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Enterococcus sp. strain HSIEG1 was isolated from the human small intestine. Its draft genome predicts a broad carbohydrate
fermentation capability, which matches well with the observed physiological characteristics of this strain. This metabolic flexi-
bility is expected to be of importance for survival and growth in the small intestinal habitat.

Received 29 October 2013 Accepted 11 November 2013 Published 12 December 2013

Citation van den Bogert B, Boekhorst J, Smid EJ, Zoetendal EG, Kleerebezem M. 2013. Draft genome sequence of Enterococcus sp. strain HSIEG1, isolated from the human small
intestine. Genome Announc. 1(6):e01013-13. doi:10.1128/genomeA.01013-13.

Copyright © 2013 van den Bogert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

Address correspondence to Michiel Kleerebezem, michiel.kleerebezem@wur.nl.

The human small intestine is commonly predominated by fac-
ultative anaerobes, such as Streptococcus spp. (1–5). The rela-

tive abundances of other lactic acid bacteria, including entero-
cocci, are generally low (4, 6) (M. M. Leimena, B. van den Bogert,
J. Boekhorst, E. J. Smid, E. G. Zoetendal, and M. Kleerebezem,
unpublished data) but can in some cases constitute a sizeable frac-
tion of the overall microbial community in this ecosystem (7,
8). In an effort to obtain representative bacterial isolates from
the small intestinal ecosystem, seven Enterococcus lineages were
recovered from ileostoma effluent samples. These isolates be-
longed to the Enterococcus avium, Enterococcus faecium, Enterococ-
cus faecalis, and Enterococcus gallinarum groups, which demon-
strates the substantial level of phylogenetic richness of enterococci
in the small intestine (9).

The draft genome sequence of a representative isolate from the
lineage belonging to the E. gallinarum species group, Enterococcus
sp. strain HSIEG1, was obtained by sequencing of 3-kb mate-pair
libraries using 454 GS FLX (Roche) technology in combination
with titanium chemistry and Illumina HiSeq 2000 technology
(GATC Biotech, Konstanz, Germany). A total of 153,444 pyrose-
quencing reads were assembled using the Celera Assembler ver-
sion 6.1 (http://sourceforge.net/apps/mediawiki/wgs-assembler
/index.php?title�Main_Page) into 158 contigs, which were placed
in their likely order by employing the 10,557,832 paired reads
from Illumina sequencing using the SSPACE software version 1.1
(10). This pseudoassembly was manually screened for inconsis-
tencies using the Artemis Comparison Tool (11). The genome was
annotated using the RAST server (12). The final assembly of the
Enterococcus sp. HSIEG1 genome contains 3,447,751 bp, with an
average ~300-fold coverage, a G�C content of 40.45%, and 3,901
predicted protein-coding genes.

Almost 10% of the coding capacity encountered in the genome
of HSIEG1 is dedicated to genes assigned to functions related to
carbohydrate transport and metabolism. The HSIEG1 genome
encodes single copies of the generic cytoplasmic factors enzyme I
(EI) and phospho-carrier protein (HPr), which are involved in

phosphotransfer of �30 phosphotransferase system (PTS) trans-
porter functions with predicted specificities that include glucose/
maltose, mannose, fructose, galactose, lactose, sucrose, cellobiose,
and �-glucosides. Moreover, the genome encodes several ABC
sugar transporters, including those predicted to be involved in
maltose/maltodextrin transport. In addition to these transport-
associated functions, the genome also encodes the necessary path-
ways to metabolize these sugars as well as arabinose, ribose, and
xylose. HSIEG1 has the capacity to ferment all these sugars, show-
ing that the genome predictions are in good agreement with the
observed physiological characteristics. The metabolic flexibility of
HSIEG1 may be of relevance for its survival in a nutrient-
fluctuating environment, such as in the small intestine (13).

Following the transport and primary conversions of carbohy-
drates, the genome is predicted to encode the canonical enzymes
of the glycolytic conversion pathway, which is the main energy-
generating pathway in this species. The pyruvate dissipation path-
ways predicted for HSIEG1 include the capacity to produce
L-lactate and several other fermentation metabolites, like formate,
acetate, ethanol, acetoin, and 2,3-butanediol.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession no. ASKG00000000. The version described in
this paper is version ASKG01000000.
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