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Abstract

The 1000 Genomes Project data provides a natural background dataset for amino acid germline mutations in humans. Since
the direction of mutation is known, the amino acid exchange matrix generated from the observed nucleotide variants is
asymmetric and the mutabilities of the different amino acids are very different. These differences predominantly reflect
preferences for nucleotide mutations in the DNA (especially the high mutation rate of the CpG dinucleotide, which makes
arginine mutability very much higher than other amino acids) rather than selection imposed by protein structure
constraints, although there is evidence for the latter as well. The variants occur predominantly on the surface of proteins
(82%), with a slight preference for sites which are more exposed and less well conserved than random. Mutations to
functional residues occur about half as often as expected by chance. The disease-associated amino acid variant distributions
in OMIM are radically different from those expected on the basis of the 1000 Genomes dataset. The disease-associated
variants preferentially occur in more conserved sites, compared to 1000 Genomes mutations. Many of the amino acid
exchange profiles appear to exhibit an anti-correlation, with common exchanges in one dataset being rare in the other.
Disease-associated variants exhibit more extreme differences in amino acid size and hydrophobicity. More modelling of the
mutational processes at the nucleotide level is needed, but these observations should contribute to an improved prediction
of the effects of specific variants in humans.
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Introduction

With the release of the 1000 Genomes Project (1 kG) data [1], it

has become feasible to study human protein variation on a large

scale. The main aim of the 1 kG project was to discover and

characterize at least 95% of human DNA variants (with a

frequency of occurrence of .1%) found in multiple human

populations across the world. Five main populations were sampled

with ancestry in Europe, West Africa, the Americas, East Asia and

South Asia. The project has provided a rich set of synonymous

(sSNPs) and non-synonymous (nsSNPs) variants for 1092 individ-

uals from diverse populations. It is estimated from the 1 kG data

that each individual will, on average, differ from the reference

human genome sequence at 10,000–12,000 synonymous sites in

addition to 10,000–11,000 non-synonymous sites [1]. As these

nsSNPs change the amino acid sequence of the protein, the

changes have the potential to affect the structure and function of

the corresponding proteins. The 1000 Genomes Project data set is

valuable in that it is large and not derived from a disease cohort

but rather seeks to capture variants found in a disparate set of

healthy individuals. This can be used to characterise differences on

average between disease-associated and benign mutations (or at

least mutations not known to be associated with disease) as well as

exploring their structural characteristics and preferences. The

reports from the 1000 Genomes Consortium [1,2] have focused on

genome and nucleotide variation, and other papers consider

mutations in association with a specific disease (e.g. cancer) [3].

Various databases such as the Online database of Mendelian

Inheritance in Man (OMIM, [4]), the UniProtKB human

polymorphism set (Humsavar, [5]) and the Human Gene

Mutation Database (HGMD, [6]) collect information on inherited

diseases associated with variants. The Humsavar database

contains disease-associated variants from the literature and

OMIM. OMIM currently contains information on approximately

10,200 nsSNPs associated with diseases (December 2011) and

Humsavar about 23,500 disease-associated nsSNPs. Most of the

phenotypical effects and their molecular origins are not well

established, so predicting the functional effect of a single amino

acid variant is of great medical interest. The main methods assume

that mutations in highly conserved residues cause disease and thus,

by using alignments to homologous sequences and residue

similarity, the severity of the variant can be gauged. More

advanced methods include information derived from protein

structures (such as solvent accessibility, free energy changes,

environment specific substitution tables and functional annota-

tions) to improve the accuracy (see review by [7]). The advantage
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of using a 3D approach for prediction is that the consequence and

characteristics of the variant can be studied in its specific

environment in the protein. This provides a level of information

beyond a sequence or a sequence alignment [8]. If there are

ligands present, the interaction between the mutated amino acid

and the ligand can be studied. This has been successfully applied

to various individual proteins on a case-by-case basis [9,10]. In

total over 30 different programs to predict the effects of these

variants have been published, including Condel [11], SNAP [12],

SDM [13], PolyPhen [14], VEP [15], SIFT [16,17] and SNP&GO

[18]. Most of these algorithms can only predict whether a specific

variant will be neutral or deleterious for the protein with various

degrees of accuracy, although measuring accuracy is challenging

in the absence of a good benchmark.

To allow the accurate prediction of functional effects of SNPs,

we need a thorough understanding of why amino acids mutate in

humans. Various groups have worked on the effect of the

mutations and numerous studies have been done on small specific

sets of proteins [8,19–22]. Blundell and co-workers have found

that the local environment around an amino acid plays a large role

in the effect that selection has on a mutation in a specific position

[21]. This has led to the development of environment specific

substitution matrices [23,24] that incorporate structural con-

straints. Subramanian and Kumar [25] did a detailed analysis on a

set of 8,627 disease-associated mutations and found that disease-

associated mutations tend to occur on inter-species conserved

residues. The common factor between these studies is that they try

to understand the effect that selection and structural constraints

have on disease vs non-disease states in selected sets of proteins.

Very few studies have tried to unravel the underlying cause for

mutation patterns seen in human proteins. With this work we aim

to elucidate why certain amino acids mutate more and try to

understand the underlying mechanisms present in the mutation

process. We gather the data for all the amino acid mutations found

in the 1000 Genomes Project to characterise their sequence and

structural properties, providing a benchmark background against

which to compare the disease-associated nsSNPs in OMIM and

Humsavar.

Results

The 1000 Genomes Project data were queried to retrieve all the

nsSNPs, which were filtered to include only those that occurred in

a single population (see methods). This ensures that only the more

recent mutational events in human evolution are included and

simplifies counting. In addition variants at a single site were only

counted once even if they occur in multiple individuals, since such

clusters are assumed to represent a single variation event that has

been inherited in the other individuals. For 3D analysis only

human proteins, for which complete structures are available, were

included to ensure accurate analysis of 3D features. For solvent

accessibility calculations, a monomer subset was also generated to

avoid problems with uncertain multimeric states and validate our

findings on the larger dataset. Homology models based on close

relatives were used to extend the data set and see if the trends

observed in the experimental structures were preserved. Table 1

summarizes the five data sets created and used in this study.

