lessells 2012). In the first, the 
amount of  parental investment is fixed at a specific level or follows 
a behavioral rule that determines the level of  care irrespective of  
previous care of  the partner. In the second strategy, the level of  
care is a result of  behavioral negotiation.

Most of  these models are not tailored to a specific empirical 
system (van Dijk et al. 2012), so their assumptions and subsequent 
empirical tests often miss some of  the complexity of  parental 
care (e.g., by modeling or measuring the individual costs inaccu-
rately). For example, most studies measure the total amount of  
care (reviewed by Harrison et al. 2009), but this is not the same as 
measuring costs of  care because providing better quality of  care 
or providing care during tougher conditions may lead to higher 
costs. Also, even if  both pair members invest overall equally, there 
may be large differences between pairs in how they achieve this, 
resulting in variation in patterns of  care (i.e., different outcomes of  
parental conflict).

Quantifying such between-individual variability in investment 
is essential to approximate the variation that selection can act on 
(Bolnick et  al. 2011) or to identify different parental care strate-
gies. Therefore, an important step in understanding parental con-
flict and its outcome is to describe the complexity of  parental care 
(e.g., in terms of  quality, amount, and timing), including its tem-
poral and between-individual variation. However, such detailed Address correspondence to M. Bulla. E-mail: bulla.mar@gmail.com.

mailto:bulla.mar@gmail.com


Bulla et al. • Incubation patterns and complexity of  investment

descriptions are rare, although they would provide the basis for spe-
cific models and subsequent empirical tests of  the processes behind 
the described patterns of  parental care.

Parental care takes a variety of  forms; in birds, incubation of  
eggs is crucial for successful reproduction (Deeming 2002a). 
Although previous studies have investigated sex differences in par-
ticular aspects of  incubation (Kleindorfer et al. 1995; reviewed by 
Deeming 2002b; Auer et al. 2007), we are not aware of  any study 
that examined incubation patterns in terms of  incubation quality, 
amount, and timing simultaneously, quantitatively, and throughout 
the incubation period.

Here, we used a continuous recording system to quantitatively 
describe the incubation patterns in a population of  semipalmated 
sandpipers (Calidris pusilla), a common, Arctic-breeding, socially 
monogamous shorebird. We quantified how parents divided their 
duties over the incubation period, considering both variation and 
central tendency. Specifically, we measured 4 aspects of  incubation: 
incubation temperature and incubation constancy (both measures 
of  quality), length of  incubation bouts (amount), and distribution 
of  incubation within a day, over the incubation period, and over 
the season (timing).

The biparental incubation system of  semipalmated sandpipers is 
well suited for these investigations for 3 reasons. First, several fac-
tors that may confound the outcomes of  parental conflict in other 
systems can be excluded here. 1) Variation in clutch size is limited: 
semipalmated sandpipers lay 4 (rarely 3) eggs (Hicklin and Gratto-
Trevor 2010). 2)  Spatial variation in environmental conditions in 
the high-Arctic breeding grounds is small compared with temperate 
habitats; our study site consists of  a homogeneous tundra environ-
ment. 3)  In our high-Arctic study site, the nonincubating parent 
seems to provide no other form of  care because it leaves for feeding 
grounds up to 2–3 km away from the nest (Ashkenazie and Safriel 
1979a; Jehl 2006; our own observations). Second, the extreme 
rates of  energy expenditure in the high Arctic (Piersma et al. 2003) 
should elevate the conflict over parental care. Third, biparental 
incubation is a type of  parental care that involves mutually exclu-
sive behavior (Kosztolanyi et  al. 2009) and therefore, unlike other 
forms of  care such as offspring provisioning, parents cannot change 
their contribution independently of  each other.

Methods
Study area and species

We studied a population of  semipalmated sandpipers near Barrow, 
Alaska (71°32′N, 156°65′W), between 1 June and 16 July 2011; 
Ashkenazie and Safriel (1979a) have described the area in detail. In 
brief, the site consists of  polygonal soils with a high-Arctic tundra 
vegetation (sedges, mosses, and lichens). Ambient temperatures are 
generally low, below 5  °C (Supplementary Figure S1a). However, 
surface tundra temperatures can reach up to 28 °C (Supplementary 
Figure S1b). Barrow has continuous daylight: the sun never sets 
between mid-May and the end of  July. Nevertheless, environmental 
conditions show consistent and substantial diel fluctuations: tundra 
temperatures are ~85% and light intensity ~90% lower at night 
than during the day (Supplementary Figure S1b and c). In contrast, 
diel fluctuations in wind speed are less pronounced (Supplementary 
Figure S1d). Diel fluctuations may also exist in predatory pres-
sure because the Arctic fox (Alopex lagopus), the main mammalian 
predator of  shorebird eggs (e.g., Liebezeit and Zack 2008), is active 
mainly during night hours (Eberhardt et  al. 1982). However, this 

effect is absent or strongly reduced in our study site because of  an 
intense fox removal program in the Barrow area (foxes are shot and 
trapped). As a result, there was a tendency for increased nest preda-
tion (probably by avian predators such as skuas, Stercorarius sp.) dur-
ing the day (Supplementary Figure S2).

Semipalmated sandpipers are small shorebirds and are mono-
morphic in plumage, but with females on average slightly larger 
than males (Supplementary Figure S3). The birds arrive at the 
Barrow breeding ground between the end of  May and early June; 
males immediately establish territories; pairs form within 3–6 days, 
and egg laying starts shortly after (Ashkenazie and Safriel 1979a). 
A complete clutch has 4, rarely 3, eggs and a 4-egg clutch is typically 
laid in 5 days (Sandercock 1998). The species is socially monoga-
mous, and extrapair paternity is rare (our unpublished data). Both 
sexes develop 2 lateral brood patches, and both parents incubate. 
Incubation lasts 19–22 days. Chicks are precocial, and females tend 
to desert the family 2–8 days after hatching (Ashkenazie and Safriel 
1979a; Hicklin and Gratto-Trevor 2010).

Sampling of individuals

Nonincubating birds were captured with mist nets (N  =  22) and 
incubating birds with spring traps (N = 125). Spring traps were trig-
gered from a distance by fishing line, and the captured bird was 
released from the trap within approximately 20 s.  No eggs were 
damaged by this catching method. Adults were marked with an 
aluminum US Geological Survey band, a unique combination of  
4 color bands, and a green flag with embedded glass passive–inte-
grated tag (Biomark: 9.0 mm × 2.1 mm, 0.087 g, 134.2 kHz, ISO 
FDXB, http://www.biomark.com/; Supplementary Picture S1). 
For the purpose of  another project and following Warnock and 
Warnock (1993), 40 individuals were equipped with a radio trans-
mitter (PicoPip Ag392, Biotrack, http://www.biotrack.co.uk/; 
1.18  g, which was 4.4% of  the mean and 5.1% of  the smallest 
bird’s body mass). Briefly, the feathers above the uropygial gland 
of  the bird were trimmed (short feather shafts left), and the trans-
mitter was glued to the skin and shafts with Loctite® super glue. 
This technique is fast and has fewer behavioral effects compared 
with harness or implant techniques, and the transmitters drop off 
within a few weeks as the feathers regrow (reviewed by Warnock 
and Takekawa 2003). We took a small (ca. 50 µl) blood sample from 
a brachial vein for sexing, weighed each bird (to the nearest 0.1 g) 
using a digital balance, and measured tarsus, culmen, and total 
head (to the nearest 0.1 mm) with calipers and measured wing (to 
the nearest 0.5 mm) with a ruler.

