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ABSTRACT
Objective To describe a collaborative approach for
developing an electronic health record (EHR)
phenotyping algorithm for drug-induced liver injury
(DILI).
Methods We analyzed types and causes of differences
in DILI case definitions provided by two institutions—
Columbia University and Mayo Clinic; harmonized two
EHR phenotyping algorithms; and assessed the
performance, measured by sensitivity, specificity, positive
predictive value, and negative predictive value, of the
resulting algorithm at three institutions except that
sensitivity was measured only at Columbia University.
Results Although these sites had the same case
definition, their phenotyping methods differed by
selection of liver injury diagnoses, inclusion of drugs
cited in DILI cases, laboratory tests assessed, laboratory
thresholds for liver injury, exclusion criteria, and
approaches to validating phenotypes. We reached
consensus on a DILI phenotyping algorithm and
implemented it at three institutions. The algorithm was
adapted locally to account for differences in populations
and data access. Implementations collectively yielded
117 algorithm-selected cases and 23 confirmed true
positive cases.
Discussion Phenotyping for rare conditions benefits
significantly from pooling data across institutions.
Despite the heterogeneity of EHRs and varied algorithm
implementations, we demonstrated the portability of this
algorithm across three institutions. The performance of
this algorithm for identifying DILI was comparable with
other computerized approaches to identify adverse drug
events.
Conclusions Phenotyping algorithms developed for
rare and complex conditions are likely to require adaptive
implementation at multiple institutions. Better
approaches are also needed to share algorithms. Early
agreement on goals, data sources, and validation
methods may improve the portability of the algorithms.

INTRODUCTION
Drug-induced liver injury (DILI) is an unexpected
adverse hepatic reaction to the pharmacological
action of an administered drug. Excluding injury
caused by acetaminophen overdose, DILI accounts
for up to 15% of liver failure secondary to acute
liver injury failure cases,1–4 and is the most fre-
quent cause cited for the withdrawal of approved
drugs from the market.5 Previous genome-wide

association studies (GWAS) have successfully identi-
fied common genetic variants associated with DILI
such as an association between rs2395029, a tag
single nucleotide polymorphism for HLA-B*5701,
and flucloxacilin-induced DILI patients.6 Most var-
iants identified in GWAS analyses to date, however,
explain relatively small increases in risk.7 It is diffi-
cult to obtain the sample sizes needed to detect
these variants of moderate effect size given DILI is
a rare condition with an estimated incidence of
approximately one case per 10 000 to100 000.8–11

Consortium efforts such as the International
Serious Events Consortium (iSAEC),12 the Drug
Induced Liver Injury Network (DILIN)13 14 and
the Electronic Medical Records and Genomics
(eMERGE) consortium15 16 facilitate pooling data
from multiple institutions, and can help produce
sample sizes sufficient to identify new susceptibility
single-nucleotide polymorphisms for adverse drug
events (ADEs) such as DILI. To date, recruitment
for iSAEC and DILIN GWAS have relied on pro-
spective identification and recruitment of subjects
using a protocol for phenotypic detection.6 17–21

The eMERGE consortium proposes leveraging data
in electronic health records (EHRs) linked with
DNA biorepositories as an alternative approach to
identify subjects for genomics research. This
approach has led to the development of several
validated algorithms to identify individuals with
specific phenotypes (ie, EHR phenotyping algo-
rithms).22–26 Many of these studies have also
demonstrated the ability to share EHR phenotyping
algorithms among multiple institutions,21 22 26 26a

although they usually develop and validate an algo-
rithm at one institution before implementation at
other sites. In contrast, in this study, two institu-
tions (Columbia University (CU) and Mayo Clinic
(Mayo)) developed DILI EHR phenotyping algo-
rithms separately from one another with project
goals and disease case definitions informed by dif-
ferent organizations (eMERGE/iSAEC and DILIN,
respectively). The details of Columbia’s algorithm
are described elsewhere.27

Given the direct influence of project goals and
underlying disease case definition on EHR pheno-
typing algorithm design, a major goal for this study
was to compare and harmonize two approaches:
one informed by eMERGE/iSAEC and the other by
DILIN. We also report lessons learned from the
subsequent harmonization of the algorithms. We
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report the performance of the harmonized algorithm at three
institutions and provide an overview of causes of performance
differences that may affect its portability. We conclude with a
discussion about the complexities in EHR phenotyping for rare
conditions such as DILI and recommendations for future work.