The amino acid exchange matrix derived from the 1000
Genomes Project dataset

Figure 1 shows the amino acid exchange matrix generated from

the ,106,000 nsSNPs found in the 1 kG data. Amino acid

mutations requiring two or three base changes are not defined in

this dataset due to technical reasons. The 1 kG matrix exhibits

several interesting features, most of which reflect the genetic code

and the differential mutability of various codons. All possible single

base changes are observed. The matrix is not symmetrical as a

result of the differences in frequency of occurrence of amino acids

as well as differences in their mutabilities [26,27]. As expected

Author Summary

In this paper we compare the differences between ‘natural’
and disease-associated amino acid variants at both
sequence as well as structural levels. We used data from
the 1000 Genomes Project (1 kG), the OMIM database and
UniProtKB Humsavar. The results highlight the complex
interplay of features from the level of the DNA up to
protein sequence and structure. The codon CpG dinucle-
otide content plays a large role in determining which
amino acids mutate. This in turn affects the mutability of
amino acids and a clear difference was seen between non-
disease and disease variants where amino acids that are
naturally very mutable show the opposite trend in the
disease-associated data. The current results show evidence
for some selection, mainly in that the variants occur
slightly more often on the surface of the protein and are
much less likely to be annotated as functional than
expected by chance. However we should note that even
the best definition of functional, taken from structural
data, is limited. Even with these caveats, it is clear that the
1 kG variants eschew functional residues as defined here, a
trend which is surprisingly even stronger in the OMIM
data.

Table 1. The different datasets constructed and used in this study and their composition.

Data set Protein chains nsSNPs Description

1 kG 19,058 106,311 A data set containing all the 1 kG variants filtered by population.

OMIM 19,058 10,151 A protein sequence based set containing OMIM variants for all reviewed
UniProt human proteins.

Humsavar 19,058 23,846 A set based on human disease polymorphisms from UniProt.

3D 2,139 10,628 A protein 3D structure based set consisting of 1 kG variants for proteins that
have a complete structure in the PDB.

Monomer 325 1,461 A subset of the 3D set containing only proteins identified as being monomeric.

Model 2,630 13,037 A set based on human ModBase homology models where sequence coverage
and identity are between 90–100%.

doi:10.1371/journal.pcbi.1003382.t001

Amino Acid Mutation Characteristics
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there is a strong correlation (r = 0.786) between the frequency of

occurrence of amino acids in the human proteome and the

number of associated codons. Figure 2 shows that, excluding Arg

and Leu which are extreme outliers, there is a strong trend for

amino acids with a higher frequency of occurrence to have more

mutations (r = 0.836). Taken together this leads to a relatively

strong correlation (r = 0.741) between the number of codons and

the number of mutations. In contrast, the frequency of the gained

amino acids, resulting from the mutation, shows little correlation

between frequency of occurrence and number of mutations

(r = 0.349).

Amino acid mutabilities
The mutabilities of the amino acids (see methods) in the 1 kG

dataset are shown in the last column of Figure 1. Arg (0.031) is the

most mutable, whilst the more chemically complex amino acids,

Trp (0.004) and Phe (0.005) have the lowest mutabilities. There is

no correlation in the 1000 Genomes data between mutability and

frequency of occurrence (r = 20.003 excluding Arg) nor between

mutability and the number of codons (Figure 3). It is well known

that CpG dinucleotides in DNA tend to mutate at rates 10–50

times higher than other dinucleotides [28,29] and thus amino

acids with a CpG present in their codons will mutate with a higher

probability (see Figure 4). Four out of the six codons for Arg

include CpG sequences, and Arg mutates more frequently than

any other residue, with a mutability (0.031) which is over twice as

high as its nearest rival. This high mutability also reflects the fact

that the CpG in the Arg codons occur in the non-wobble positions

so nucleotide mutations give rise to non-synonymous SNPs. In

contrast Leu which also has six codons, none of which contain

Figure 1. The amino acid exchanges observed in human protein variants. The 1 kG data set is the top row of each cell and OMIM the
bottom row of each cell*. Amino acids are arranged by 1 letter code according to increasing hydrophobicity (least hydrophobic is left and most
hydrophobic is right) using the Fauchère and Pliska scale [58]. Yellow blocks indicate mutations where there are statistically significant differences
between 1 kG and OMIM. Blue blocks indicate where no mutations were present in the 1 kG data set. White blocks show where there are no
statistically significant differences. Green blocks show where there are proportionally more 1 kG mutations compared to OMIM. Orange blocks show
where there are proportionally more OMIM mutations than 1 kG. The mutability scores (see methods) for the 1 kG and OMIM sets are shown in the
last column. *Note that these matrices are fundamentally different. The 1 kG data set gathers all the observed mutations in the 1 kG project, counting
each only once; the OMIM data set combines information gathered from potentially many individuals but filtered to identify those mutations
associated with a disease.
doi:10.1371/journal.pcbi.1003382.g001

Amino Acid Mutation Characteristics
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CpG, has a low mutability (0.005) and mutates six times less

frequently than Arg. However the correlation with CpG is far

from perfect and other factors must have an effect. For example,

Met, which has only one codon with no CpG dinucleotide, is the

second most mutable amino acid (0.014).

Figure 4 shows the clear pattern of amino acid gain and loss in

the human proteome. Jordan [26] and Zuckerkandl [30] long

since identified that Cys, Met, His, Ser and Phe are being accrued

significantly in the human proteome. Our data confirm a net gain

of these five amino acids, and Val, Asn, Ile and Thr were also

confirmed as weak gainers. Jordan and co-workers also identified

strong losers and our data again confirm that Pro, Ala, Gly and

Glu are strong losers. Lys was identified as a weak loser but our

larger dataset suggests that lysine should be considered a weak

gainer in humans. Arg is the strongest loser in the human genome

(similar to the human set in [26] but not other considered species).

