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Abstract

Both the absolute risk and the relative risk (RR) have a crucial role to play in epidemiology. RR is often approximated by odds
ratio (OR) under the rare-disease assumption in conventional case-control study; however, such a study design does not
provide an estimate for absolute risk. The case-base study is an alternative approach which readily produces RR estimation
without resorting to the rare-disease assumption. However, previous researchers only considered one single dichotomous
exposure and did not elaborate how absolute risks can be estimated in a case-base study. In this paper, the authors propose
a logistic model for the case-base study. The model is flexible enough to admit multiple exposures in any measurement
scale—binary, categorical or continuous. It can be easily fitted using common statistical packages. With one additional step
of simple calculations of the model parameters, one readily obtains relative and absolute risk estimates as well as their
confidence intervals. Monte-Carlo simulations show that the proposed method can produce unbiased estimates and
adequate-coverage confidence intervals, for ORs, RRs and absolute risks. The case-base study with all its desirable properties
and its methods of analysis fully developed in this paper may become a mainstay in epidemiology.
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Introduction

Both the absolute and the relative disease risks have a crucial

role to play in epidemiology. The relative risk (RR) is the ratio of

the disease risk for individuals at one specific exposure level to the

disease risk for those at a reference level. Under the rare-disease

assumption, RR is approximated by the odds ratio (OR), which in

turn can be conveniently estimated in a case-control study. While

an index such as RR or OR may be adequate for etiologic

inferences, it is actually only part of a story. Once a factor has been

demonstrated to be a risk factor for the disease, we will often be

asked to predict the disease risk of an individual having a specific

level of an exposure—the absolute risk. But unfortunately, the

conventional case-control study does not provide an estimate for it.

Kupper et al [1] introduced a hybrid (part case-control, part

cohort) design in a defined population (the ‘study base’)—the

‘case-base’ study later coined by Miettinen [2]. In contrast to the

case-control study which samples the non-diseased subjects in the

study base as the control group, the case-base study samples the

entire study base with no regard to disease status. With such

sampling scheme, the case-base study readily produces an RR

estimate without resorting to the rare-disease assumption. Note

that the case-base study should not be confused with the ‘case-

cohort’ study introduced by Prentice [3]. The former, like the

case-control study, is a retrospective design which ascertains the

exposure statuses of subjects in a population retrospectively, while

the latter is a prospective cohort study with all the time-to-event

information available.

While the case-cohort study has been gaining popularity over

the years [3–9], the case-base study remained little noticed since its

introduction forty years ago. Miettinen [2] derived a variance

formula for RR in a case-base study. Sato [10,11] later proposed a

more efficient estimator for RR, which is based on maximum

likelihood estimation theory. However, these researchers only

considered one dichotomous exposure and did not elaborate on

how to estimate absolute risks in a case-base study. Without a

general-purpose regression method for analyzing data, it is no

wonder that most practicing epidemiologists would not consider

the case-base design when planning a study.

In this paper, we develop a logistic model for the case-base

study. The model is flexible enough to admit multiple exposures in

any measurement scale—binary, categorical or continuous. It can

be easily fitted using common statistical packages. With one

additional step of simple calculations of the model parameters, one

readily obtains relative and absolute risk estimates as well as their

confidence intervals. We will use Monte-Carlo simulations to study

the statistical properties of the proposed method.

Methods

Let the exposure profile of a subject be denoted by a 1|m row

vector z. Each element of z can be in either binary, categorical or

continuous scale. Let D represents the disease status of a subject,

with D~1 for diseased and D~0 for non-diseased. We assume

that the disease risk in the study population follows a logistic

model:
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log
Pr (D~1 zj )

Pr (D~0 z)j

� �
~mzzb, ð1Þ

where exp (m) is the baseline disease odds (the disease odds for

those with an exposure profile of z~0 in the population) and b is a

m|1 column vector of parameters of interest [exp (b) is a column

vector of odds ratios].

