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Shortest paths are not always simple. In planar networks, they can be very different from those with the
smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and
simplest paths provides a non trivial and non local information about the spatial organization of these
graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile
characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways,
railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental
differences in the organization of urban and biological systems, related to their function, navigation or
distribution: straight lines are organized hierarchically in biological cases, and have random lengths and
locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important
structural changes during their evolution.

A
planar network is a graph that can be drawn on the two-dimensional plane such that no edges cross each
other1. Planar graphs pervade many aspects of science: they are the subject of numerous studies in graph
theory, in combinatorics2,3 and in quantum gravity4. Planar graphs are also central in biology where they

can be used to describe veination patterns of leaves or insect wings. In particular, the vasculature of leaves5,6

displays an interesting architecture with many loops at different scales, while in insects, the vascular network
brings strength and flexibility to their wings. In city science, planar networks are extensively used to represent, to a
good approximation, various infrastructure networks7. In particular, transportation networks8,9 and more
recently streets patterns10–12 are the subject of many studies13–29 that are trying to characterize both topological
(degree distribution, clustering, etc.) and geometrical (angles, segment length, face area distribution, etc.) aspects
of these networks.

Despite a large number of studies on planar networks, there is still a lack of global, high-level metrics allowing
to characterize their structure and geometrical patterns. Such a characterization is however difficult to achieve
and in this article, we will discuss an important aspect of planar graphs which is intimately connected to their
geometrical organization. In this respect, we will define new metrics and test them on various datasets, both
artificial (roads, highways, railways, and supply networks) and natural (veination patterns of leaves and wings,
slime mould) enabling us to obtain new information about the structure of these networks.

We will now introduce the main metrics used in this article. Generally speaking, we can define different types of
paths for a given pair of nodes (i, j). A usual quantity is the shortest euclidean path of length ,(i, j) which
minimizes the distance travelled to go from i to j. We can however ask for another path which minimizes the
number of turns - the simplest path, of length ,*(i, j) (if there are more than one such path we choose the shortest
one). Fig. 1a displays an example of the shortest and simplest path for a given pair of nodes on the Oxford (UK)
street network.

To identify the simplest path, we first convert the graph from the primal to the dual representation, where each
node corresponds to a straight line in the primal graph. These straight lines are determined by a continuity
negotiation-like algorithm, as described in Material and Methods. Edges in dual space, in turn, represent the
intersection of straight lines in the primal graph (see Fig. 1b).

We define the number of turns t of a given path as the number of switches from one straight line to another
when walking along this path. This quantity is intimately related to the amount of information required to move
along the path14. We have computed the probability distribution P(t) for all shortest and simplest paths of several
networks (see SI) and the results show that this distribution is usually centered around a smaller values for the
simplest paths than for the shortest paths, as expected. More generally, we show in the Supplementary
Information that the average number of turns Ætæ versus the number of nodes N indeed displays a small-world
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type behavior characterized by a slow logarithmic increase with N,
consistently with previous analysis of the dual network14,16. This
feature is thus not very useful to distinguish different networks and
shows that the distribution of the number of turns is a very partial
information and tells very little about the spatial structure of the
simplest paths. For navigation purposes (neglecting all congestion
effects) and in order to understand the structure of the network, it is
useful to compare the lengths of the shortest and the simplest paths
with the ratio ,*(i, j)/,(i, j) $ 1. It is then natural to introduce the
simplicity index S as the average

S~
1

N N{1ð Þ
X

i=j

‘� i,jð Þ
‘ i,jð Þ : ð1Þ

The simplicity index is larger than one and exactly equal to one for a
regular square lattice and any tree-like network for example. Large
values of S indicate that the simplest paths are on average much
longer than the shortest ones, and that the network is not easily
navigable. We note here that we do not take into account congestion
effects which can influence the path choice (see for example30). This
new metric is a first indication about the spatial structure of simplest
paths but mixes various scales, and in order to obtain a more detailed
information, we define the simplicity profile