We calculated the mutability for every amino acid on a

population specific basis. None of the populations showed a

different pattern of amino acid mutabilities, compared to the

overall trend with correlation coefficients equal to 1.0 (Figure S1).

Using the individual amino acid mutabilites, we looked at

aggregate protein mutability differences by adding up the

individual mutabilities for every amino acid in each protein in

the data set and normalising by protein length. This was compared

to the aggregate mutabilities of proteins involved in disease as

classified by OMIM and Humsavar. The average score for

disease-associated proteins was 0.0103 and for non-disease

proteins 0.0102 with a median of 0.01022 (s = 0.0006) and

0.01018 (s = 0.0005), respectively, indicating that protein aggre-

gate mutability has no bearing on disease-association (Figure S2).

The effects of physicochemical characteristics of the
amino acids on their mutability

As well as constraints on the mutational process at the DNA

level, the consequence of a variant on the protein structure and

function will also have an impact on the number of observed

mutations. If a variant interferes with the structure and function of

a protein and that protein is essential, then this variant is less likely

to be seen. However comparison of mutability with the size and

hydrophobicity of the amino acid shows very little correlation in

the 1 kG dataset. There is a moderate anti-correlation between

higher mutability and size (r = 20.474), with the smaller amino

acids mutating more frequently, but no correlation at all between

mutability and hydrophobicity (r = 20.082) although the large

hydrophobic amino acids (Leu, Phe and Trp) have the lowest

mutability scores. Trp has the fewest mutations (544, even though

all SNPs in Trp codons result in a change of amino acid) and also

the lowest mutability score (0.004) together with Phe. In addition

to their complexity and low abundance, Phe and Trp often occur

in specialized roles such as the interior of proteins, p-p stacking or

ring interactions and this might add to their low mutability. The

mutability of Cys is also low, perhaps reflecting its role in

disulphide bridges, which help to stabilise extracellular proteins.

Figure 2. Comparison of the number of mutating residues vs
the amino acid frequency of occurrence.
doi:10.1371/journal.pcbi.1003382.g002

Figure 3. Amino acid mutability vs the number of codons in the
1 kG data.
doi:10.1371/journal.pcbi.1003382.g003

Figure 4. A visual representation of the asymmetry of the 1 kG
data. The plot shows the difference between how often an amino acid
mutates vs how often it is mutated to. These are raw counts and also
reflect the frequency of occurrence. Each amino acid is coloured
according to CpG content. Red: a CpG dinucleotide occurs in its codons;
yellow: if one of its codons start with a G (with a C possibly preceding
it); blue: no CpG in its codons. The black line indicates the diagonal
where ‘mutations to’ equals ‘mutations from’.
doi:10.1371/journal.pcbi.1003382.g004

Amino Acid Mutation Characteristics
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The structural properties of 1000 Genomes variants
To investigate the structural characteristics of these variants,

three sets of protein structures were compiled, namely the 3D set,

the monomer set and the model set (Table 1). The 3D and

monomer set were constructed from data in the PDB (see methods)

while the model set and the subsequent variant modelling was

created and performed using Modbase [31] and Modeller [32], built

into an in-house homology modelling pipeline. The 3D set contains

2,139 protein chains. A total of 10,628 1 kG nsSNPs were found in

these chains, of which protein models, based on the known

structures of human proteins could be built for 5,524. The

monomer set contains 325 protein chains identified as monomers

and a total of 1,461 1 kG nsSNPs were found, of which 897 could be

modelled. The model set, including models based on homologues

from the PDB, contained 2,630 protein chains and 12,432 out of

13,037 nsSNPs could be modelled. For the Humsavar set we found

5,592 nsSNPs of which 3,942 could be modelled.

Figure 5A shows a comparison of the solvent accessibility

distribution for all residues compared to that for the variants. On

average the variants in the 1 kG are slightly more exposed. An

analysis of the solvent exposed residues found that, for the most

accurate monomer set, 79% of nsSNPs are solvent exposed

compared to 73% of all residues (p = 0.001). For the structures in

the model set, 81.9% of nsSNPs were solvent exposed. For all

three datasets, the 1 kG variants have a slight preference to occur

on the surface of proteins compared to all residues. Figure 5B

shows that there were no appreciable differences in secondary

structure preferences between variants and other residues.

Do natural mutations occur in functionally annotated
residues?

Functional annotation for each human protein was derived

using SAS (Sequence Annotated by Structure, [33]). Table 2

shows the different functional annotations for each set. The

vast majority of functional annotations identified, make

contacts to ligands (using PDBsum data, [34]) or site

interactions in the proteins (as defined in the PDB). Only

15.5% of the mutations (1,648 of 10,628) in the 3D set were

annotated with a function compared to 29.1% of all residues in

the set of human structures (Figure 5C). These data show that

the observed mutations in the 1000 Genomes occur less

frequently in the functionally annotated residues compared to

all residues.

Residue conservation
Residue conservation scores, defined as the variation of the

residues at a given site in the protein across multiple species, were

obtained for all sites in the human proteome (where sufficient data

are available) from the Evolutionary Trace server [35]. These

scores are distributed across the whole range of conservation

(Figure 6) with a mean score of 0.48. The scores for all the sites

with mutations in the 1000 Genomes data show a slightly different

distribution from all residues, with a small but significant shift

(p,2.2610216) towards the less conserved sites and a reduced

mean conservation score of 0.43. Clearly natural variation occurs

across all conservation levels and is not limited to non-conserved

residues.