METHODS
Distinction between case definition and EHR phenotyping
algorithm definition
A case definition describes characteristics that a patient must
possess to have a disease from a clinical perspective. An EHR
phenotyping algorithm is the translation of the case definition
into an executable algorithm that involves querying clinical data
elements from the EHR. To illustrate this distinction, a case def-
inition specifying patients with liver injury may translate to a
phenotyping algorithm denoting the presence of at least one
acute liver injury diagnosis and procedure International
Classification of Diseases, revision 9 (ICD-9) code in the EHR.

Alternatively, another phenotyping algorithm may define liver
injury by a laboratory test that indicates a large decrease in liver
function.

Figure 1 defines our five-step methodology for this study. We
first characterized differences between DILI case definitions and
phenotyping algorithms developed by two institutions (CU and
Mayo). Second, we harmonized individual evaluation methods
through informal conversations among three authors (CW, JP
and CLO). Our approach to translate the case definition into an
operational algorithm is described in the following section (see
Harmonizing an operational definition for DILI). Third, the
DILI EHR phenotyping algorithm was implemented at three
institutions: CU, Mayo, and Mount Sinai School of Medicine
(MSSM). Subsequently, we characterized differences in algo-
rithm implementation and evaluation approach. Finally, we used
an evaluation framework developed in previous work27 to sum-
marize the multisite approach (see table 1, and Evaluating the
DILI EHR phenotyping algorithm for further details).

Figure 1 Summary of study methodology. CU, Columbia University; DILI, drug-induced liver injury; Mayo, Mayo Clinic; MSSM, Mount Sinai School
of Medicine.
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Harmonizing an operational definition for DILI
The CU site defined inclusion and exclusion criteria for case
definitions using primarily ICD-9 diagnosis codes assisted with
unified medical language system (UMLS) concept codes and/or
NewYork Presbyterian medical entities dictionary (MED) codes.
The MED contains concepts organized into a semantic network
of terms that map to ICD-9 and UMLS codes.28 29 The general
approach taken was therefore first to identify the MED code of
a parent concept, then to query the MED hierarchy for all chil-
dren concepts. We were then able to map the MED codes to
ICD-9 and UMLS concept codes. For example, the ‘viral hepa-
titis’ parent concept has 105 MED children concepts such as
6707 ‘viral hepatitis A with hepatic coma’. Together we mapped
these concepts to 23 ICD-9 codes such as 070.0 ‘viral hepatitis
A with hepatic coma’ and seven UMLS codes such as C001959
‘hepatitis A infection’.

Decisions regarding liver injury inclusion criteria in our algo-
rithm were informed partly by a preliminary assessment of
DILI-related diagnoses and acute liver injury diagnoses within the
discharge summaries of patients at CU. This assessment was per-
formed using CU’s local natural language processing (NLP)
engine, MedLEE,30 to query discharge summary notes for acute
liver injury and DILI-related UMLS concepts. Acute liver injury
ICD-9 codes were defined according to the observational medical
outcomes project,12 then mapped to UMLS codes using the MED.
DILI-related UMLS concepts were determined with the use of the
medical subject heading (MeSH) browser (http://www.nlm.nih.
gov/mesh/). The MeSH heading ‘DILI’ (tree number:
C06.552.195) has five entry terms. Three of these terms have cor-
responding UMLS concept codes: ‘liver injury, drug-induced’
(C086027); ‘toxic liver disease’ (C0348754); and ‘hepatitis, toxic’
(C0019193). We manually reviewed all results. Results confirmed
to be a DILI case in a discharge summary note were classified as a
true positive (TP), and false positive (FP) otherwise.

We report counts for the NLP-derived acute liver injury,
DILI-related diagnoses, and the overlap of both. The way these
findings inform phenotyping algorithm specifications is
described. TP NLP-derived DILI cases were also used as a gold
standard dataset in our algorithm evaluation (see ‘Evaluating the
DILI EHR phenotyping algorithm’).