S dð Þ~ 1
N dð Þ

X

i,j=dE i,jð Þ~d

‘� i,jð Þ
‘ i,jð Þ , ð2Þ

where dE (i, j) is the euclidean distance between i and j and where
N(d) is the number of pairs of nodes at euclidean distance d. This
quantity S(d) is larger than one and its variation with d informs us
about the large scale structure of these graphs. We can draw a generic
shape of this profile: for small d, we are at the scale of nearest neigh-
bors and there is a large probability that the simplest and shortest
paths have the same length, yielding S(d R 0) , 1, and increasing for
small d. For very large d, it is almost always beneficial to take long
straight lines when they exist, thus reducing the difference between
the simplest and the shortest paths. As a result we expect S(d) to
decrease when d R dmax (note that a similar behavior is observed for
another quantity, the route-length efficiency, introduced in31). The
simplicity profile will then display in general at least one maximum at
an intermediate scale d* for which the length differences between the

shortest and the simplest path is maximum. The length d* thus
represents the typical size of domains not crossed by long straight
lines. At this intermediate scale, the detour needed to find long
straight lines for the simplest paths is very large.

We finally note here that these indices are actually not limited to
planar networks but to all networks for which the notion of straight
lines has a sense and can be computed. This would be the case for
example for spatial networks which are not perfectly planar7.

We introduce a null model in order to provide a simple benchmark
to further analyze the results obtained by these new metrics (the
expression ‘null model’ should be understood here in the sense of
the benchmark and not in the usual statistical definition). The goal in
this study is to compare empirical results with a very simple model
based on a minimal number of assumptions, but we note that it
would be also interesting to compare various models generating
planar networks. We start with N points randomly distributed in
the plane and construct the Voronoi graph (see the Supplementary
Information for further details). We then add a tunable number of
straight lines of length , distributed according to P(,) , ,2a.
Examples of networks generated by this model as well as many results
are shown in the SI.

We first study static networks (see Fig. 2) such as the streets of
cities (Bologna, Italy; Oxford, UK; Nantes, France), the national
highway network of Australia, the national UK railway system, and
the water supply network of central Nantes (France). In the case of
biological networks, we study the veination patterns of leaves (Ilex
aquifolium and Hymenanthera chatamica), and of a dragongly wing.
Details on these datasets can be found in the SI.

We also consider three datasets describing the time evolution of
networks at different scales (see Fig. 3): at a small scale and in the
biological realm we study the evolution of a slime mould network. At
the city scale we present results on the road network of Paris (France)
from 1789 until now. Paris was largely transformed by a central
authority (the prefect Haussmann under Napoleon III) in the middle
of the 19th century and the dataset studied here displays the network
before and after these important transformations, offering the pos-
sibility to study quantitatively the effect of top-down planning28. At
the multi-town level, we study the road network of the Groane area
(Italy) (see the SI for details on these datasets). These networks allow
us to explore different systems at very different scales from 1023

(Slime mould) to 106 (Australian highways) meters.

Figure 1 | Simplest path: example and calculation. (a) Example of shortest (black line) and simplest (dark green line) paths illustration on the Oxford

(UK) street network. The simplest path has less turns at the expense of being longer than the shortest path. (b) In (1) we show a planar network and in (4)

its dual representation. The colors of straight lines in (1) corresponds to the ones of nodes in (4). The simplest path between nodes 1 and 2 is obtained by

the shortest path in the dual space (between nodes cyan and blue in this case). There are two paths A and B with length 4 (corresponding to magenta lines

in (2) and to red lines in (3)), and the shortest one is chosen as the simplest path (green line in (3)). For comparison we also show the shortest

path (black line in (2,3)). The figure was created using NetworkX.

www.nature.com/scientificreports
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We compute the simplicity index S for the various datasets and for
the null model as well. The results are shown in Fig. 4 as a function of
the density of straight lines r and the Gini coefficient G for the length
of straight lines (see Material and Methods for details). The density r
of straight lines is defined as the ratio of total length of straight lines
(see Fig. SI2), over the total length of the network, and G is an
indicator of the diversity of the length of straight lines.

The first observation from Fig. 4 is that the simplicity index
encodes information which is neither contained in the density
r nor in the Gini coefficient G, and reveals how the straight
lines are distributed in space and participate in the flows on the
network.