Figure 5. Site properties for all residues, 1 kG nsSNPs, OMIM nsSNPs and Humsavar nsSNPs in the structure 3D set. (A) the solvent
accessibility for the variants in the four datasets, (B) the secondary structure in which each of the variants occurs, (C) the functional annotation of
every variant in the four datasets.
doi:10.1371/journal.pcbi.1003382.g005

Amino Acid Mutation Characteristics
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Amino acid exchange characteristics in 1000 Genome
data

For each amino acid the mutation profile can be calculated

showing the preference for specific X = .Y mutations in the 1000

Genomes data. These profiles, given for all the amino acids in

Figure 7, show that there are striking differences in frequency of

occurrence for the different exchanges. For example, in the 1 kG

set Arg shows a strong preference to mutate to Gln and His, whilst

mutations to Ser, Gly and Pro are much less frequent. All the

amino acids show these differential exchange rates. Figure 8A

shows the distribution of changes in energy of the whole protein

caused by each mutation, evaluated as the statistical potential

energy DOPE score (Discrete Optimised Protein Energy) in

Modeller. 68.1% of the 1 kG variants increase the DOPE score

(i.e. make the protein less stable). This implies that most natural

variants decrease the stability of the protein, albeit by a very small

amount. The distribution of changes in size and hydrophobicity

for all observed mutations (Figure 8B and 8C) show that 59.4% of

mutations increase the hydrophobicity of the amino acid and

52.4% of mutations increase the size. Over 84% of variants

Figure 6. Comparison of the conservation scores in the four sets used. The density distribution of residue conservation scores for all the
amino acid positions in UniProt (9,532,474 residues, black), 1 kG (185,428 residues, blue), OMIM (8,099 residues, red) and Humsavar (21,446 residues,
green). The conservation scores range from 0 for non-conserved residues to 1 for highly conserved residues.
doi:10.1371/journal.pcbi.1003382.g006

Table 2. The various functions assigned to nsSNPs in each set.

Set Site Ligand Site/ligand overlap Metal Catalytic Overall (non-redundant)

3D 1,414 1,432 1,220 334 17 1,648 (15.5%)

Monomer 281 273 245 83 4 312 (21.4%)

OMIM 163 184 147 17 17 209 (2.1%)

Humsavar 305 285 252 58 41 355 (51.2%)

Models 1,538 1,443 1,304 376 36 1,676 (12.9%)

‘Site’ refers to residue specific annotations made by depositors of PDB structures, ‘Ligand’ refers to residues involved in binding a ligand, ‘Metal’ refers to residues
coordinating with metals and ‘Catalytic’ to residues involved in the catalytic activity of the protein. The % of non-redundant assigned residues that are ‘functional’ is also
shown.
doi:10.1371/journal.pcbi.1003382.t002

Amino Acid Mutation Characteristics
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change their size by less than 50 Da. 72% of variants change their

hydrophobicity by less than 1 unit. Extreme changes are rare. At

this stage these observations provide empirical expectation rates

for amino acid exchanges in humans and result from the genetic

code, the nucleotide exchange rates and also some selection at the

protein level. However without a good random model it is difficult

to be confident about the importance of the different contributions

to such variation.

Comparison of 1000 Genome variants with those
predicted by the PAM and WAG mutation matrices

The 1 kG counts matrix is a snapshot of mutations that have

occurred in humans in a short period of time. To understand this

process the count matrix can be converted into an instantaneous

rate matrix describing the rates of change of each amino acid in

humans in a time-independent manner [36]. Instantaneous rate

matrices have previously been built from a wide selection of

protein alignments across many species including nuclear proteins,

mitochondrial proteins, chloroplast proteins, buried protein

domains and exposed protein domains. PCA can be used to

compare these inter-species matrices with the 1 kG intra-species

matrix (Figure 9A–C). The 1 kG matrix was built using data

where the direction of the mutations is known whereas all other

matrices were calculated assuming direction is unknown. This was

compared to the WAG [37] and PAM matrix [38]. To check that

any differences between the 1 kG matrix and the other matrices

are not caused by using direction, a directionless matrix has also

been included in the plot (Figure 9D). In this plot, principal

component one clearly separates the 1 kG matrices, which are

placed very close together, from all of the previously calculated

matrices. Principal component two then spreads matrices out

based on whether the alignments used to build them are made up

mainly of exposed or buried domains, with the mitochondrial

matrices at the one extreme built from nearly all membrane

proteins, and matrices built from only exposed regions of proteins

at the other.

A difference between the intra-species data and the inter-species

matrices is the amount of selection which has occurred. Due to the

time-scale for the 1 kG data and the relatively weak selection in

human populations [39,40] the only mutations which are not

observed are lethal mutations. This means that there should be a

Figure 7. Comparison of the differences in observed mutations in the various sets. Comparison of the differences in the % of observed
mutations in the 1 kG (blue) and OMIM (red) sets for one amino acid mutating to all others e.g. proportionally, more mutations from Lys to Glu are
recorded in OMIM than in the 1 kG set. Each plot shows the results of mutation from a specific amino acid (e.g. Arg at top left) to every other amino
acid.
doi:10.1371/journal.pcbi.1003382.g007

Amino Acid Mutation Characteristics
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Figure 8. Comparison between the physicochemical properties of the wildtype and the mutant models for each of the data sets.
Plots showing the differences between (A) Modeller DOPE scores for the wild type and mutant model (based on 3D, 10,628 mutations, and Humsavar
sets, 21,446 residues), (B) changes in hydrophobicity between wild type and mutant in both sets and (C) changes in size between wild type and
mutation in both sets.
doi:10.1371/journal.pcbi.1003382.g008

Figure 9. Bubble plots comparing the relative differences between the instantaneous rate change matrices of the data sets. (A) 1 kG
data, (B) PAM matrix and (C) WAG matrix. (D) A PCA (first two components) plot showing the separation of the 1 kG matrices from other matrices.
Matrices included are 1 kG (with and without assuming direction), nuclear (WAG, JTT, LG, PAM, tm126, PCMA), mitochondrial (mtREV24, mtMam,
mtArt, mtZoa), chloroplast (cpREV, cpREV64), exposed (alpha helix, beta sheet, coil, turn) and buried (alpha helix, beta sheet, coil, turn). Principal
components one and two represent 34% and 20% of the variance, respectively. All other principal components represent 9% or less of the variance
each. Amino acids are arranged according to increasing hydrophobicity.
doi:10.1371/journal.pcbi.1003382.g009