Monitoring of incubation

Nests were found by systematically searching the tundra and by 
observing the behavior of  birds flushed during laying or incuba-
tion (Sandercock and Gratto-Trevor 1997). The start of  incubation 
and hatching was estimated by laying date for clutches found dur-
ing laying and by measuring the height and inclination of  the eggs 
floated in water for clutches found complete. This floating tech-
nique is based on the fact that eggs lose weight as the embryo devel-
ops: freshly laid eggs sink to the bottom of  a water column and 
lay horizontal; as eggs develop, they rise with their blunt end and 
eventually float on the water surface (Liebezeit et al. 2007; median 
estimation of  all floated eggs within the nest was used). Each nest 
was visited at the estimated hatching date to capture both parents 
to estimate their condition; to measure, bleed, and ring the chicks; 
and to determine the fate of  the nest.
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Incubation was monitored using a custom-made radio frequency 
identification device (RFID; designed by Calima Engineering, http://
www.calima.de, in cooperation with the Max Planck Institute for 
Ornithology) in combination with a temperature probe (similar 
method used by Reneerkens et al. 2011). A thin antennae loop (ø 9 cm) 
was fitted into the nest cup and connected to a datalogger approxi-
mately 0.5 m outside of  the nest (Supplementary Picture S2a–c). This 
system registered the identity of  a tagged bird on the nest every 5 s 
throughout the incubation period (for technical details, see legend in 
Supplementary Picture S2). To determine whether a bird was incubat-
ing, independent of  the RFID reader, a minute external temperature 
probe (ø 2.5 mm, 0.2  °C accuracy; Talk Thermistor, PB-5005-0M6) 
was placed in the middle of  the nest between the 4 eggs and con-
nected to a temperature logger (Tinytag Talk 2, TK-4023, Gemini 
Data Loggers, www.tinytag.info) placed 0.5 m outside of  the nest. The 
probe was in level with the tops of  the eggs (Supplementary Picture 
S2d) and secured with a toothpick. The logger recorded the tempera-
ture every 2 min for the entire incubation period.

For 8 nests, the incubation behavior was also monitored by a 
video-recording system (custom designed by Jan Petrů, Czech 
Republic). An external lens (ø 2 cm, length 4 cm) and a microphone 
(ø 0.75 cm, length 2.2 cm) were positioned 1–3 m from the nest 
and were connected to the recorder hidden in the vegetation 5 m 
away from the nest. The recorder was supplied by a 12-V, 31-Ah, 
or 44-Ah battery hidden another 5 m away, allowing continuous 
recording for 2–4 days.

Monitoring of egg incubation temperatures

To determine whether females and males differed in egg incubation 
temperatures, in 14 nests, instead of  adding an external temperature 
probe, one egg was replaced with a solid egg (from PVC-U, painted to 
resemble a sandpiper egg; Supplementary Picture S3) with a high-res-
olution MSR® temperature probe (0.2  °C accuracy) positioned just 
under the egg surface. The fake egg was secured in the nest with a pin, 
and the probe was connected to an MSR® 145 datalogger (MSR® 
Electronics GmbH, Switzerland, http://www.msr.ch/en/) positioned 
outside the nest. Temperature was logged every 5 s throughout the 
incubation period. The fixed position of  the probe in the fake egg and 
the fixed position of  the fake egg in the nest allowed us to compare 
the within-nest sex differences in incubation temperatures.

Disturbance

Data collection would be impossible without us walking through 
the study area. As a consequence, the birds were disturbed. To con-
trol for this disturbance, each field-worker carried a GPS (Garmin, 
Oregon 450)  that recorded the person’s position whenever he/she 
moved 10 m within the study site. This allowed us to calculate the 
distance between each person and each nest at a given time. The 
probability of  an incubating bird leaving the nest was under 10% 
whenever the closest person to the nest was further than 210 m 
away (our unpublished data). Therefore, we defined the absence or 
presence of  disturbance at a given nest and at any one time based 
on whether a field-worker was present within 210 m of  that nest.

Tundra temperatures

The surface tundra temperature was recorded next to each nest in 
vegetation similar to that surrounding the specific nest cup. Two 
types of  loggers were used: the MSR® 145 at the nests with a fake 
egg (recording interval 5 s; Supplementary Picture S2c and d) and 
the HOBO Pendant® Temperature Data Logger (0.47 °C accuracy, 

UA-002-64, Onset Computer Corporation, http://www.onsetcomp.
com/) at all other nests (recording interval 1 min). The housing of  
the MSR and HOBO logger differs in color. This could in principle 
affect the temperature recordings. However, both loggers recorded 
similar temperatures when placed next to each other (details are not 
presented), and the potential differences did not affect the extraction 
of  incubation data (discussed in the next section).

Extraction of incubation behavior

Egg temperatures were used to discriminate between incubation 
and nonincubation periods as described in detail in Supplementary 
Figure S4. Briefly, constant incubation temperatures higher than 
tundra temperatures were interpreted as continuous incubation; 
the start of  incubation was determined from a steep increase, the 
interruption of  incubation from a steep decrease in nest tempera-
ture (Supplementary Figure S4; see also Fig. 2 in Reneerkens et al. 
2011). We automated the procedure using an R-script and validated 
the method by comparing the assigned incubation with plots of  the 
raw data (Supplementary Figure S4) and with the video recordings.

The temperature-based determination of  incubation/nonin-
cubation was overlaid with the RFID data, which allowed assign-
ing each incubation bout to a parent (Supplementary Figure S4). 
Subsequently, the length of  each incubation bout was extracted 
as the total time allocated to a single parent. The constancy of  
incubation was calculated as the percentage of  time a bird actu-
ally incubated within a given incubation bout (i.e., sat tightly on the 
eggs as opposed to egg rolling, nest maintenance, or being off the 
nest). The exchange gap duration was defined as the time between 
the departure of  one parent and the return of  the other parent.

Timing of incubation-related events

The visualization of  the raw RFID and temperature recordings 
allowed us to pinpoint the precise timing of  desertion, depredation, 
or hatching; therefore, we adjusted the field data accordingly.