In a case-base study, the ‘cases’ are randomly selected from all

the incident diseased subjects in the population. Let S1~1
indicate that a diseased subject is recruited in the case sample,

S1~0, otherwise. Such a case sampling scheme implies that

Pr (S1~1jD~1,z)~w1

Pr (S1~1jD~0,z)~0,

�
ð2Þ

or more concisely,

Pr (S1~1jD,z)~w1D, ð3Þ

where w1 is a constant between 0 and 1. The ‘controls’ of a

case-base study are randomly selected from all subjects in the

population without regard to their disease status. Let S0~1
indicate that a subject is recruited in the control sample, S0~0,

otherwise. Such a control sampling scheme implies that

Pr (S0~1jD,z)~w0, ð4Þ

where w0 is a constant between 0 and 1. The two sampling

schemes are independent to each other, that is,

Pr (S0~1,S1~1jD,z)~ Pr (S0~1jD,z)|

Pr (S1~1jD,z)~w0w1D,
ð5Þ

The event of S0zS1§1 indicates that a subject is recruited in a

case-base study through case sampling, control sampling or both.

The recruitment probability of a subject with a disease status of D

and an exposure profile of z is

Pr (S0zS1§1jD,z)~ Pr (S0~1jD,z)z Pr (S1~1jD,z)

{ Pr (S0~1,S1~1jD,z)~w0

z(1{w0)w1D:

ð6Þ

Let p be the probability that a diseased subject in a case-base

study is recruited in the control sample, that is,

p ~ Pr (S0~1jD~1,z,S0zS1§1)

~
Pr (S0~1jD~1,z)

Pr (S0zS1§1jD~1,z)
~

w0

w0z(1{w0)w1

:
ð7Þ

p is an important parameter to be used later.

From equations 1–7, we show below that the disease risk in a

case-base sample also follows a logistic model as the one in the

population (model 1), albeit with a different intercept:

log
Pr D~1jz,S0zS1§1ð Þ
Pr D~0jz,S0zS1§1ð Þ

� �
~

log
Pr S0zS1§1jD~1,zð Þ| Pr D~1jzð Þ| Pr (z)

Pr S0zS1§1jD~0,zð Þ| Pr D~0jzð Þ| Pr (z)

� �
~

log
Pr S0zS1§1jD~1,zð Þ
Pr S0zS1§1jD~0,zð Þ

� �
z log

Pr D~1jzð Þ
Pr D~0jzð Þ

� �
~

log
w0z(1{w0)w1

w0

� �
zmzzb~{ log pzmzzb~m�zzb

ð8Þ

Suppose that there are a total of n subjects recruited in a case-

base study, who are indexed by i (i~1,:::,n). For the ith subject, the

exposure profile, the disease status, and the control and the case

sampling statuses are zi, Di, S0,i, and S1,i, respectively. Given the

exposure status of the subjects recruited in the case-base study,

each of the subjects provides the information of disease and

sampling statuses. The likelihood function is therefore

L(p,w1,m�,bt)~
Yn

i~1

Pr (Di, S0,i, S1,ijzi,S0, izS1, i§1)

~
Yn

i~1

Pr (S1,ijDi,zi,S0,i,S0, izS1, i§1)

| Pr (S0,ijDi,zi,S0, izS1, i§1)

| Pr (Dijzi,S0, izS1, i§1)

2664
3775

~
Y

Di|S0,i~1

Pr (S1,ijDi~1,zi)

|
Y

Di~1

Pr (S0,ijDi~1,zi,S0, izS1, i§1)

|
Yn

i~1

Pr (Dijzi,S0, izS1, i§1)

~
Y

Di|S0,i~1

q
S1,i
1 |(1{q1)1{S1,i

|
Y

Di~1

pS0,i |(1{p)1{S0,i

|
Yn

i~1

exp (m�zzib)½ �Di

1z exp (m�zzib)

~L1(q1)|L2(p)|L3(m�,bt):

ð9Þ
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Because equation 9 is composed of three terms, the three sets of

parameters ( w1 in L1, p in L2, andm� and bt in L3) are mutually

independent (the second derivatives of the log-likelihood with

respect to parameters in different sets are zero).

Both L1 and L2 in equation 9 are binomial likelihoods.

Therefore the maximum likelihood estimates of 1 and p, and their

variances are:

w1~
nBoth

D

nCN
D

, ð10Þ

bpp~
nCN

D

nD

, ð11Þ

Var cw1w1

� �
~
cw1w1(1{cw1w1)

nCN
D

, ð12Þ

and

Var(bpp)~
bpp(1{bpp)

nD
, ð13Þ

where nCN
D is the number of diseased subjects recruited in control

sample, nBoth
D , the number of diseased subjects recruited in both

the case and the control sample, and nD, the total number of

diseased subjects recruited in the case-base study.