Evaluating the DILI EHR phenotyping algorithm
We conducted both measurement and demonstration studies.
The three institutions collected qualitative and quantitative data
for our measurement study to determine the effectiveness of

our evaluation approach. These data included the general evalu-
ation approach and characteristics of reviewers such as expertise
and number of reviewers at each institution. For our demonstra-
tion study to evaluate our algorithm, all institutions provided
estimates for positive predictive value (PPV), negative predictive
value (NPV) and specificity. CU also provided estimates for sen-
sitivity. Quantitative data collected from all institutions included:
TP and FP counts to estimate PPV; true negative (TN) and false
negative (FN) counts to estimate NPV; and FP and TN counts
to estimate specificity. All algorithm-selected cases were
reviewed to estimate the PPV. To estimate the NPV, each institu-
tion reviewed patients from their population who were taking a
selected medication suspected to cause DILI in that institution.
Mayo reviewed 25 patients; CU and MSSM reviewed 50
patients each. The number of TNs for the specificity calculations
were estimated at each institution by subtracting the total of TPs
and unknown FNs from the baseline population size, compared
to which the number of FPs is assumed to be small. The sensi-
tivity was estimated by CU using an NLP-derived ‘gold-standard’
dataset (see ‘DILI case definition and phenotyping algorithm
consensus by discussion’). Qualitative data collected for CU
demonstration studies included: themes associated with FP
results and FN results. On completion of algorithm implementa-
tion at each institution, the authors discussed perceptions of site
evaluation approaches and the benefit of multisite results.

RESULTS
NLP-informed phenotyping algorithm decisions and
NLP-selected gold standard
At CU we explored the existence of acute liver injury and
DILI-related concepts within the discharge summary notes of
patients to inform phenotyping algorithm specifications and to
establish a gold standard dataset. A MedLEE query of 265 400
discharge notes from 154 742 unique patients (2004–10) indi-
cated 7864 adult patients with at least one instance of an acute
liver injury concept in their discharge summaries; and 34 TP
adult patients with at least one DILI-related concept indicated
(out of 55 NLP-selected patients). Twenty-nine TP NLP-selected
patients had both acute liver injury and DILI concepts (see
figure 2).

Common reasons for FPs in NLP-selected patients were:
DILI-related concept(s) in the discussion of patient history (ie, a
past medical condition); DILI-related concept(s) in a list of pos-
sible diagnoses (ie, an unconfirmed diagnosis); or the note could
not be found or was unable to be accessed such as with ‘VIPs’.
Overall, given the small number of patients with DILI-related
concepts, and to avoid missing undiagnosed DILI cases, we
decided to use acute liver injury diagnoses in our harmonized
phenotyping algorithm. The 34 NLP-selected cases were used as
a gold standard dataset in the sensitivity value estimated by CU
(see ‘DILI EHR phenotyping algorithm performance and
evaluation’).

Differences in approaches to develop and validate
phenotyping algorithms at two institutions
The project goals for developing DILI phenotyping algorithms
were initially defined by CU for eMERGE and Mayo for
DILIN. The goal for CU was to design an algorithm to identify
DILI patients for a broad range of genomic studies of interest to
eMERGE institutions. Alternatively, the goal for Mayo was to
design an algorithm to identify patients for DILIN-specified
cases. As such, the scope of the DILIN-informed algorithm was
narrowed, for example, by limiting the number of medications
considered. In addition, data access differed initially. CU

Table 1 A summary of the multisite evaluation approach

Measurement study Demonstration study

Quantitative
results

Number of reviewers PPV
NPV
Sensitivity
Specificity

Qualitative
results

Perceptions of evaluation
approach effectiveness:
▸ General evaluation approach
▸ Reviewer expertise

Perceptions of benefit of
results:
▸ Themes in FP
▸ Themes in FN

Evaluations included measurement studies (to determine the effectiveness of our
evaluation approach) and demonstration studies (to demonstrate the value of our
algorithm). The results included both quantitative and qualitative data.
FN, false negative; FP, false positive; NPV, negative predictive value; PPV, positive
predictive value.
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primarily utilized structured data of patients in the local clinical
data warehouse (CDW). Mayo utilized both structured data and
clinical notes of patients recruited to participate in DILIN
studies. While DILI case definitions were essentially the same
across institutions, the initial phenotyping algorithms developed
by both institutions differed significantly. See figure 3A,B for dif-
ferences in their translation of the DILI case definition into
computable form through specifying liver injury diagnoses,
medications, laboratory values, and exclusion criteria.