Statistical analyses

R, version 2.15.2 (R Development Core Team 2012), was used 
for statistical analyses and the lme4 package (Bates and Maechler 
2010) for the mixed-effects modeling.

Quality and amount
Sex differences in quality of  incubation (incubation temperature 
and constancy) and amount of  incubation (length of  incubation 
bouts and exchange gaps) over the incubation period were tested 
by generalized linear mixed effect models (GLMMs) with the incu-
bation feature as the dependent variable and with sex in interac-
tion with day of  incubation as fixed effects. Potentially confounding 
variables were added as fixed effects: disturbance (0, 1), start of  
incubation within the season (in interaction with day of  incuba-
tion), body mass and size (both sex centered), and whether the bird 
carried a radio transmitter (0, 1). Culmen length was used as a 
proxy for body size (Ashkenazie and Safriel 1979b); culmen cor-
relates with other body size measures (in our study, Pearson corre-
lation coefficients [95% confidence interval {CI}]; tarsus: r = 0.51 
[0.35–0.64], t97  =  5.9, P  <  0.0001; total head: r  =  0.87 [0.82–
0.91], t98 = 17.9, P < 0.0001; wing: r = 0.5 [0.34–0.64], t98 = 5.7, 
P  <  0.0001). All predictors (except sex) were mean centered 
(Schielzeth 2010). Incubation temperatures were z-transformed 
(mean centered and standard deviation scaled) within the nest and 
thus were made comparable between nests. The distribution of  
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incubation constancy was normalized by arcsine transformation. 
The incubation constancy model was also controlled for the type 
of  temperature probe (inside fake egg [0] or between the eggs [1]). 
The bout length model investigated also the sex-specific effect of  
the length of  the previous (partner’s) incubation bout (off-nest bout 
of  the focal bird) on the length of  the current bout. The random 
structure of  the models contained nest as a random intercept and 
z-transformed day of  incubation as random slope. To follow cur-
rent recommendations (Simmons et  al. 2011), the Supplementary 
Tables report simple GLMMs without covariates. The results of  
all GLMMs include adjusted approximations of  P values based on 
multiple comparisons (simultaneous inference) of  predictors using 
the glht function from the multcomp package (Hothorn et al. 2008).

Timing
To investigate whether females and males incubate during different 
(cold—unfavorable for foraging—or warm—favorable for foraging) 
parts of  the day, incubation period, or season (i.e., defined as start of  
incubation within the season), the following procedure was applied. 
We sampled the entire data set of  approximately 8.4 million per 5-s 
recordings of  incubation; an autocorrelation of  the data points was 
avoided by stratifying the sample to 0.025% incubation data points 
per nest, with points at least 2.5 h apart from each other. The sample 
was limited to the usable data (e.g., bouts with hatching or nests with 
only 4 incubation bouts were excluded; details are in the Sample sizes 
section). Binary coding was created (female incubation = 1 and male 
incubation = 0). The 5000 iterations of  this process generated data 
sets with median (range) sample size of  1722 (1680–1768) incubation 
data points. These data were used as the binomial dependent variable 
in subsequent GLMM. We overcame the circular properties of  time 
by converting it to radians and decomposing it into 2 linear variables: 
sin(rad) and cos(rad). Both sin(rad) and cos(rad) were entered in the 
model as explanatory variables in a 3-way interaction with the day of  
the incubation period and start of  incubation within the season. Nest 
was included as a random intercept, and sin(rad) and cos(rad) were 
included as random slopes. The reported results of  this exercise are 
summaries of  the 5000 iterations (CIs are nonparametric).

Sample sizes

The aim was to follow the entire breeding population on the study 
site for the entire incubation period. In total, we found 83 nests. We 
acquired the mass of  both parents from 51 nests and morphomet-
ric measurements for both parents from 50 of  those nests. Twenty-
one nests were depredated and 3 nests deserted before or shortly 
after initiation of  data collection; one nest was excluded because 
it was used to test the monitoring system (increased disturbance); 
an additional 7 nests were excluded because they were found only 
close to hatching. Thus, the basic data set, used for further analy-
ses, consisted of  over 8.9 million per 5-s readings from 51 nests, 
with median (range)  =  20.4 (6.7–31.3) incubation days/nest. For 
these nests, we excluded the first 2 incubation bouts after first par-
ent catching, the bout where the nest was deserted or depredated, 
and all bouts that ended within 6 h before the start of  hatching. We 
further excluded all nests with less than 4 incubation bouts (N = 3). 
Thus, the final data set consisted of  887 incubation bouts from 48 
nests (median [range] = 18 [4–42] bouts/nest; median [range] start 
of  incubation  =  7 [1–26] June). Bouts for which the temperature 
recordings were missing were excluded from the analysis of  incuba-
tion constancy and exchange gaps, leaving a total of  809 incubation 
bouts from 47 nests (median [range] = 16 [4–42] bouts/nest). Data 
sets were further reduced in the mixed models because only birds for 

which morphometric measurements were available were included. 
The data set for the models on the constancy of  incubation con-
sisted of  762 incubation bouts from 47 nests (median [range] = 15.5 
[3–42] bouts/nest). This data set was further reduced in the model 
on the length of  incubation bouts because to investigate the effect 
of  the previous (partner’s) bout, a continuous data set is required. 
Hence, we excluded the first incubation bout in each nest (the previ-
ous bout is absent) and nests where only one bird was measured. 
This left 729 incubation bouts from 39 nests (median [range] = 18 
[3–41] bouts/nest). The data set for the model on the incubation 
temperatures (only nests with a fake egg) consisted of  307 incuba-
tion bouts from 14 nests (median [range]  =  21.5 [9–42] bouts/
nest). The data sets are available from the Dryad Digital Repository 
(http://doi.org/10.5061/dryad.nh8f0).

Results
Quality of incubation

Incubation temperatures did not change systematically over the 
incubation period or over the season (start of  incubation within 
season) and on average did not differ between females and males 
(Figure 1a and Table 1). Within-nest variance accounted for 78% 
of  overall phenotypic variance (Table 1). Body mass and size of  the 
bird had no effect on incubation temperature nor did the attach-
ment of  a radio transmitter (Table 1).

Overall, the median constancy of  incubation within an incuba-
tion bout was 94.9% (range: 43–100%; N = 809 incubation bouts 
from 47 nests). Constancy of  incubation within incubation bouts 
did not change systematically over the incubation period or over the 
season, but on average females had 0.9% higher incubation con-
stancy per incubation bout than males (Figure 1b and Table 2). This 
corresponds to approximately 6 min of  longer incubation bouts by 
females (given a median bout length of  11.45 h). Within-nest vari-
ance accounted for 77% of  overall phenotypic variance (Table  2). 
Size and body mass of  the bird had no effect on its incubation con-
stancy nor did the attachment of  a radio transmitter (Table 2).

In short, these results indicate that overall the quality of  incuba-
tion varied little over the course of  incubation and played a minor 
role in sex-specific investment.