Amino Acid Mutation Characteristics
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limited effect of selection on the 1 kG matrix. By using no allele

frequency cutoff for the minor alleles when building the count

matrix, we gather the maximum amount of information about the

mutation process. The counts are necessarily shaped by mutation

and selection but will mostly reflect the mutation process. The

inter-species matrices (e.g. PAM and WAG in Figure 9B,C) on the

other hand are subject to selection pressures. This could explain

why the 1 kG matrix is so different from the other matrices. One

clear factor is CpG hypermutability: for example, changes from

Arg, an amino acid with four of six codons containing a CpG,

have a very high rate in the 1 kG data, and not in WAG

(Figure 9A,B). In fact only codons containing a CpG have high

rates overall (Figure 10). The most plausible explanation is that

these CpG mutations are occurring at a very high rate and then

are selected out so that the effect is not seen as strongly when

looking across multiple species.

Comparison between the 1000 Genomes variants and
the disease-associated variants

For comparison, we have constructed the amino acid exchange

counts matrix for data from the OMIM database and the associated

plots for these mutations (Figures 1–8). Disease variants from the

UniProtKB/Swiss-Prot Human polymorphisms and disease muta-

tions index (Humsavar) were also included with plots available in the

supplement (Figures S3, S4, S5). Our focus however is on the

OMIM set. In contrast to the 1 kG data, various double and triple

base mutations are observed in the OMIM set, however the three

triple base changes (Phe-Lys, Met-Tyr and Trp-Ile) were checked

back to the publications and all were found to be errors either in the

paper or in OMIM and were removed. 82 two base changes were

found in OMIM and a few (10%) randomly selected changes were

manually checked with no errors found. Clearly the OMIM data

are radically different from the 1000 Genome data, in that they are

all independent observations of variable confidence and manually

determined by individual scientists. They only represent a small

fraction of disease-associated nsSNPs and the number of mutations

(,10,000), is approximately ten times smaller than the number of

1000 Genomes mutations. The normalised OMIM counts that

differ from the 1 kG dataset are coloured in Figure 1. Considering

just the residue type, if we exclude Arg, the overall correlation

between the normalised frequencies of occurrence of the mutated

residues in the two datasets is only 0.14 and between 1 kG and

Humsavar it is 0.48. If we compare all 148 observed X = .Y

frequencies, the correlation between 1 kG and OMIM is 0.51 and

1 kG and Humsavar is 0.79.

Previous studies have found that mutations from Arg and Gly

are the major contributors to human genetic disease and have

been shown to make up about 30% of the mutations involved in

disease [41]. In this updated and much expanded set, variants

from Arg and Gly only make up 15% of the disease causing

mutations. However mutations to Arg are still the biggest

contributor to genetic disease with ,19.4% of all mutations.

Figure 11 shows a rank order comparison between the

frequency of occurrence of the 1 kG and OMIM variants

(r = 0.09) as well as between 1 kG and Humsavar (r = 0.31) and

Humsavar and OMIM (r = 0.51), normalised for amino acid

occurrence. Unlike for the 1 kG data, the disease-associated

variants show moderate inverse correlations between their

frequency and the frequency of occurrence of the residue type

(r = 20.67) implying that, at least for OMIM, the mutations to the

rarer amino acids (with fewer codons) are more likely to be

associated with disease. As with the 1 kG data there is no strong

correlation between a residue type being associated with a disease

in the OMIM data and the number of codons. For hydrophobicity

and size, the disease associated variants show the opposite trend to

the 1 kG dataset with a moderate correlation between lower

frequency and smaller size (r = 0.528, excluding Cys and Trp) but

no correlation between frequency and hydrophobicity (r = 0.289).

It is interesting to note that the least mutable amino acid in the

1 kG data (Trp) turns out to be the residue whose mutation is most

likely to result in disease in the OMIM variants and is highly

ranked in the Humsavar set. Trp, the largest amino acid, often

occurs in specialized roles in proteins as does Cys, the second most

frequent variant residue type in OMIM. Amino acids with a lower

frequency of occurrence tend to be the more complex amino acids

and are frequently found in specialized roles. Mutating them will

result in the possible loss or alteration of protein function, hence

the over-representation in OMIM and Humsavar. In a number of

cases the OMIM and 1 kG variant preferences appear to behave

in an opposite way from one another e.g. in Figure 7 Arg most

frequently mutates to Gln in the 1000 Genomes and a variantion

to Gly is much less common, whilst Arg to Gly is the most

common variant in the OMIM dataset and a variation to Gln is

rare.

We observe a reasonable correlation between the OMIM and

Humsavar mutabilities (r = 0.51), but some amino acids appear to

behave completely differently in the two datasets. Gly and Ala are

much more frequently mutated in the Humsavar set than in

OMIM, whilst Gln, Lys and His have mutabilities in the

Humsavar set similar to those observed in the 1 kG dataset and

much smaller than those in OMIM. This may reflect the larger

Humsavar dataset (but this seems unlikely since Gly and Ala are

quite common amind acids), so these specific discrepancies may

rather reflect the origins of mutations in the two separate datasets.

Structural properties of disease-associated nsSNPs
The disease-associated OMIM variants show a slight preference

for buried sites (33%) compared to all residues (27%) in the human

proteome (Figure 5A) is even stronger in the Humsavar data

(41%). This contrasts with the ‘natural’ variants of the 1 kG data,

Figure 10. Dependence of mutation rates on the change in CpG
status. Rates of change from codons were calculated similarly to the
amino acid rate matrix [36], but on a 61 by 61 codon matrix.
doi:10.1371/journal.pcbi.1003382.g010
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which show a decreased preference (18%) for the interior. Our

work broadly agrees with a smaller study done by Gong and

Blundell [21] that showed 60–65% of disease associated nsSNPs

are solvent exposed. We found an almost identical distribution of

OMIM and Humsavar variants compared to all residues and the

1 kG variants between the different secondary structures

(Figure 5B).