In Fig. 4a, we observe that the density of straight lines is always
larger for urban systems. More precisely, in the biological systems the
density lies in the range r g [0.55, 0.7], while we observe r . 0.7 for
artificial systems. Except for the Physarum, which appears to be close
to a regular lattice with a small simplicity and small Gini coefficient,
the simplicity index for the wing and the leaves is larger than the
values obtained for the null model. These results indicate that the
organization of straight lines in biological systems is very different
from artificial systems, that have very similar values of r, G, and S. In
particular, we observe a hierarchy of straight lines in biological sys-
tems (see Fig. 2): a main artery (the midrib for leaves) connects to
veins which in turn are connect to smaller veins and so on. In the case

Figure 2 | Simplicity profiles. We represent here the simplicity profiles for different networks ranging from large scale networks (106 m) to small scales of

order 1023 m. We see on these different examples the effect of the presence of long straight lines and of a polycentric structure. In particular for cases (d,e),

we can clearly see that the peak at d* , 0.2dmax corresponds to the size of domains not crossed by long straight lines. The figure was created

using ESRI ArchMap 10.1 and Adobe Illustrator.

www.nature.com/scientificreports
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Figure 3 | Simplicity profiles for time-varying networks. We represent here the profiles for (a) the road network of the Groane region (Italy), (b) the

street network of Paris (France) in the pre-Haussmannian (1789, 1836) and post-Haussmannian (1999) periods, and in (c) the Physarum network

growing on a period of one day approximately. We observe on (a) and (b) that the evolution of the profile is able to reveal important structural changes. In

(c) the evolution follows closely the one obtained with the null model (see SI). The figure was created using ESRI ArchMap 10.1 and Adobe Illustrator.

Figure 4 | Simplicity index. Simplicity versus (a) the density of straight line r and (b) the Gini coefficient for the length of straight lines. In both plots, the

symbols correspond to the different networks studied here. We also represented the result for the null model (for a 5 0) and its cubic spline interpolation

(continuous line). From (a) we see that biological networks are limited to the region r # 0.7 and have a large simplicity index, and from (b) we

see that urban networks have simultaneously higher values of G and relatively small values of S.

www.nature.com/scientificreports
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of dragonfly wing, the main straight line is given by the external
border of the network. The existence of these main straight lines in
biological systems will impact the structure of simplest paths and
impose some large detour, resulting in a larger value of the simplicity
index.

For urban systems, the simplicity is very close to the null model (of
order 1.3 in this density range), suggesting that in dense urban sys-
tems, long straight lines are added at random (An exception con-
cerns, the pre-Haussmannian Paris (1789–1836) for which we
observe a simplicity smaller than for the null model, the reason being
probably that the networks at these times were very sparse). As a
result, navigation on urban systems requires relatively less informa-
tion with no additional cost: the simplest path is not too different
from the shortest path.

Finally, we note an interesting effect in the null model in Fig. 4a
which is the existence of a maximum of the simplicity at densities of
order r , 0.55. In this density regime, using straight lines implies
having to make large detours. However, when the density exceeds
0.6, there are enough straight lines to enable a simplest path which
differs not too much from the shortest one.

We now discuss the simplicity profile shown in Fig. 2. We observe
that basically for most of these systems, the simplicity profile displays
the generic shape with a maximum at an intermediate scale. In urban
cases, such as Bologna and central Nantes, we have a typical mono-
centric system with a dense center and a few important radial straight
lines, leading to a simple profile S(d). In the case of Oxford and the
Australian highway network, the polycentric organization leads to
multiple peaks in the simplicity profile (Fig. 2). Interestingly, we
observe that the profiles for australian highways and railways in
the UK are very different, despite their similar scale, density r, and
Gini coefficient G. In particular, the UK railway displays small values
of the simplicity (less than 1:2) while for the Australian highway
network there are many pairs of nodes for which the simplest path is
much longer than the shortest one. We also observe that the profile
for both street and water systems of Nantes have a very similar shape,
pointing to the fact that these networks are strongly correlated. In
addition, the position and the height of the peak (< 1.4) observed for
the Nantes water system suggests that this distribution system has
similar features compared to biological systems such as vein net-
works in leaves (see below) whose function is also distribution.