Approaches to validate phenotyping algorithms at the institu-
tions also differed initially. In the absence of a DILI expert, CU
developed a protocol to classify TP and FP results. CU ran-
domly selected 100 algorithm-selected cases to evaluate with
four reviewers. The details of that evaluation are described else-
where.27 A DILI expert assessed the performance of the algo-
rithm on Mayo’s dataset of DILIN-recruited patients.

Reaching consensus on a DILI phenotyping algorithm
A high-level overview of the harmonized DILI phenotyping
algorithm is illustrated in figure 3C and described in more detail
in supplementary file 1 (available online only). In addition to
what is shown in figure 3C, we agreed to utilize both structured
and unstructured data to identify patients with diagnoses, medi-
cations, and laboratory values of interest. Also the temporal
relationship for medication administration, acute liver injury
diagnosis, and elevated laboratory values characterizing DILI
were specified according to DILI experts interviewed at Mayo.
Medications were limited to those of initial interest to DILIN.

Acute liver injury diagnoses were determined primarily by the
existence of an ICD-9 diagnosis/procedure code, or by mention-
ing related concepts within a clinical note. To improve the speci-
ficity of our algorithm, we also excluded patients with chronic
liver injury diagnosis ICD-9 codes or concepts mentioned in a
clinical note, and determined whether laboratory values crossed
thresholds for acute liver injury. Acute liver injury-related codes
were specified according to the observational medical outcomes

project. Chronic liver injury diagnosis ICD-9 and UMLS codes
were compiled using the MED.

We examined alkaline phosphatase, alanine aminotransferase,
and bilirubin laboratory values to determine whether thresholds
for acute liver injury were crossed. Locally defined laboratory
codes such as MED codes were used to extract laboratory values
within 90 days of acute liver injury diagnosis. We chose to
exclude patients who had laboratory values above normal
within 30 days before medication administration. Threshold
laboratory values for the upper limit of normal (ULN) were
defined by either iSAEC expert consensus, or according to the
laboratory test manufacturer.

Exposure to a new medication (ie, medication administration)
was estimated by a new medication order or mention in a clin-
ical note. Codes were utilized when applicable. Structured data
for new medication orders are captured at all institutions,
although only in recent years at Mayo. To address this known
limitation, Mayo has implemented an NLP-based drug-named
entity recognition engine that extracts the drug orders—both
outpatient and inpatient—from EHR clinical notes.31 32

For all diagnoses specified as exclusions in either iSAEC or
DILIN recruitment protocols, we specified ICD-9 codes and
UMLS codes. We then agreed on a subset of high-priority exclu-
sions for this project. These included sclerosing cholangitis,
organ transplantation or liver operation, alcohol abuse/liver
damage/toxic effects, and viral hepatitis. Given results from pre-
liminary analyses,27 we also excluded patients with death or
overdose ICD-9 codes or concepts mentioned in their clinical
notes.

Characteristics of DILI EHR phenotyping algorithm
implementation
Experiences implementing the harmonized DILI EHR phenotyp-
ing algorithm indicated a need to adapt algorithm specifications
for each institution. Table 2 illustrates adaptations of the harmo-
nized algorithm across three institutions. Figure 4 illustrates
institution-specific implementation differences. Institutional

Figure 2 Summary of Columbia
University (CU) acute liver injury and
drug-induced liver injury (DILI)-related
natural language processing (NLP)
algorithm results. ICD-9, International
Classification of Diseases, revision 9.
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variation was primarily due to baseline population size, availabil-
ity of structured and unstructured data, and multiple interpreta-
tions of the same algorithm.

Variations due to baseline population size
Two institutions queried their biobank-linked EHR (MSSM and
Mayo). In the absence of a biobank, CU queried their CDW. As
expected, the baseline population for CU’s CDW was much
larger than those of the biobank populations. Agreed-upon spe-
cifications for medications, exclusion diagnoses, and laboratory
temporal relationship were therefore relaxed to optimize algo-
rithm yield for the smaller baseline populations. See table 3 for
population sizes at each institution.