Amount of incubation

The median length of  all incubation bouts was 11 h 27 min 
(range: 3.4 min–18.2 h; N = 887 bouts from 48 nests). Bout length 
increased systematically over the incubation period (by ca. 9 min/
day; Figure 2). The increase was consistent across nests (between-
nest variation in the change of  bout length over the incubation 
period accounted for less than 1.1% of  the variance) but indepen-
dent of  the start of  incubation within the season and independent 
of  sex (Figure  2 and Table  3). On average, females incubated 
51 min (95% CI: 26–76 min) longer per incubation bout than 
males (Figures 2 and 3 and Table 3); thus, the median proportion 
of  female incubation over the entire incubation period was 51.4% 
(range: 45.5–57%; N  =  48 nests). After controlling for sex differ-
ences, incubation bout length did not depend on body mass or 
size and was unaffected by an individual wearing a radio tag or 
not (Table 3). Despite the general trend, in 16 of  48 nests (33%), 
the median bout length of  the female was shorter than that of  the 
male (Figure  3). Incubation bout length was positively correlated 
among pairs (Figure 3), indicating that if  one parent had a longer 
median incubation bout than that of  the rest of  the population, 
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so had its partner. This partner matching is also present within 
the pairs’ incubation period: the length of  the previous (part-
ner’s) incubation bout (which is the off-nest bout of  the focal bird) 
strongly predicted the length of  the current incubation bout of  
both sexes (Figure 4 and Table 3).

There was no detectable exchange gap (<5 s) during 51% of  the 
exchanges (N = 809 exchanges at 47 nests); the median length of  
all detectable exchange gaps was 35 s (range: 5 s–6.7 h; N  =  399 
detectable gaps from 44 nests). Both the probability of  a detect-
able exchange gap and the length of  detectable exchange gaps 
decreased over the incubation period, irrespective of  the sex of  
the exchanging bird (Figure  5 and Tables 4 and 5). Within-nest 

variance in the length of  detectable exchange gaps accounted for 
80% of  the overall phenotypic variance (Table 5).

Taken together, these results indicate that the amount of  incuba-
tion changed over the incubation period and was female biased.

Timing of incubation: general incubation pattern

The median proportion of  female incubation within the cold 
period was 72.6% (range: 0–100%; N = 356 days from 48 nests). 
Thus, overall, females incubated more during the cold period of  
the Arctic day (i.e., when the tundra temperatures were on average 
below overall median tundra temperature, roughly between 21:30 
and 09:30), whereas males incubated more during the warmer 
period when foraging conditions were more favorable.

Figure 1
Within-pair differences in (a) the median fake-egg incubation temperature and (b) the median constancy of  incubation. Each dot represents 1 nest. Incubation 
temperatures are not comparable between nests because the position of  the temperature probe within the fake egg and of  the fake egg within a nest is not 
exactly the same in each nest. Incubation constancy is comparable between nests.

Table 1
Model (GLMM) estimates of  median z-transformed incubation 
temperature per incubation bout in relation to sex and 
incubation period with disturbance, presence of  radio tag, body 
mass, culmen length, and start of  incubation within the season 
as confounding variables 

Fixed effects Estimate 95% CI P

(Intercept) 0.155 (−0.031, 0.342) 0.18
Disturbance 0.02 (−0.161, 0.201) 1
Radio tag 0.219 (−0.036, 0.474) 0.15
Culmen −0.045 (−0.154, 0.065) 0.93
Body mass −0.014 (−0.077, 0.048) 1
Start of  incubation 0.004 (−0.039, 0.047) 1
Day of  incubation 0.016 (−0.018, 0.049) 0.86
Sex (male)a 0.046 (−0.096, 0.188) 0.98
Sex × Day of  incubation 0.002 (−0.027, 0.031) 1
Start of  incubation ×  
Day of  incubation −0.001 (−0.008, 0.006) 1
Random effects Variance
Nest (intercept) 0.0337
z-Transformed (day  
of  incubation) 0.0177
Residual 0.1864

N = 307 median z-transformed incubation temperatures per incubation bout 
from 14 nests. Fixed effects, except sex, were mean centered (culmen and 
body mass were centered within each sex). Median incubation temperatures 
were calculated from raw incubation temperature-values z-transformed 
within each nest. Results of  the model without confounding variables are 
presented in Supplementary Table S1.
aRelative to female.

Table 2
Model (GLMM) estimates of  incubation constancy per 
incubation bout (arcsine transformed) in relation to sex and 
incubation period with disturbance, type of  temperature probe, 
presence of  radio tag, body mass, culmen length, and start of  
incubation within the season as confounding variables 

Fixed effects Estimate 95% CI P

(Intercept) 1.342 (1.328, 1.355) <0.0001
Disturbance −0.023 (−0.042, −0.005) 0.0039
Temperature probe type 0.003 (−0.024, 0.031) 1
Radio tag −0.003 (−0.029, 0.022) 1
Culmen −0.003 (−0.014, 0.008) 0.99
Weight −0.001 (−0.007, 0.004) 1
Start of  incubation −0.001 (−0.003, 0.001) 0.93
Day of  incubation −0.001 (−0.005, 0.004) 1
Sex (male)a −0.02 (−0.036, −0.004) 0.0042
Sex × Day of  incubation 0.003 (0, 0.006) 0.16
Start of  incubation ×  
Day of  incubation 0 (−0.001, 0) 1
Random effects Variance
Nest (intercept) 0.0001
z-Transformed (day  
of  incubation) 0.0017
Residual 0.0057

N = 762 incubation constancies per incubation bout from 47 nests. Fixed 
effects, except sex, were mean centered (culmen and body mass were 
centered within each sex). Results of  the model without confounding 
variables are presented in Supplementary Table S2.
aRelative to female.
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Table 3
Model (GLMM) estimates of  incubation bout length (in minutes) 
in relation to sex, incubation period, and length of  the previous 
bout with disturbance, presence of  radio tag, body mass, 
culmen length, and start of  incubation within the season as 
confounding variables 

Fixed effects Estimate 95% CI P

(Intercept) 692.2 (663.9, 720.5) <0.0001
Disturbance 38.9 (9.4, 68.4) 0.002
Radio tag 8 (−39.8, 55.9) 1
Culmen −2.6 (−20.6, 15.4) 1
Body mass −0.9 (−10.5, 8.7) 1
Previous bout length 0.4 (0.3, 0.6) <0.0001
Start of  incubation 2.2 (−1.8, 6.1) 0.76
Day of  incubation 7.8 (2.8, 12.8) 0.0001
Sex (male)a −50.9 (−76.3, −25.5) <0.0001
Sex × Previous bout −0.1 (−0.3, 0) 0.29
Sex × Day of  incubation 2.4 (−3.5, 8.4) 0.95
Start of  incubation ×  
Day of  incubation 0 (−0.6, 0.6) 1

Random effects Variance
Nest (intercept) 2032
z-Transformed (day  
of  incubation) 165
Residual 13  779

N = 729 incubation bouts from 39 nests. Fixed effects, except sex, were mean 
centered (culmen and body mass were centered within each sex). Results of  
the model without confounding variables are presented in Supplementary 
Table S3.
aRelative to female.