Compared to urban systems, the simplicity profile of biological
networks have a single well-defined, and much more pronounced
peak. We observe values of order Smax < 1.5 and 2.5 for d*/dmax <
0.2, meaning that for this range of distance, the detour made by the
simplest path is very large. This peak is related to the existence of
domains of typical size d* not crossed by large veins. We see here a
clear effect of the existence of the spatial organization of long straight
lines in these systems, probably optimized for the distribution (of
water for leaves). The decay for large d is also much faster in the
biological case compared to urban systems: this shows that in bio-
logical systems there are long straight lines allowing to connect far
away nodes. This is particularly evident on the leaves shown in Fig. 2
where we can see the first levels (primary and secondary) veins, the
rest forming a network. For streets, the organization is much less
rigid and the hierarchy less strict: we have a more uniform spatial
distribution of straight lines, leading to a smoother decrease of S(d).

Going beyond static networks, we apply our new metrics to study
the structural changes of time evolving networks.

The first example of a time evolving network is the road network of
the Groane region which is a 125 km2 area located north of Milan26.
We have 7 snapshots of this network for different times from 1833 to
2007 (see the Supplementary Information for details). This region
evolved without central planning and is thus a good example of an
‘organic’ evolution of urban systems. The simplicity profile shown in
Fig. 3(a) allows us to distinguish two different periods. The first
period from 1833 to 1955 displays a relatively small simplicity at

all scales, while a distinct second regime appears from 1980 until
now. In this latter regime, the simplicity profile is substantially larger
for all scales. This is an effect of the massive urban densification,
leading to a polycentric structure where the readability and the ease
to navigate are drastically lowered.

At a smaller scale, we study the evolution of central Paris between
1789 and 1999. This dataset provides an interesting case study, as Paris
experienced larges changes due to Haussmann in the middle of the
19th century (see28 for details and more references about this network).
This is an opportunity to observe quantitatively the effect of top-down
planning: until 1836, we are in the pre-Haussmann Paris, while from
1888 until now we are in the post-Haussmann period. The effect of
Haussmann’s central planning is clearly visible on the network shown
in Fig. 3(b). From 1789 to 1836, we have a relatively large simplicity at
all scales and we observe a decrease in that period at small scales
(d
�

dmax 0:4) which corresponds well to the fact that many religious
and aristocratic domains and properties were sold and divided in
order to create new houses and new roads, improving congestion
inside Paris. The 1826–1836 transition displays a decrease of the sim-
plicity for distance larger than roughly 5 kms (corresponding to d/
dmax < 0.6) indicating that long distance routes were simplified. It is
interesting to note that during this period the eastern part of Paris
experienced large transformations with the construction of the chan-
nel St. Martin. Finally in the period 1836 to 1888, when Paris experi-
enced Haussmann’s transformation, the simplicity profile is strongly
affected: compared to 1836, the simplicity is improved in the range d/
dmax g [0.3, 0.8], which can be attributed to the construction of large
avenues connecting important nodes of the city. In addition, we
observe the surprising effect that at large scales d

�
dmax 0:8, the

simplicity is degraded by Haussmann’s work: this however could be
an artifact of the method and the fact that we considered a portion of
Paris only and neglected the effect of surroundings.

We also note that differences between Groane and Paris might be
explained in terms of a sparse, polycentric urban settlement (Groane)
versus a dense one (Paris). In particular, in the ‘urban’ phase for
Groane (after 1955), the simplicity profile becomes similar to the
one of a dense urban area such as Paris.

Finally, we show the results in Fig. 3(c) for the Physarum
Policephalum, a biological system evolving at the centimeter scale.
Physarum is a unicellular multinucleated amoeboid that during its
vegetative state takes a complex shape. Its plasmodium viscous body
whose goal is to find and connect to food sources, crystallizes in a
planar network-like structure of micro-tubes33. In simple terms,
Physarum’s foraging strategy can be summarized in two phases: i)
the exploration phase in which it grows and reacts to the envir-
onment and ii) the crystallization phase in which it connects to food
sources with micro-tubes. We inoculated active plasmodium over a
single food source and observe the micro-tube network at six phases
of its growth (see SI for details). Under these conditions, we observe
that the network is statistically isotropic around the food source as
shown in Fig. 3(c) and develops essentially radially. We first observe
that the simplicity profile for the Physarum is relatively low (less than

1:2), suggesting that simplicity could be an important factor in the
evolution of this organism. A closer observation shows that during its
evolution, the Physarum adds new links to the previous network and
also modifies the network on a larger scale, as revealed by the changes
of the simplicity profile. The evolution of the profile is similar to the
one obtained for the null model when the density is increased (see
SI), suggesting that the statistics of straight lines in this case could be
described as essentially resulting from the random addition of
straight lines of random lengths (with a 5 2).