The L3 in equation 9 is a likelihood for a logistic regression

model. To obtain the maximum likelihood estimates of m�and bt,

we can fit a logistic regression (model 8) to the case-base data. Note

that the dependent variable of this logistic regression is the binary

disease status with the diseased subjects coded as ‘1’ and the non-

diseased subjects as ‘0’, regardless of their being recruited through

case sampling, control sampling or both. Any statistical package

that performs logistic regression analysis can obtain the estimatesbm�m�and bbbt, together with the variance-covariance matrix of (m�,bt).

This variance-covariance matrix is denoted by S, which is an

(mz1)|(mz1) matrix.

The bbbt above readily provides the maximum likelihood

estimates for the logarithms of ORs. As detailed below, the bpp
and bm�m� above are to be further combined to provide estimates for

risks and RRs. First from model 8, an estimate for m in model 1 is

bmm~ log bppz bm�m�: ð14Þ

An estimate of the disease risk for subjects in the population

with an exposure profile vector u (a 1|m row vector ) is therefore

driskrisku~
exp (bmmzubbb)

1z exp (bmmzubbb)
~

exp logbppz bm�m�zubbbh i
1z exp log bppz bm�m�zubbbh i : ð15Þ

The variance of the estimate (in logit scale) is

Var logit driskrisku

� �h i
~Var bmmzubbb� �

~

Var log bppz bm�m�zubbb� �
~

Var log bppð ÞzVar bm�m�zubbb� �
z

2|Cov logbpp, bm�m�zubbb� �
~

1bpp2
|Var bppð Þz 1 u½ �S 1 u½ �t

z0~
1{bpp
nCN

D

zvSvt,

ð16Þ

where v~ 1 u½ � is a 1|(mz1) row vector. An estimate of the

RR comparing those with an exposure profile vector u1 with those

with u0 is

Table 1. Simulation results for a binary exposure.

Methods

The present
method Sato Miettinen

Estimate [true value]

logOR [0.9163] 0.9191 - -

logRR [0.8128] 0.8148 0.8149 0.8149

logit(risk0) [–2.5465] –2.5559 - -

logit(risk1) [–1.6303] –1.6369 - -

Variance (6100)

logOR 1.8297 - -

logRR 1.3984 1.3984 1.5017

logit(risk0) 2.5622 - -

logit(risk1) 3.0710 - -

Coverage probability of 95% CI

logOR 0.9521 - -

logRR 0.9518 0.9518 0.9518

logit(risk0) 0.9512 - -

logit(risk1) 0.9497 - -

Average length of 95% CI

logOR 0.5324 - -

logRR 0.4657 0.4657 0.4825

logit(risk0) 0.6220 - -

logit(risk1) 0.6818 - -

doi:10.1371/journal.pone.0083275.t001
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dRRRRu1=u0
~driskrisku1

.driskrisku0

~
exp log bppz bm�m�zu1

bbbh i
1z exp log bppz bm�m�zu1

bbbh i, exp log bppz bm�m�zu0
bbbh i

1z exp logbppz bm�m�zu0
bbbh i: ð17Þ

Using the delta method, the variance of the estimate (in log

scale) is

Var log dRRRRu1=u0

� �h i
~ driskrisku1

{driskrisku0

� �2

|
1{bpp
nCN

D

zwSwt

� �
,

ð18Þ

Table 2. Simulation results for an exposure with four levels.

Methods

The present method Sato Miettinen

Estimate [true value]

logOR comparing adjacent levels [0.9163] 0.9189 - -

logRR1 [0.8629] 0.8655 0.8654 0.8654

logRR2 [1.6569] 1.6615 1.6648 1.6668

logRR3 [2.3203] 2.3253 2.3278 2.3297

logit(risk0) [–3.2708] –3.2845 - -

logit(risk1) [–2.3545] –2.3656 - -

logit(risk2) [–1.4383] –1.4468 - -

logit(risk3) [–0.5220] –0.5279 - -

Variance (6100)