Figure 3
Between- and within-pair differences in the median length of  incubation 
bouts. Each dot represents 1 nest. The correlation of  the median bouts 
between sexes: Pearson correlation coefficient (95% CI): r  =  0.71 (0.53–
0.83), t46 = 6.8, P < 0.0001.

0 10 15 20

0

5

10

15

20

Previous bout length [h]

Cu
rr

en
t b

ou
t l

en
gt

h 
[h

]

5

Figure 4
Positive relationship between incubation bout length and previous bout 
length (partner’s bout; off-nest bout of  the focal bird). The solid lines 
represent the model fit, and the shading represents the 95% CI. Model 
results are presented in Table 3.
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Figure 2
Increase in incubation bout length over the incubation period. The solid 
lines represent the model fit, and the shading represents the 95% CIs. 
Model results are presented in Table 3, and the distribution of  the raw data 
is depicted in Supplementary Figure S5.
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Figure 5
Decrease in (a) the probability of  a detectable exchange gap (≥5 s) and (b) the length of  detectable exchange gaps over the incubation period. The solid lines 
represent the model fit, the shading represents the 95% CI, and the horizontal dashed line in (a) represents the equal probability. Model results are presented 
in Tables 4 and 5, and the distribution of  the raw data is depicted in Supplementary Figure S6.

Table 4
Model (binomial GLMM) estimates of  the probability of  a 
detectable exchange gap (≥5 s) in relation to sex and incubation 
period with disturbance, type of  temperature probe, presence 
of  radio tag, body mass, culmen length, and start of  incubation 
within the season as confounding variables 

Fixed effects Estimate 95% CI P

(Intercept) −0.124 (−0.848, 0.6) 1
Disturbance −0.046 (−0.674, 0.583) 1
Temperature probe type −1.644 (−3.518, 0.23) 0.13
Radio tag 0.049 (−1.721, 1.819) 1
Culmen 0.033 (−0.356, 0.422) 1
Body mass 0.1 (−0.112, 0.313) 0.87
Start of  incubation −0.065 (−0.177, 0.046) 0.64
Day of  incubation −0.155 (−0.269, −0.041) 0.0014
Sex (male)a 0.064 (−0.455, 0.585) 1
Sex × Day of  incubation −0.054 (−0.166, 0.058) 0.85
Start of  incubation ×  
Day of  incubation −0.004 (−0.019, 0.012) 1

Random effects Variance
Nest (intercept) 1.72
z-Transformed (day  
of  incubation) 0.38

N = 762 exchanges from 47 nests. Fixed effects, except sex, were mean 
centered (culmen and body mass were centered within each sex). Results of  
the model without confounding variables are presented in Supplementary 
Table S4.
aRelative to female.

Table 5
Model (GLMM) estimates of  detectable exchange gap duration 
(in seconds, log transformed) in relation to sex and incubation 
period with disturbance, type of  temperature probe, presence 
of  radio tag, body mass, culmen length, and start of  incubation 
within the season as confounding variables 

Fixed effects Estimate 95% CI P

(Intercept) 3.894 (3.481, 4.306) <0.0001
Disturbance −0.113 (−0.592, 0.366) 1
Temperature probe type 0.579 (−0.295, 1.453) 0.47
Radio tag 0.007 (−0.738, 0.753) 1
Culmen −0.035 (−0.333, 0.264) 1
Body mass −0.054 (−0.201, 0.093) 0.97
Start of  incubation 0.037 (−0.026, 0.1) 0.64
Day of  incubation −0.09 (−0.167, −0.013) 0.01
Sex (male)a −0.114 (−0.512, 0.284) 0.99
Sex × Day of  incubation 0.02 (−0.063, 0.103) 1
Start of  incubation ×  
Day of  incubation −0.003 (−0.07, 0.064) 1

Random effects Variance
Nest (intercept) 0.305
z-Transformed (day  
of  incubation) 0.139
Residual 1.815

N = 385 exchange gaps from 44 nests. Fixed effects, except sex, were mean 
centered (culmen and body mass were centered within each sex). Results of  
the model without confounding variables are presented in Supplementary 
Table S5.
aRelative to female.
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The timing of  incubation, however, shifted over the breed-
ing season and as incubation progressed (Figure 6 and Table 6). 
In early nests, female incubation shifted from evening–night 
to night–morning over the incubation period (Figure  6, left 
panel: 1st third of  season). This shift (of  ca. 7.5 h) weakened 

over the season (Figure  6, middle panel: 2nd third of  season) 
and became absent in late nests (Figure  6, right panel: last 
third of  season). Note that we had fewer nests starting in the 
second half  of  the season and running for more than 10  days 
(Supplementary Figure S7).
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Figure 6
Shift in the probability of  female (vs. male) incubation during specific time of  a day over the 21-day incubation period and with respect to the start of  
incubation within the season. Color lines represent the mean predicted probability of  5000 GLMMs for the 1st (dark blue), the 10th (green), and the 21st 
(yellow) day of  incubation; color shadings represent the nonparametric CIs that contain 95% of  the 5000 fits. Left panel: predictions from 6 June (first 
nest started on 1 June); middle panel: 13 June; right panel: 19 June. The distribution of  the nests across the season is in Supplementary Figure S7. The 
horizontal dashed line indicates an equal share of  incubation, and the gray shaded rectangle represents the time when the tundra temperatures were on 
average above overall median tundra temperature, that is, the warmer period of  the Arctic day. Nest-specific incubation patterns for all 48 nests are in 
Supplementary Actograms.