Figure 8A shows the differences in the DOPE scores [42]

calculated for each variant during the structural modelling process

for the 1 kG, OMIM and Humsavar datasets. The distribution for

the disease-associated variants is shifted towards larger positive

energies in both datasets, indicating that the variants destabilize

the protein slightly more than the non-disease variants. In contrast

to the 1 kG data, OMIM mutations are more likely to increase

polarity (54%) and more likely to decrease size (51.6%,

Figure 8B,C). The two datasets show some detailed differences

in size and hydrophobicity changes. The Humsavar variants less

frequently reduce size or decrease hydrophobicity compared to

OMIM mutations.

Functional annotations
In the OMIM set, 11.2% (209 of 1,864) of the modelled

mutations were annotated with a function (Figure 5C and

methods). This is less than the distribution for all residues

(29.1%) and that seen for the 1 kG variants (15.5%). For the

Humsavar data this drops to only 6.5%. This is a surprising

finding, which needs further validation. It implies that most

disease-associated mutations do not have a direct effect on the

proteins’ catalytic or binding sites but instead act through other,

unannotated residues such as those which affect overall structure

and stability or are involved in as yet unidentified protein-protein

interfaces.

Conservation
There is a clear difference in the conservation score distribution

between natural variants and the OMIM and Humsavar variants

(Figure 6). The natural variants occur across the entire range of

conservation but the OMIM and Humsavar variants show a peak

in the more conserved residues. This is consistent with the idea

that mutations in conserved residues often lead to disease.

Discussion

The results presented herein are subject to a few caveats, the

most serious being related to the limited and possibly biased

disease-associated data in OMIM. There are only ,10,000

variants in our OMIM set and these have variable experimental

validation, and may indeed be biased according to scientists’

preconceptions that such mutations should correspond to the

residues that are most conserved and the amino acid exchanges

that generate the largest changes in physicochemical characteris-

tics. The Humsavar set has over 23,000 disease variants, however

the requirements for inclusion are based on an annotation of

‘involvement in disease’. This annotation is derived from either

OMIM annotations or associations found in literature during

curation of the SwissProt data. Notwithstanding, the OMIM

dataset is one of the best available at the present time, although the

coming years will see major expansion and hopefully improve-

ments in such data. The results highlight the complex interplay of

features from the level of the DNA up to protein sequence and

Figure 11. Amino acid mutability rank order plot comparing the mutability scores for 1 kG, OMIM and Humsavar residues. The most
mutable amino acids are at the top. Correlation coefficients for 1 kG vs OMIM, 1 kG vs Humsavar and OMIM vs Humsavar are 0.09, 0.17 and 0.51,
respectively.
doi:10.1371/journal.pcbi.1003382.g011
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structure. The codon CpG dinucleotide content plays a large role

in determining which amino acids mutate. This in turn affects the

mutability of amino acids and a clear difference was seen between

non-disease and disease variants where amino acids that are

naturally very mutable, show the opposite trend in the disease-

associated data.

The data for the 1000 Genomes provides a new experimental

baseline against which amino acid profiles may be compared.

Although there might be sequencing biases due to the DNA

sequencing techologies used [43], every effort has been made by

the 1000 Genomes consortium to correct for this. They estimate

that using consensus calling on data produced by multiple

platforms results in an error rate of 1–4%, thus having a small

but negligible impact on our results. The current results show

evidence for some protein selection, mainly in that the variants

occur slightly more often on the surface of the protein and are

much less likely to be annotated as functional than expected by

chance. However, we should note that even the best definition of

functional, taken from structural data, is limited. At one level, the

definition is rather broad. For example, all residues in contact with

a ligand are described as functional, but this is a major

underestimate since many cognate ligands are not present in the

crystal structures and similarly protein-protein interactions are

rarely captured. In addition there are still relatively few complete

structures for human proteins, which makes analysis of the effects

of variants more difficult.

Even with these caveats, it is clear that the 1 kG variants

eschew functional residues as defined here, a trend which is

surprisingly even stronger in the OMIM and Humsavar data.

The preference for OMIM mutations to be more buried and less

functional supports the suggestion that these variants predomi-

nantly affect the structure and stability of the protein [4]. This is a

similar result to that found by Sunyaev and co-workers [44] on a

much smaller set. They found that 35% of disease variants were

buried and a more detailed analysis found that ,70% of the

variants are located in structurally and functionally important

regions. Therefore these disease-associated mutations may well

target residues that are remote from the active site, which

modulate rather than obliterate the function of the protein. For

example, for an enzyme, the primary catalytic residues are rarely

targeted, but the ‘secondary’ residues in the interior (which affect

stability) or on the surface, which may affect protein-protein

interactions, could modulate function. However, the higher than

average conservation scores for OMIM and Humsavar sites

suggest that these disease-associated residues, although not

defined as ‘functional’, are still important for the organism. This

needs further investigation, with particular attention to how

‘functional’ residues are defined and whether we can improve on

this definition.

Bringing together all the above observations for disease-

associated and natural variants in ,1000 humans, we observe

that the mutability of amino acids is largely driven by the

properties of the DNA and mutational mechanisms, which favour

mutations at codons containing a CpG dinucleotide. Therefore

mutations to Arg residues are more than twice as common as any

other mutation. However there are clearly other factors at play,

which determine the frequency of variants, even at the DNA level.

Although the disease-associated variants (both OMIM and

Humsavar) follow the same pattern as the 1 kG variants (i.e. the

same mutations are present in both sets, as dictated by the genetic

code), the rank order of amino acids, according to their probability

of being disease-associated, is radically different from that

expected on the basis of the 1 kG data, with some of the rarer

amino acids being shifted to the top of the list.