logOR comparing adjacent levels 0.4854 - -

logRR1 0.4586 2.4588 2.5149

logRR2 1.5899 3.6685 4.0080

logRR3 2.6760 2.9777 3.4950

logit(risk0) 2.9127 - -

logit(risk1) 2.3802 - -

logit(risk2) 2.8184 - -

logit(risk3) 4.2274 - -

Coverage probability of 95% CI

logOR comparing adjacent levels 0.9536 - -

logRR1 0.9533 0.9563 0.9556

logRR2 0.9530 0.9487 0.9493

logRR3 0.9518 0.9526 0.9523

logit(risk0) 0.9518 - -

logit(risk1) 0.9504 - -

logit(risk2) 0.9505 - -

logit(risk3) 0.9505 - -

Average length of 95% CI

logOR comparing adjacent levels 0.2731 - -

logRR1 0.2657 0.6243 0.6319

logRR2 0.4952 0.7478 0.7814

logRR3 0.6437 0.6783 0.7330

logit(risk0) 0.6677 - -

logit(risk1) 0.6011 - -

logit(risk2) 0.6531 - -

logit(risk3) 0.8007 - -

doi:10.1371/journal.pone.0083275.t002
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where w~ 1 y½ � is a 1|(mz1) row vector with

y~

driskrisku1
{1

� �
u1{ driskrisku0

{1
� �

u0driskrisku1
{driskrisku0

:

Exhibit S1 shows that Sato’s formulas [10,11] of RR estimate

and its variance in log scale are a special case of our formulas of

equation 17 and 18 when there is only one single binary exposure.

Note that if nCN
D ~0 (no diseased subject is recruited in the

control sample), bpp (in equation 11) is not estimable. Therefore, bmm
(in equation 14), driskrisku (in equation 15) and dRRRRu1=u0

(in equation

17) are not estimable either. Under such setting, only the odds

ratios, exp (bbbt), can be estimated in a case-base study. At the other

extreme when nCN
D ~nD (all the diseased subjects are recruited in

the control sample), we have bpp~1 and bmm~ bm�m�, and therefore the

case-base data can be analyzed as a cohort data. As for nBoth
D

(number of diseased subject recruited in both the case and the

control sample), if it is zero the cw1w1 (in equation 10) is not

estimable. This has no bearing whatsoever on the current context

of estimating risks and relative risks however, since it is a nuisance

parameter anyway.

We perform Monte-Carlo simulations to examine the statistical

properties of the proposed method. We consider three scenarios

for the exposure. In the first scenario, we assume a binary

exposure (E~0, 1). The exposure prevalence (for E~1) is set at

0.3. We assume that the OR comparing E~1 subjects with E~0
subjects is 2.5 (b~logOR = 0.9163). The disease prevalence in the

study population is set at 0.1. Thus, the disease risk for E~0
subjects (risk0) is 0.0727, the disease risk for E~1 subjects (risk1)

is 0.1638, and RR is 2.2543 (logRR = 0.8128).

In the second scenario, we assume an exposure with four levels

(E~0, 1,2,3). The exposure prevalence is set at 0.3 (for E~1), 0.1

(for E~ 2), and 0.1 (for E~3), respectively. The OR comparing

adjacent levels is set at 2.5 (b~logOR = 0.9163). Again, we

assume a disease prevalence of 0.1. Therefore, the four disease

risks are risk0~0:0366, risk1~0:0867, risk2~0:1918, and

risk3~0:3724, respectively, and the RRs are (with E~ 0 as the

reference level) RR1~2:3699 (logRR1~0:8629), RR2~5:2430
(logRR2~1:6569), and RR3~10:1787 (logRR3~2:3203), re-

spectively.

In the third scenario, we assume two binary exposures (E1 and

E2). The exposure prevalence is set at 0.3 for E1, and 0.4 for E2.

The OR comparing E1~1 subjects with E1~0 subjects is 2.5

(b1~logOR1 = 0.9163), and the OR comparing E2~1 subjects

with E2~0 subjects is 3 (b2~logOR2 = 1.0986). For simplicity, we

assume that E1 and E2 are independent of each other in the

population and that there is no multiplicative interaction between

E1 and E2 in causing the disease. The disease prevalence in the

study population is set at 0.1. Thus, the four disease risks are

risk00~0:0431 (for E1~0,E2~0), risk10~0:1013 (for E1~1,
E2~0), risk01~0:1191 (for E1~0,E2~1), and risk11~0:2527
(for E1~1,E2~1), respectively. The RRs are (with E1~0,
E2~0 as the reference level) RR10~2:3481 (logRR10~
0:8536),RR01~2:7618 (logRR01~1:0159), and RR11~5:8578
(logRR11~1:7678), respectively.

The disease probabilities of subjects in the study population are

assumed to follow the logistic model in model 1 with the parameter

settings given in the preceding paragraphs. A case-base study is

conducted in a study population of size 100000 with a case

sampling probability ( w1) of 0.05 and a control sampling

probability ( w0) of 0.005. Under such sampling scheme, the

case-base study is expected to recruit a total of 500 distinct

diseased and 500 distinct non-diseased subjects. We use the

proposed method to calculate the point estimates and 95

confidence intervals (CIs) for ORs, RRs and risks. For a

comparison, Sato’s [10,11] and Miettinen’s [2] methods are also

performed.