Table 6
Summary of  5000 model (binomial GLMM) estimates of  the probability that the female (vs. male) incubates in relation to time of  a 
day, incubation period, and start of  incubation within the season 

Fixed effects Estimate 95% CI Number of  iterations (P < 0.05) P

(Intercept) 0.059 (−0.021, 0.14) 318 0.94
cos(time) 0.915 (0.757, 1.079) 4998 0.0004
sin(time) 0.755 (0.61, 0.906) 5000 0
Day of  incubation 0.007 (−0.01, 0.024) 101 0.98
Start of  incubation 0.006 (−0.006, 0.018) 133 0.97
Start of  incubation × Day of  incubation 0 (−0.002, 0.003) 22 1
cos(time) × Day of  incubation −0.066 (−0.098, −0.034) 4494 0.10
cos(time) × Start of  incubation 0.02 (−0.003, 0.044) 0 1
cos(time) × Day of  incubation × Start of  incubation 0.003 (−0.002, 0.008) 284 0.94
sin(time) × Day of  incubation 0.109 (0.079, 0.139) 5000 0
sin(time) × Start of  incubation 0.026 (0.006, 0.046) 0 1
sin(time) × Day of  incubation × Start of  incubation −0.012 (−0.017, −0.007) 4928 0.0144

Random effects Variance 95% CI
Nest (intercept) 0 (0, 0)
cos(time) 4.67 (3.6, 6.0)
sin(time) 2.37 (1.84, 3.04)

Median (range) N = 1722 (1680–1768) incubation data points from 48 nests. Time of  a day (in radians) was decomposed into sin and cos; the remaining 
fixed effects were mean centered. Estimates are means, and their 95% CIs (nonparametric) are 0.025 and 0.975 quintiles, of  the fixed effect estimates of  5000 
GLMMs. Variances are mean values, and 95% CIs are 0.025 and 0.975 quintiles, of  the random effects from 5000 GLMMs. The median (range) partial 
autocorrelation coefficient of  GLMMs was 0.038 (0.001–0.074) in lag 1 and −0.264 (−0.311 to −0.214) in lag 2.
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In short, these results show incubation patterns that are 
potentially specific to different parts of  the breeding season.

Timing of incubation: different incubation 
patterns

The observed variation in incubation patterns, within season or 
between nests (random slopes of  sin[time] and cos[time] accounted 
for all variance; Table  6), has different consequences for female–
male division of  incubation.

At one extreme were nests where the length of  the incuba-
tion cycle (female + male incubation bout) roughly followed a 
24-h period (Figure 7, day–night). These nests showed a distinct 
division of  female and male incubation within a day throughout 

most of  the incubation period; even if  parents divided the 
amount of  incubation roughly equally (in the example in 
Figure  7, the male incubated 49.5% of  the time), one parent 
incubated during the night (i.e., the colder part of  the 24-h day) 
and the other during the day (i.e., the warmer part of  the Arctic 
day; in the example in Figure  7, 81% of  the male incubation 
occurred during this time).

At the other extreme were nests where the length of  the incu-
bation cycle substantially deviated from a 24-h period (Figure  7, 
“running”). As a result, the time of  day when parents exchanged 
became progressively earlier (usually during the 1st half  of  incuba-
tion) or later (usually during the 2nd half  of  incubation) as incuba-
tion advanced (Figure 7b). This allowed both parents to experience 
similar incubation/off-nest conditions but during different days 
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Figure 7
Examples illustrating the variation in the division of  amount and timing of  incubation in semipalmated sandpiper pairs. Each row represents 1 specific nest, 
illustrating a day–night pattern, a running pattern, and a mixed pattern (see text for details). (a) Division of  incubation within a day (yellow lines = female, 
dark blue lines = male; the position of  each line marks the start of  an incubation bout, the length of  the line reflects incubation bout length). (b) Visualization 
of  incubation bouts of  females and males across the incubation period (gray shading  =  approximate warmer period of  the day, i.e., the time when the 
tundra temperatures were on average above median tundra temperature). (c) Changes in the length of  the incubation cycle (i.e., the sum of  the female and 
subsequent male bout length; solid gray line, left y axis) and male share of  incubation (i.e., the percentage of  male incubation within each cycle; solid dark 
blue line, right y axis) across the incubation period. The dashed lines indicate a 24-h cycle (gray, left y axis) and equal share of  incubation (dark blue, right y 
axis). For illustration, the early or late incubation period is excluded, such that all 3 nests show the same part of  the incubation period.
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within the incubation period. Unlike the day–night extreme, both 
pair members incubated during the warmer part of  the day; in the 
example depicted in Figure  7, the total male share of  incubation 
was 51%, and 49% of  his incubation fell in the warmer period of  
the Arctic day.

In between these extremes were nests that ran moderately over 
the incubation period, so that the general day–night (cold–warm) 
division between partners remained, or nests where the periodic-
ity was close to 24 h during part of  the incubation, but larger or 
smaller than 24 h during another part (e.g., Figure  7, “mixed”; 
nest-specific incubation patterns for all 48 nests are depicted in 
Supplementary Actograms).

Discussion
Using a continuous monitoring system, we quantitatively described 
incubation patterns in a population of  semipalmated sandpipers 
breeding in the high Arctic. The incubation patterns and hence sex-
specific costs varied considerably between pairs. Our results show 
that the amount of  incubation (bout length) generally increased 
over the incubation period, causing a shift in the daily timing of  
incubation; the degree of  this shift seemed dependent on the time 
within the season. We also found that incubation bout lengths were 
positively correlated between pair members. The exchange gaps 
became shorter or disappeared over the incubation period, suggest-
ing that pair members became better synchronized. The quality 
of  incubation varied little over the course of  incubation and was 
similar for females and males. Females incubated on average lon-
ger than males; thus, in the absence of  other data, one would con-
clude that in this species, females invested more in incubation than 
males. However, our results further show that females incubated 
more often during the colder part of  the day (night) when foraging 
efficiency is expected to be lower and predation pressure may be 
different than during the warmer part of  the day (day). This sug-
gests that the female-biased amount of  incubation might be offset 
by a more favorable timing of  incubation. We discuss our findings 
in relation to sex-specific costs of  care and resolution of  the conflict 
between the parents.

Possible explanations for sex differences in 
incubation

Why did female semipalmated sandpipers incubate longer and 
more constantly than males? Early in incubation, females might 
incubate longer than males because males might spend more time 
defending their territories. However, this interpretation is unlikely 
because male incubation bouts were consistently shorter across the 
entire incubation period (Figure 2). Alternatively, females might be 
able to sit longer and more constantly because they are larger and 
can carry more resources than males and therefore could afford 
the costs of  incubating longer (i.e., females might experience the 
same relative costs of  incubation as males). However, females seem 
to have higher energy expenditure during incubation than males 
(Ashkenazie and Safriel 1979b). Also, size dimorphism appears an 
unlikely explanation because body size and mass did not explain 
much of  the variation in the length of  incubation bouts or in 
incubation constancy among females or males (Tables 2 and 3). 
The longer incubation bouts and higher incubation constancy of  
females might be directly related to the sex difference in timing of  
incubation for the following reasons.

First, the bird incubating during the colder part of  the Arctic 
day (most often the female) may be forced to sit tighter on the eggs 

to prevent their cooling or to minimize the detectability of  the 
nest if  predators are more abundant or more active, both leading 
to higher incubation constancy. Indeed, including time of  day in 
the constancy model reduced the sex effect (Supplementary Table 
S6). However, predatory pressure is an unlikely explanation for this 
effect, at least in our study site, because predation events occurred 
predominantly during the day (Supplementary Figure S2).