Variations due to data access characteristics
Data access characteristics also influenced algorithm implemen-
tation (see table 3). For example, at Mayo and MSSM we
decided to consider that any medication might be implicated in
a DILI case rather than restricting medications to the select few.
Given that MSSM was able to leverage medication order data,
considering any medication was straightforward. At Mayo, they
used common medications that are associated with DILI as a
surrogate for any medication. These were medications compiled
by DILIN (see LiverTox.nih.gov). Diagnoses that were excluded
and the laboratory value temporal relationship specified by insti-
tutions also differed. Given the smaller baseline population,
Mayo and MSSM included fewer exclusion diagnoses than CU

Figure 3 Drug-induced liver injury (DILI) case definition and phenotyping algorithm harmonization. (A) Columbia University (CU) phenotyping
algorithm: CU’s International Serious Events Consortium (iSAEC)-informed algorithm makes a distinction between acute liver injury and chronic liver
injury. CU chose to focus on acute liver injury. With respect to drug exposure, CU considered patients with any drug prescribed within 90 days of an
acute liver injury diagnosis. Given iSAEC protocol specifications and access to structured data, CU considered iSAEC-specified threshold values for
alanine aminotransferase (ALT), intestinal alkaline phosphatase (APh) and intervascular bilirubin. CU excluded 10 diagnoses initially. (B) Mayo Clinic
(Mayo) phenotyping algorithm: Mayo’s Drug Induced Liver Injury Network (DILIN)-informed algorithm considered any liver injury-related diagnoses.
Mayo also considered a subset of drugs of interest to DILIN; and specified the temporal relationship between drug administration, DILI diagnosis
and laboratory measures. Given DILIN protocol specifications and access to clinical notes of recruited patients, Mayo used DILIN-specified thresholds
and text terms for ALT, aspartate aminotransferase (AST), and international normalized ratio (INR) for use by the cTAKES natural language
processing engine. Specific emphasis was laid on investigating the DILI-related complications and medications in various sections of the clinical
notes (including chief complaints, impression report plans). Mayo excluded three diagnoses initially. Given Mayo’s focus on a smaller number of
medications, exclusion criteria were less stringent than CU in order to optimize recall. (C) Harmonized phenotyping algorithm. See supplementary
file 1 (available online only) for more detail.
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and simplified the check for laboratory value temporality.
Another difference in institution implementation was the
process for identifying relevant laboratory values. ISAEC-
specified thresholds for laboratory value ULN were implemen-
ted at CU. Manufacturer-specified ULN thresholds were speci-
fied for Mayo and MSSM.

Variations due to multiple interpretations of the EHR phenotyping
algorithm
Interpretation of the DILI EHR phenotyping algorithm led to
two main approaches to execute queries. Figure 4 illustrates a
side-by-side comparison of the main differences between these
approaches. Query steps differ by anchor dates and by time
frames within which laboratory values are assessed.

DILI EHR phenotyping algorithm performance and
evaluation
The agreed-upon algorithm selected 37 DILI cases at CU, 56 at
Mayo and 24 at MSSM. Our measurement study indicated that
the methods for reviewing algorithm-selected DILI cases dif-
fered by general approach, reviewer expertise, and the number
of reviewers (see table 4). Reviewers agreed during post-
evaluation discussions that algorithm-selected cases were chal-
lenging to evaluate, particularly for the non-clinical reviewers.
A contributing factor for all reviewers was the difficulty confirm-
ing that a drug was the causal agent for liver injury in patients
who have multiple, potentially interacting, conditions and
drugs. This is a typical problem in pharmacovigilance, in which
all the cases associated with known non-drug causes of DILI are
first eliminated and the ones remaining are the possible causes
but further confirmation is needed. Furthermore, as Mayo is a
large academic referral center, the laboratory records for many
patients were only available as scanned documents, either in
PDF form or images, and were therefore not readily queryable.
For the two non-clinical CU reviewers, a list of terms and
phrases used for DILI case spotting did not appear to be suffi-
cient. The main difference between these clinical and non-
clinical reviewers appeared to be their ability to exclude
non-DILI patients. Possible advantageous factors for clinical
reviewers were their familiarity with language used in clinical
notes and with clinical cases that lend themselves to quick dis-
qualification (eg, shock liver).