The simulation was done for 10,000 times for each setting. The

mean of the estimates for ORs (in log scale), RRs (in log scale) and

risks (in logit scale) are calculated. The variance of an estimate is

calculated as the sample variance of the estimates. We also

Table 3. Simulation results for two binary exposures.

Methods

The present
method Sato Miettinen

Estimate [true value]

logOR1 [0.9163] 0.9206 - -

logOR2 [1.0986] 1.1017 - -

logRR10 [0.8536] 0.8571 0.8580 0.8585

logRR01 [1.0159] 1.0184 1.0193 1.0197

logRR11 [1.7678] 1.7724 1.7741 1.7754

logit(risk00) [–3.0995] –3.1087 - -

logit(risk10) [–2.1832] –2.1880 - -

logit(risk01) [–2.0008] –2.0070 - -

logit(risk11) [–1.0846] –1.0863 - -

Variance (6100)

logOR1 2.0187 - -

logOR2 1.8573 - -

logRR10 1.7228 3.2565 3.3754

logRR01 1.5893 2.4743 2.5707

logRR11 3.0231 3.0867 3.3906

logit(risk00) 3.1880 - -

logit(risk10) 3.5971 - -

logit(risk01) 3.0930 - -

logit(risk11) 3.8039 - -

Coverage probability of 95% CI

logOR1 0.9490 - -

logOR2 0.9503 - -

logRR10 0.9492 0.9508 0.9509

logRR01 0.9508 0.9510 0.9486

logRR11 0.9484 0.9487 0.9532

logit(risk00) 0.9481 - -

logit(risk10) 0.9470 - -

logit(risk01) 0.9465 - -

logit(risk11) 0.9487 - -

Average length of 95% CI

logOR1 0.5534 - -

logOR2 0.5323 - -

logRR10 0.5114 0.7034 0.7161

logRR01 0.4923 0.6149 0.6257

logRR11 0.6788 0.6862 0.7224

logit(risk00) 0.6875 - -

logit(risk10) 0.7300 - -

logit(risk01) 0.6767 - -

logit(risk11) 0.7525 - -

doi:10.1371/journal.pone.0083275.t003

Risks and Relative Risks in Case-Base Studies

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e83275



calculate the coverage probability and the average length of the

95% CIs for the estimates.

Results

Table 1 shows the simulation results for a binary exposure. For

all methods, the RR estimates are approximately unbiased and the

95% CIs achieve adequate coverage probabilities. However, the

variance and the length of 95% CIs for our method are much

smaller than those for Miettinen’s methods. (Sato’s method for the

case of one binary exposure is exactly the same as our method.)

Only our method can produce estimates for OR and risks

additionally. From Table 1, we see that these estimates are

approximately unbiased and their 95% CIs achieve adequate

coverage probabilities.

Table 2 presents the simulation results for an exposure with four

levels. It can be seen that our method can produce unbiased

estimates and adequate-coverage 95% CIs for ORs, RRs, and

risks. Sato’s and Miettinen’s methods can only produce estimates

and 95% CIs for RRs. These two methods do not exploit the

constancy in OR per unit change in the exposure variable.

Therefore we see that though unbiased and with adequate

coverage, they produce considerably larger variances and average

length of 95% CIs as compared to our method. Exhibit S2

presents the simulation results for an exposure with four levels but

without the constant OR assumption. We see that our method is

still unbiased and with adequate coverage. The RR estimates are

now the same as those using Sato’s method, though. Exhibit S3

shows that our method can produce unbiased estimates and

adequate-coverage 95% CIs for ORs, RRs, and risks, when the

exposure is in a continuous scale.

Table 3 presents the simulation results for two binary exposures.

Similarly, only our method can produce unbiased estimates and

adequate-coverage 95% CIs for ORs, RRs, and risks. Sato’s and

Miettinen’s methods can produce unbiased estimates and with

adequate coverage 95% CIs for RRs only. These two methods do

not exploit the assumption of no interaction between the two

exposures. Therefore, we see that the variances and average length

of 95% CIs for the two methods are much larger as compared to

our method. Exhibit S4 presents the simulation results when there

is an interaction effect between the two exposures. We see that our

method can produce unbiased estimates and adequate-coverage

95% CIs for ORs, RRs, and risks, if an interaction term (cross-

product term) is incorporated into the regression model. Exhibit

S5 presents the simulation results for a confounder. We see that

without adjusting for the confounder, one gets estimates that are

biased and 95% CIs that are under-coverage. The problems can

be easily fixed by performing a logistic regression analysis with

both the study exposure and the confounder as its covariates.