Second, females may incubate longer because during incubation, 
they are less energy constrained. The availability of  arthropods, the 
main shorebird prey, strongly correlates with ambient temperatures 
(Corbet 1966; Danks and Oliver 1972; Schekkerman et  al. 2003; 
Tulp and Schekkerman 2008), making foraging easier during the 
warmer part of  the Arctic day. Furthermore, because diel fluctua-
tions in wind speed are minimal (Supplementary Figure S1), being 
off nest during the warmer “day” will be energetically less demand-
ing than being off nest during the colder “night.” These demands 
might be extreme because energy expenditure in high-Arctic breed-
ing shorebirds often reaches ceilings of  sustainable energy turnover 
rates (Piersma et al. 2003). Thus, foraging during the colder period 
will reduce the net energy intake rate of  the feeding bird as prey 
availability is lower and the need for thermoregulation is higher. 
Hence, incubating during the cold part of  the day and foraging 
during warm periods seem advantageous. Yet, it is unclear why 
females are more likely to capitalize on this advantage.

An unanswered question is whether the sex difference in the 
amount of  incubation is related to the level of  brood care. Females 
of  this species are more likely to desert the brood earlier than the 
males (Ashkenazie and Safriel 1979a; Hicklin and Gratto-Trevor 
2010). Thus, the variation in the timing of  desertion may be linked 
to the investment during incubation, that is, females that dedi-
cate more to incubation may tend to desert the brood earlier (e.g., 
because they have depleted their resources) or later (e.g., because 
they may be high-quality females that generally can invest more in 
the brood).

Variation in incubation patterns: current and 
previous findings

There was relatively little between-nest variation in the amount and 
quality of  incubation (Tables 1–3), but pairs varied considerably in 
their timing of  incubation. This resulted in unexpected variation in 
incubation patterns (Figure 7). Perhaps the most important differ-
ence between these patterns, in terms of  costs of  incubation, is that 
only in the “running” pattern, both parents could forage during the 
warmer parts of  the day or be exposed to similar risk of  predation, 
at least on some days.

The running pattern, however, is not the only possible scenario 
that would lead to a relatively equal division of  incubation during 
the colder part of  the day. Theoretically, parents could have shorter 
incubation bouts (e.g., of  a few hours) allowing both of  them to 
forage when it is more efficient. However, this would lead to more 
frequent exchanges and might be counter selected if  it increases 
predation risk (Smith et al. 2012). Alternatively, parents could keep 
regular 24-h incubation cycles but with changeovers that would 
allow each partner to experience part of  the colder and part of  the 
warmer period of  each day.

It is difficult to assess whether the observed variation in incu-
bation patterns is also present in other species because continu-
ous data throughout the incubation period are scarce. Moreover, 
the literature is dominated by studies on species with incubation 
bouts lasting >24 h (albatrosses, e.g., Weimerskirch et  al. 1986; 
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Weimerskirch 1995; penguins, e.g., Davis 1982; Weimerskirch et al. 
1992; Gauthier-Clerc et al. 2001; and petrels, e.g., Chaurand and 
Weimerskirch 1994), where timing of  incubation within a day does 
not play a role. In the remaining species, the available (noncontinu-
ous) data suggest that a day–night incubation pattern is typical for 
day–night environments (reviewed by Skutch 1957). Continuous 
laboratory observations confirmed female-biased night incubation 
in masked doves, Oena capensis (Hoffmann 1969), and in ring doves, 
Streptopelia risoria (Wallman et  al. 1979; Ball and Silver 1983); the 
same may occur in other Columbiformes (Hoffmann 1969). In 
contrast, continuous incubation records of  (radioactively tagged) 
black-legged kittiwakes, Rissa tridactyla, revealed varying incuba-
tion patterns, including “day–night,” and “running” (Coulson and 
Wooller 1984). In shorebirds (based on the recordings of  few nests 
or days), both female-biased (e.g., Jehl 1973; Ward 1990) and male-
biased (e.g., Byrkjedal 1985; Sullivan Blanken and Nol 1998; Currie 
et al. 2001) night incubation have been reported.

Possible causes of variation in incubation 
patterns

The causes, consequences, and adaptive significance of  the 
observed incubation patterns (Figure 7) await exploration.

Our results suggest that these patterns are to some extent 
season specific (Figure  6), that is, nests that started in the first 
half  of  the season tended to show a running pattern, whereas 
late nests more often showed a day–night pattern. To confirm 
this trend, a larger sample size is required, particularly for late-
starting nests (Supplementary Figure S7). One possible explana-
tion for the within-seasonal variation is that a different subset of  
birds is incubating later in the season (e.g., individuals that are 
of  lower quality or that are renesting after a predation event). 
Alternatively, the within-seasonal variation may be influenced 
by the change in weather conditions from early to late breeding 
season.

Whether additional or different mechanisms drive the described 
patterns remains unclear. Here, we discuss how the patterns can 
arise through variation in response to external environmental cues, 
variation in individuals’ internal clock, or variation in the settle-
ment of  parental conflict among pair members over the amount 
and timing of  incubation, or through a combination of  these.

External environmental cues
The typical day–night pattern (24-h cycle) may arise even under 
continuous light, when individuals use other external cues (e.g., 
light intensity or quality, temperature) as zeitgeber (Steiger et  al. 
2013). A  running pattern may then arise if  individuals are less 
sensitive to such subtle cues. Early experimental evidence suggests 
that incubation patterns may indeed be influenced by photope-
riod: in carrier pigeons, domesticated Columba livia, pairs showed 
running or variable incubation patterns when exposed to continu-
ous light (no fluctuations in light intensity), whereas pairs kept 
a day–night incubation pattern (with male incubation during 
the day, as under natural conditions) when exposed to a 12:12 h 
light:dark cycle (Schmidt-Koenig 1958). The day–night pattern 
remained when parents experienced different darkness levels 
at night. However, the time of  the exchanges varied more than 
during the strict day–night light regime (Schmidt-Koenig 1958). 
Thus, the observed variation in incubation patterns could reflect 
individuals that differ in their responsiveness to more subtle zeit-
gebers in the Arctic.

Internal clock
The observed variation in incubation rhythms (Figure 7) might also 
be linked to individual variation in the internal clock. Disruption 
or shifts in daily rhythms (e.g., due to changing light regimes) may 
lead to severe costs (Aschoff et  al. 1971; Foster and Wulff 2005; 
LeGates et  al. 2012). Therefore, if  a specific zeitgeber (e.g., day–
night, tide) drives the daily behavioral rhythm of  individuals dur-
ing most of  their life, it might be advantageous for individuals to 
keep their rhythm also in an environment where the specific zeitge-
ber is absent. Because semipalmated sandpipers are predominantly 
tidal (Hicklin and Gratto-Trevor 2010), a running pattern might 
reflect the tide-bound internal clock of  individuals (including 
the time when birds become hungry and get the urge to forage). 
Short female–male cycles (due to short incubation bouts) during 
early incubation might reflect the approximately 12.5-h cycle of  
low and high tide, whereas the long incubation cycle during late 
incubation might reflect 2 low–high tide cycles (25 h). Keeping the 
shifting tidal pattern while incubating in the high Arctic, where 
food availability fluctuates with time of  day, may be beneficial if  
it allows both parents to forage during the times of  the day when 
food is most abundant. Hence, the observed variation in timing 
patterns could reflect individuals that differ in life history (i.e., out-
side the breeding season live in environments driven by different 
zeitgebers).