There is a small but significant impact of the protein structure

on amino acid mutability, so that natural variants occur slightly

more often in non-conserved regions. 59.4% of variations increase

the hydrophobicity of the amino acid and 52.4% increase its size

in the natural set, while OMIM variants often result in larger

changes in the size and hydrophobicity of the amino acid and are

more destabilising on average than 1 kG variants. The Humsavar

data supports this idea that disease variants result in more extreme

changes. The selection pressures captured in the WAG and PAM

matrices ‘purify’ out the ‘natural’ variants, removing variants with

large changes in size and hydrophobicity. The amino acids all

show distinctive exchange profiles, whereby some exchanges are

very common and some very rare, which provides an empirical

expectation for any specific exchange in humans.

As the cost of sequencing drops rapidly, many more genomes

will be sequenced and experimental validation of disease-causing

mutations will improve as a result of more data. Much better

codon-based models of evolution will be attainable, allowing in

turn a better dissection of the impact of selection at the protein

level. The data herein will be used to develop an improved method

to predict the effects of individual mutations, to explore cancer-

related amino acid mutations, to investigate and compare

mutational profiles in different organisms as well as improving

codon mutation models for human DNA.

Methods

Non-synonymous mutations in humans
UniProt [5] was queried for all reviewed protein sequences

belonging to Homo sapiens. 19,058 entries were retrieved. The

Ensembl transcript ID [45] was obtained for each protein

sequence using the mapping provided by UniProt (17,708 UniProt

entries were mapped to 40,351 Ensembl transcript IDs). Immu-

noglobulins and major histocompatibility complex proteins were

excluded as they are inherently variable. For every protein, the

Ensembl v67 Perl API was used to query the transcript ID in

Ensembl for nsSNPs found in the 1 kG data set (as available on 1

August 2012). To reduce the inherent uncertainty involved in

determining the ancestral allele, only mutations that occurred in

one of the 1000 Genomes described populations were used, with

the allele present in all populations considered the ancestral, hence

defining the direction of the mutation. This increases the chances

that the variant found in the 1 kG data is a mutation away from

the ancestral genome. 106,311 mutations were found and this data

set, containing the ‘natural’ variants found in the 1 kG project, will

be referred to as the 1 kG set.

Residue conservation scores for each residue in every protein

sequence were calculated using the Evolutionary Trace server

[35]. Conservation scores for 2,274 sequences could not be

calculated due to the methodology used by the Evolutionary Trace

server that disregards residues in columns of the multiple

alignment containing more than 60% gaps and ranked as being

non-conserved, as well as residues judged by the algorithm not to

have enough information. This process almost certainly preferen-

tially excludes surface residues (where insertions and deletions are

most common) but since we are using the conservation distribution

for comparisons, this bias is not significant. The UniProt sequences

were used to calculate the relative abundance of amino acids in

human proteins. A total of about 10.5 million amino acids were

counted. For each protein sequence, the OMIM Mutations search

tool (http://www.bioinf.org.uk/omim) was queried with the

UniProt entry ID to retrieve variants found in OMIM. Only

variants for which the correct amino acid position in the protein

has been verified, were used for the OMIM data set and will be

Amino Acid Mutation Characteristics

PLOS Computational Biology | www.ploscompbiol.org 12 December 2013 | Volume 9 | Issue 12 | e1003382



referred to as the OMIM set. 556 of the OMIM mutations were

found in the 1 kG set (0.5%). Although these represent a very

small fraction we removed them so that they did not bias the

results.

The instantaneous rate change matrices were derived using the

DCFreq method [36] and the human proteome frequencies.

Mutability of amino acids
A mutability score for every amino acid was calculated by taking

the total number of mutations for a specific amino acid in the data

and dividing by the frequency of occurrence for the specific amino

acid in the human genome. The proportional representation of

each amino acid in the human proteome is given in supplemental

Table S1.

Statistical validation
We compared the amino acid variant counts in the 1 kG and

OMIM data using Fischer’s exact test in the R package (R

Development Core Team, 2011). Multiple comparison correction

was done on the p-values for each amino acid using p.adjust in R

with the Benjamini-Hochberg-Yekutieli method [46,47]. P-values

lower than 0.01 were considered statistically significant. For

correlation values, r.0.7 and r,20.7 were considered strong,

0.4,r,0.7 and 20.4.r.20.7 were considered moderate and

0.3.r.20.3 weak or no correlation.

Retrieving human proteins and their structures
The protein structure data set was constructed by first taking all

the above mentioned protein sequences and annotating each with

their respective Pfam [48] domains. Only proteins for which there

were matching entries in the Protein Data Bank (PDB, [49]) were

kept. This resulted in a list containing the UniProt identifiers for all

known human proteins that have at least one structure in the PDB.

For accuracy, the corresponding PDB structures were then filtered

to include only X-ray structures. Using the Pfam mapping, only

protein structures containing all the protein’s Pfam domains were

kept. The final list contained 2,139 protein chains and will be

referred to as the 3D set.

A set consisting only of human monomeric proteins was also

constructed. An algorithm was implemented whereby a protein

was classified as being either a multimer or a monomer based on a

majority vote. The predictions used were from PISA [50],

UniProt, 3DComplex [51], PIQSI [52], PQS-PITA [53–55],

relevant PubMed abstracts and REMARK 350 records from the

PDB structure file. The oligomeric predictions from each of the

servers were collected for every protein in the 3D set. Only when

the majority of the servers agreed on the most probable oligomeric

state of the protein, was it designated as either a multimer or a

monomer. The monomeric protein list contained 325 proteins and

will be referred to as the monomer set.

Another homology-based set was constructed using the human

models in ModBase [31]. Models with 90–100% sequence identity

and coverage were used as templates. This set contained 2,630

models and will be referred to as the model set.