Quantitative results from our demonstration studies at three
institutions are summarized in table 4. CU qualitative results
indicated themes in FP including missed exclusion diagnoses

(32% of FP), unstable laboratory values such as were often seen
in cancer patients, and laboratory values elevated before pre-
scribing a medication. Assuming the number of FN was small
compared to baseline population sizes, specificity estimates were
near 100% for all institutions.

Given that the CU algorithm was implemented with select
medications (see ‘Reaching consensus on a DILI phenotyping
algorithm’), the NLP-derived gold standard dataset was filtered
to include only patients who were prescribed one of these medi-
cations (18 out of 37 DILI cases). There was one algorithm-
selected DILI case. We therefore estimated the sensitivity of the
CU algorithm to be 5.5%. The primary theme in CU FN was
cases with an indicated drug that was not administered within
90 days before liver injury diagnosis (55% of FN).

DISCUSSION
Findings from this work illustrate that EHR phenotyping algo-
rithms may help reduce the burden of traditional approaches to
screening for rare conditions. We also highlight several chal-
lenges facing EHR phenotyping for complex and rare conditions
such as DILI. Moreover, this work suggests that better
approaches to share EHR phenotyping algorithms are needed,
and early agreement on phenotyping goals, data sources, and
validation methods may facilitate the downstream portability of
algorithms across institutions.

Computerized approaches are an improvement over manual
approaches to identify rare adverse drug events
The estimated PPV for this DILI phenotyping algorithm was
reasonable compared with other computerized approaches to
identify ADEs.33 One study, for example, reports a PPV of 7.5%
(CI 6.5% to 8.5%) for their computer search method to identify
ADEs.34 Another reports their highest PPV to be 23% for an
ADE monitoring system.35 While some level of manual review
is still required for rare conditions, computerized screening
approaches such as ours may be an improvement over trad-
itional manual processes. This notion is supported by previous
work investigating electronic screening (e-screening) methods
for clinical trial recruitment. Authors in one study compared an
e-screening strategy with investigator review for recruitment
into a clinical trial with a low prevalence of eligible patients.36

The e-screening approach showed an over fivefold improvement
on the investigator review approach (13% compared to 2.4%
PPV).

Table 2 DILI EHR phenotyping algorithm adaptations

Agreed-upon specifications CU Mayo MSSM

Medication order temporal relationship
▸ Medication order within 90 days prior to acute liver injury diagnosis

Agreed-upon
specs

Agreed-upon specs with common
medications implicated in DILI cases

Agreed-upon specs with
ANY medication

Laboratory value temporal relationship
▸ Laboratory values crossing threshold for DILI within 90 days of acute liver

injury diagnosis.
▸ All laboratory values below ULN within 30 days before medication

administration

Agreed-upon
specs

Agreed-upon specs Agreed-upon specs

Laboratory value thresholds iSAEC specified Manufacturer specified Manufacturer specified
Excluded diagnoses
▸ Chronic liver injury, sclerosing cholangitis, organ transplantation or liver

operation, alcohol abuse/liver damage/toxic effects, viral hepatitis, death,
overdose

Agreed-upon
specs

Only excluded chronic liver injury cases Only excluded chronic
liver injury cases

CU, Columbia University; DILI, drug-induced liver injury; EHR, electronic health record; iSAEC, International Serious Events Consortium; Mayo, Mayo Clinic; MSSM, Mount Sinai School of
Medicine; ULN, upper limit of normal.
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Challenges of identifying rare and complex conditions lead
to low yield
Another inevitable challenge for identifying subjects with rare
conditions is that the number of algorithm-selected cases, and
subsequently confirmed TP cases, will be low. Our algorithm
implementation at three institutions collectively yielded 23 DILI
cases. While having a higher PPV compared to other computa-
tional approaches to identify ADEs may reduce the burden of
manual review, the trade-off may be a larger number of missed
cases. For example, although we have a higher PPV in compari-
son to one study’s result, they have produced a higher sensitivity
(58; CI 18 to 98) compared to ours (5.5; CI 0.2 to 29).34 Our
low number of DILI cases also illustrates challenges to achieving
sample sizes needed to conduct GWAS. To complicate things
further, our study considered a range of medications that may
be implicated in DILI patients. Previous work illustrates that the
mechanism for DILI may depend on the drug implicated, dem-
onstrating a need to stratify DILI patients by medication and
leading to further decreases in sample size.