Settlement of parental conflict
The observed variation in incubation patterns can also reflect 
between-pair differences in behavioral rules that determine the 
length of  incubation bouts or in negotiations among pair mem-
bers. During continuous biparental incubation, only one parent at a 
time can be off nest (e.g., to feed), so one or both parents will need 
to adjust their individual schedules (e.g., feeding, resting) and pos-
sibly compromise their internal clock (discussed above). In migra-
tory birds such as semipalmated sandpipers, pair members can be 
running on different rhythms (e.g., depending on migratory routes 
and timing of  migration). We do not know whether parents use 
behavioral rules, such that one parent forces its internal rhythm on 
the other, or whether parents negotiate and synchronize toward a 
new rhythm, which then leads to a particular incubation pattern. 
However, our observations support some scenarios more than oth-
ers, and we discuss 3 possible behavioral rules and a negotiation 
scenario.

First, the incubation patterns may arise from the rule “when the 
foraging partner comes back to the nest, the incubating bird goes” 
(come-and-go rule); the observed variation in the patterns may 
then reflect differences in the decision of  the returning birds about 
when to return to the nest. In support of  this rule, we found strik-
ing synchronization between partners; exchanges between incubat-
ing birds were usually instantaneous (81% of  exchange gaps were 
shorter than 1 min), despite large within-nest variation in incuba-
tion bout length (nearly 2 h). However, the come-and-go rule fails 
to explain why synchronization increased over time (the occurrence 
and length of  exchange gaps decreased over the incubation period; 
Figure 5). Also, our observations suggest that both birds may deter-
mine the bout length because 1)  the off-nest bird is often foraging 
or resting up to several kilometers away (Ashkenazie and Safriel 
1979a; our unpublished data) and has to return to the nest before 
the changeover (which is mostly immediate, see above), 2)  the sit-
ting bird does not always leave when the partner returns (and may 
even chase away the incoming bird; Ashkenazie and Safriel 1979a), 
and 3) the sitting bird sometimes leaves the nest before the partner 
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returns (although rare, exchange gaps up to 6.7 h occur). Thus, the 
simple come-and-go rule seems unlikely.

Second, the patterns may arise from the rule “when the foraging 
partner comes back to the nest, the incubating bird decides when to 
leave”; then the variation in the patterns may reflect individual dif-
ferences in the decision to leave the nest when the partner returns. 
Although plausible, it remains unclear what factors influence this 
decision and how the off-nest bird knows when to return.

Third, the incubation patterns may arise due to energy con-
straints; variation in the patterns may then reflect variation in the 
birds’ condition. Under this “energy rule,” the off-nest bird may 
return whenever it has replenished its energy reserves, and the incu-
bating bird may leave whenever its energy reserves have dropped to 
a certain threshold. This scenario has been supported by experimen-
tal data suggesting that a parent prolongs its incubation bout when 
the energetic demands during incubation are lower (Cresswell et al. 
2003). But a similar experiment and reanalyses of  Cresswell et al.’s 
(2003) data revealed or depicted no such relationship (Bulla M,  
Cresswell W, Valcu M, Rutten AL, Kempenaers B, unpublished 
data). Hence, although there is no doubt that energetic constraints 
play some role in determining incubation patterns in biparental 
incubators (Chaurand and Weimerskirch 1994), these constraints 
do not seem to fully explain the patterns.

Finally, the patterns could arise due to a form of  negotiation 
between the pair members; variation in the observed patterns 
would then reflect different outcomes of  the negotiations. Our 
results support the predictions of  2 game-theory models of  bipa-
rental negotiations. In the first model, parents match their amount 
of  care when they have partial information about the brood need; 
investment of  one parent serves as a signal of  the brood need to the 
other parent (Johnstone and Hinde 2006). As predicted, we found 
that bout lengths of  partners were positively correlated. However, 
these models seem to apply more to offspring feeding; whether 
incubating parents have only partial information about the need of  
their eggs seems unlikely. Also, the model does not explicitly con-
sider repeated bouts of  investment.

The second model explicitly considers repeated bouts of  
investment and predicts an increase in the amount of  care for 
both parents with consecutive bouts of  investment (Lessells and 
McNamara 2011). We observed exactly that, as incubation pro-
gressed, bouts increased in length. The model further suggests 
that the amount of  parental care will depend on the parent’s qual-
ity; the higher quality parent will deliver more care. The observed 
variation in incubation patterns between pairs may, thus, reflect 
pairs with parents of  different quality or in different condition. 
This is possible, but at least individual body mass (measured once) 
and size (proxy for individual condition and quality; e.g., Peig 
and Green 2009) explained little of  the variation in the length of  
incubation bouts. In addition, although the Lessells–McNamara 
model incorporates quality of  care, it does not consider timing 
of  care. It assumes that the cost function for a parent is the same 
in all bouts of  investment. But our results indicate that the costs 
of  individual investment might vary over time, for example, by 
changes in the timing of  incubation relative to optimal foraging 
opportunities.

In sum, variation in the incubation patterns is unlikely a result 
of  birds differing solely in their decision to return to the nest or in 
their condition. Although differences in the decision of  incubating 
birds to leave the nest or negotiations seem more likely to explain 
the various incubation patterns, experimental evidence is missing. 
Our findings suggest that current game-theory models of  biparental 

care are not yet directly applicable to biparental incubation because 
they do not explicitly consider amount, quality, and timing of  care. 
Incorporating variation in the temporal cost of  investment in these 
models might help understand the within-population variation in 
incubation patterns we described.

Conclusions
The significance of  our findings is 3-fold. First, our study provides 
a quantitative framework for future work on biparental care pat-
terns. The framework allows quantification of  both general trends 
and within-population variation (suggesting possibly different 
incubation strategies). Second, our results reveal variation in bipa-
rental incubation patterns, with possibly different consequences 
for sex-specific costs of  care. This highlights the need to investi-
gate not only the central tendency but also the variation in costs 
of  parental care over time. Whether similar variation is also pres-
ent in other species or systems (e.g., breeding under less extreme 
environmental conditions) remains unknown. Finally, although 
our study is limited to observations of  incubation, that is, misses 
other forms of  parental care (e.g., brood care), it demonstrates 
that focusing only on one aspect of  care or on a short snapshot of  
care in time may bias our perception of  costs of  parental care and 
therefore may be insufficient for understanding parental conflict 
and its outcomes.

Supplementary Material
Supplementary material can be found at http://www.beheco.
oxfordjournals.org/
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