Protein chain annotation
Each protein chain in the 3D, monomer and model sets was

annotated with information from various databases and online

resources. Information about protein properties such as catalytic

residues, metal-binding residues, ligand-binding residues and

PROSITE patterns [56] were extracted from PDBsum [34] and

additional functional residue annotations were retrieved using SAS

(Sequence Annotated by Structure, [33]). The 3D coordinates for

each of the proteins in the structure data sets were retrieved from

the PDB. To maintain consistency between the PDB and UniProt

residue numbering, the SIFTS mapping [57] for each protein

chain was used. NACCESS was used to calculate the relative

solvent accessibilities for the individual residues in a chain. A cut-

off of 5% solvent exposure was used to distinguish between buried

and exposed residues.

Mapping nsSNPs to structures
To investigate the effect a nsSNP might have, each individual

nsSNP was mapped to its correct amino acid in the protein

structure. For every such nsSNP that could be mapped, a

homology model of the protein containing the nsSNP was built

using Modeller 9v3 [32] with the original protein structure serving

as the template. A maximum of 200 steps of conjugate gradient

minimization followed by 200 rounds of molecular dynamics at

300 K (using Modeller) was applied to each variant and its

structural context analysed. NACCESS was run on all the variant

models to identify changes in solvent accessibility. Comparisons of

the Modeller DOPE score (Discrete Optimized Protein Energy,

[42]) were made between the nsSNP model and the reference

structure to estimate the magnitude of change that a variant might

cause. The 1 kG models are available in PDBsum (http://www.

ebi.ac.uk/pdbsum/) by looking at the specific PDB code of

interest.

Supporting Information

Figure S1 Mutabilities of the amino acids for each
population. AMR: American admixed, ASN: South East
Asian, AFR:African, EUR: European.

(EPS)

Figure S2 The distribution of average protein mutabil-
ites for all human proteins (blue) and disease associated
proteins (red).

(EPS)

Figure S3 The amino acid exchanges observed in
human protein variants. The 1 kG data set is the top row

of each cell and Humsvar(SP) the bottom row of each cell*. Amino

acids are arranged by 1 letter code according to increasing

hydrophobicity (least hydrophobic is left and most hydrophobic is

right) using the Fauchère and Pliska scale. Yellow blocks indicate

mutations where there are statistically significant differences

between 1 kG and Humsavar. Blue blocks indicate where no

mutations were present in the 1 kG data set. White blocks show

where there are no statistically significant differences. Green blocks

show where there are proportionally more 1 kG mutations

compared to Humsavar. Orange blocks show where there are

proportionally more Humsavar mutations than 1 kG. The

mutability scores (see methods) for the 1 kG and Humsavar sets

are shown in the last column. *Note that these matrices are

fundamentally different. The 1 kG data set gathers all the

observed mutations in the 1 kG project, counting each only once;

the Humsavar data set combines information gathered from

potentially many individuals but filtered to identify those

mutations associated with a disease.

(EPS)

Figure S4 Comparison of the differences in observed
mutations in the various sets. Comparison of the differences

in the % of observed mutations in the 1 kG (blue) and Humsavar

(red) sets for one amino acid mutating to all others e.g.

proportionally, more mutations from Lys to Glu are recorded in

Humsavar than in the 1 kG set. Each plot shows the results of
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mutation from a specific amino acid (e.g. Arg at top left) to every

other amino acid.

(EPS)

Figure S5 Comparison of the differences in observed
mutations in the various sets. Comparison of the differences

in the % of observed mutations in the Humsavar (green) and

OMIM (red) sets for one amino acid mutating to all others. Each

plot shows the results of mutation from a specific amino acid (e.g.

Arg at top left) to every other amino acid.

(EPS)

Table S1 The relative abundances of the various amino
acids in the UniProt protein set.
(PDF)

Acknowledgments

We would like to thank Angela Wilkins for running the large scale

conservation analysis, Grecia Lapizco-Encinas for constructing the

monomer set, Arjun Ray for doing the analysis of the ModBase models

and Ewan Birney for valuable discussions.

Author Contributions

Conceived and designed the experiments: TAPdB RAL SLP BS NG JMT.

Performed the experiments: TAPdB RAL. Analyzed the data: TAPdB SLP

BS. Wrote the paper: TAPdB RAL JMT. Valuable discussion regarding

the method design: NG JMT SLP BS.

References

1. 1000 Genomes Project Consortium, Durbin RM, Abecasis GR, Altshuler DL,

Auton A, et al (2010) A map of human genome variation from population-scale

sequencing. Nature 467: 1061–1073.

2. 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD,

DePristo MA, et al (2012) An integrated map of genetic variation from 1,092
human genomes. Nature 491: 56–65.

3. Iengar P (2012) An analysis of substitution, deletion and insertion mutations in
cancer genes. Nucleic Acids Res 40: 6401–6413.

4. Amberger J, Bocchini CA, Scott AF, Hamosh A (2009) McKusick’s Online
Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 37: D793–D796.

5. UniProt-Consortium (2010) The Universal Protein Resource (UniProt) in 2010.

Nucleic Acids Res 38: D142–D148.

6. Stenson PD, Ball E, Howells K, Phillips A, Mort M, et al. (2008) Human Gene

Mutation Database: towards a comprehensive central mutation database. J Med
Genet 45: 124–126.

7. Ng PC, Henikoff S (2006) Predicting the effects of amino acid substitutions on
protein function. Annu Rev Genomics Hum Genet 7: 61–80.

8. Steward RE, MacArthur MW, Laskowski RA, Thornton JM (2003) Molecular
basis of inherited diseases: a structural perspective. Trends Genet 19: 505–513.

9. Fabre KM, Ramaiah L, Dregalla RC, Desaintes C, Weil MM, et al. (2011)

Murine Prkdc polymorphisms impact DNA-PKcs function. Radiat Res 175:
493–500.

10. Minutolo C, Nadra AD, Fernández C, Taboas M, Buzzalino N, et al. (2011)
Structure-based analysis of five novel disease-causing mutations in 21-

hydroxylase-deficient patients. PLoS One 6: e15899.
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