Exhibit S6 examines the situations when the disease prevalence

is lower: 0.05 and 0.01, respectively. The conclusions about

method comparisons remain the same, except that the precisions

for RRs and risks are compromised across all methods.

Discussion

Logistic regression is a standard technique for analyzing case-

control data. It is also the method of choice for analyzing cohort

Figure 1. Number of diseased subjects recruited in control sample (A); Ratio of upper and lower bound of 95% confidence intervals
of prevalence odds (B), in a case-base study of 200 distinct subjects (solid lines), 2000 distinct subjects (dashed lines) and 20000
distinct subjects (dotted lines).
doi:10.1371/journal.pone.0083275.g001
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data if time-to-event information is not available. However, the

ORs that it estimates are approximating the RRs only under the

rare-disease assumption. As such, there have been many

methodologies/recommendations proposed to date regarding the

estimation of RRs in cohort studies for common outcomes [12–

17]. For example, Diaz-Quijano [17] described a novel regression-

based method for estimating RRs in cohort studies. In his method,

all the diseased subjects in the study are to be duplicated, and the

duplicated subjects are to be re-labeled as the non-diseased. (For

case-base studies, we can duplicate and re-label the diseased

subjects recruited in the control sample.) Then, a logistic model is

fitted to the expanded dataset, and the resulting regression

coefficients are the estimates for logRRs. For case-base study, we

found that such a data expansion approach produces an unbiased

RR estimate for a binary exposure, but with a larger variance and

a wider CI than our method; for a four-level exposure, the

approach produces biased estimates and CIs with inadequate

coverage (results not shown). For cohort study without time-to-

event information, one can also apply our method to estimate

ORs, RRs, and risks, except that the p (equation 7) now is exactly

one and is no longer a parameter to be estimated.

In addition to the usual ORs, a case-base study also provides

estimates for risks (equation 15) and RRs (equation 17). From

equations 16 and 18, we see that the precision of the estimation is

inversely proportional to 1{bppð Þ
	

nCN
D &1

	
nCN

D , that is, the larger

the nCN
D (number of diseased subjects recruited in control sample),

the more precise the estimate of a risk or a RR. The value of nCN
D

depends on the disease prevalence in the population and the

sample size of the case-base study (Figure 1A). For a common

disease (prevalence .0.05), a case-base study of 200 distinct

subjects (with equal number of diseased and non-diseased subjects)

is expected to have an nCN
D larger than 5, producing an estimate of

disease odds with the upper 95% confidence bound being roughly

5 times its lower bound (Figure 1B). If the disease prevalence is

lower (say, prevalence = 0.005), one needs to increase the sample

size of the case-base study (2000 subjects) to achieve comparable

precision. If the registry system (for the diseased and the general

population as well) in a population is readily available, the sample

size then is no longer a limiting factor. In such setting, a case-base

study can produce estimates for risks and RRs with reasonable

precision, even if the disease is very rare (eg., nCN
D &10 and

upperbound=lowerbound&3:5 when sample size = 20000 in a

population with disease prevalence of 0.001).

In many respects, a case-base design is better than (or at least as

good as) the commonly used case-control design. First, as just

mentioned, a case-base study provides estimates not only for ORs

but also for risks and RRs with reasonable accuracy (if nCN
D §5).

Second, the control sampling scheme of a case-base study is a

simple random sampling of all subjects in the study population

without regard to disease status. This means that a researcher can

initiate the control recruitment process much earlier in a case-base

design (at the outset of the study) than in a case-control design (at

the end of the study). Third, although there could be some people

sampled more than once in a case-base study, the sampling itself

incurs minimal cost. The real cost constraint is usually the total

number of distinct subjects that are actually recruited. And with the

same total number of distinct subjects, a case-base study and a

case-control study have exactly the same statistical efficiency, when

it comes to estimating an OR. Finally, as shown in this study, the

analysis of a case-base study is no more complicated than a case-

control study—one needs only to fit a logistic regression model to

the data and then do one extra step of simple calculations of the

model parameters.
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