We have shown that the new metrics introduced here encode in a
useful way both topological and geometrical information about the
global structure of planar graphs. In particular, our results highlight
the structural differences between biological and artificial networks.
In the former, we have a clear spatial organization of straight lines,

www.nature.com/scientificreports
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with a clear hierarchy of lines (midrib, veins, etc), leading to simplest
paths that require a very small number of turns but at the cost of large
detours. In contrast, there is no such strong spatial organization in
urban systems, where the simplicity is usually smaller and compar-
able to a null model with straight lines of random length and location.
These differences between biological and urban systems might be
related to the different functions of these networks: biological net-
works are mainly distribution networks serving the purpose of pro-
viding important fluids and materials. In contrast, the role of road
networks is not only to distribute goods but to enable individuals to
move from one point of the city to another. In addition, while bio-
logical networks are usually the result of a single process, urban
systems are the product of a more complex evolution corresponding
to different needs and technologies.

These new metrics also allow us to track important structural
changes of these networks. The simplicity profile thus appears as a
useful tool which could provide a quantitative classification of planar
graphs and could help in constructing a typology of leaves or street
patterns for example.

Methods
* Measuring the simplest path All the simplest paths of a given network were cal-
culated in the dual space by converting the networks from the primal to the dual
representation, where straight lines are mapped into nodes and the intersection
between straight lines were mapped into edges. Straight lines are found by using a
version of the ICN (Intersection Continuity Negotiation) algorithm16. More specif-
ically, given an edge (i, j), we search among the adjacent edges attached to j, (j, k), that
one that is most aligned to (i, j). If the angle hi,j,k between (i, j) and (j, k) is smaller or
equal to hc 5 30u, we assume that these two edges belong to the same straight line.
This procedure continues until no more edges are assigned to the same straight line.
Then, the procedure is repeated in opposite direction starting from the adjacent edges
attached to node i. Once assigned to a straight line, an edge is removed from the
network. As it is, this algorithm produces different networks depending on the choice
for the initial edge. To overcome this ambiguity, our algorithm always starts with the
edge that give us the longest straight line for a given network. After this straight line is
fully detected and its edges deleted, we choose the next edge that will give us the
second longest straight line and so on. The algorithm ends when there are no more
edges left in the network.

Once all straight lines have been identified, the dual representation is built by
looking at the intersection between straight lines. Each straight line is mapped onto a
node in the dual space and two nodes are connected together if their respective
straight lines intersect each other at least once. To illustrate this process, we show in
Fig 1(b,1) an example of planar network in the primal representation where the edges
are colored according the id of the straight line they belong to. In Fig. 1(b,4) we show
the dual representation of the same network. It is important to note that the longest
straight lines, in this example represented by orange, red, green and magenta give rise
to hubs in the dual space.

In order to calculate the simplest path between nodes 1 and 2 from Fig. 1(b,1), we
search for the shortest path between their respective straight lines in the dual space, cyan
and blue in this case. As it can be seen, there are two paths with length 4, A and B. Each
of them define a subgraph in the primal representation, here represented by the set of
magenta lines in Fig. 1(b,2) and red lines in Fig. 1(b,3) for paths A and B, respectively.
Then we evaluate the shortest path distance between nodes 1 and 2 over these subgraphs
and we adopted the shortest one as the simplest path - green dashed in Fig. 1(b,3). The
black path in Figs. 1(c,d) represent the shortest path between nodes 1 and 2.

* Gini coefficient The Gini coefficient quantifies the inequalities of the lengths of
straight lines, and is defined as in32

Gk~
1

2E2 �‘

XE

i,j~1

‘i{‘j

�� �� ð3Þ

where �‘ is the average length of straight lines and E is the number of straight lines. The
Gini coefficient lies in the range [0, 1] and G 5 0 when all lengths are equal. On the
other hand, if all lengths but one are very small, the Gini coefficient will be close to 1.
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