In addition to DILI being a rare condition, it is also complex,
as illustrated in our current lack of understanding of the under-
lying mechanisms of idiosyncratic DILI. The incomplete knowl-
edge of DILI and the heterogeneity in the etiologies of DILI
translate into complex or vague expressions for inclusion and
exclusion criteria, introducing intricacies that influence algo-
rithm performance. For example, further investigation of
algorithm-selected DILI cases at CU indicated that 32% of FP
were due to missed exclusion codes. As another example, the
majority of FN (55%) at CU were DILI cases with a drug sug-
gested to be causal that was not administered within 90 days
before liver injury diagnosis. Given that the CU gold standard
dataset was NLP derived, all gold standard patients had men-
tions of medications in their discharge summary notes. As such,
the date of medication administration was approximated by the
date mentioned in the discharge summary note. It is possible,
however, that this approximation is not accurate and leads to
inappropriate exclusion by our phenotyping algorithm. These
two examples highlight challenges in defining an algorithm for a

Figure 4 Two implementations of the same electronic health record phenotyping algorithm. Step 1 is implemented the same for both approaches.
Step 2 differs by the query anchor and the time frame for which laboratory values are checked to be within normal ranges. The top implementation
is anchored on the date of medication administration with laboratory values checked within 30 days before. The bottom implementation is anchored
on the date of acute liver injury diagnosis with laboratory values checked between 180 and 90 days before. Step 3 differs by the query anchor and
the time frame for which laboratory values are checked for thresholds to qualify as drug-induced liver injury (DILI). The top implementation is
anchored on the date of medication administration with laboratory values checked within 180 days following drug administration. The bottom
implementation is anchored on the date of acute liver injury diagnosis with laboratory values checked within 90 days before. CU, Columbia
University; Mayo, Mayo Clinic; MSSM, Mount Sinai School of Medicine.
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complex condition and limitations to translating complexities
into algorithm specifications. In the first example, missed diag-
noses are an unavoidable consequence when many excluded
diagnoses must be defined—as is common for complex condi-
tions. The second example highlights limitations to defining spe-
cific disease manifestations into our phenotyping algorithms (ie,
temporality of medication administration in DILI cases). Our
findings also illustrate that the complexity of DILI makes the
review of algorithm-selected cases challenging. Even so, the
complexity of a condition is also what makes it interesting to
study.

Adaptation and better approaches to share EHR
phenotyping algorithms are needed
We found implementation across institutions requires flexible
adaptation of the algorithm due to the differences in baseline
population size, availability of structured and unstructured data,
and interpretation of the phenotyping algorithm. Our findings
illustrate the need for better approaches to share phenotyping
algorithms given that our documented DILI EHR phenotyping
algorithm was interpreted in different ways. eMERGE institu-
tions are in the process of investigating new approaches for
sharing phenotyping algorithms that make use of the quality
data model for formal representation37 and the KNIME
(Konstanz information miner) data analytics platform38 to
improve the portability of algorithms.

Despite implementation and interpretation differences, the
results are still comparable. On one hand, such implementation

differences are inevitable and are necessary algorithm adapta-
tions to accommodate discrepant EHR systems in different insti-
tutions. On the other hand, the comparable results can be
greatly attributed to the collaborative approach so that the dif-
ferences in implementations do not degrade the algorithm per-
formance at each site. Our findings suggest that agreement on
goals, data sources and validation methods early on is important
for sharing those approaches down the road. The similarity in
calculated PPV at institutions suggests that early agreement may
have improved the portability of our algorithm.

Study limitations and future directions
The small number of institutions represented in this study is a limi-
tation. Two of nine eMERGE institutions completed the manual
review of patient records for calculating performance measures
reported in this paper. While eMERGE institutions have ample
resources dedicated to implement EHR phenotyping algorithms,
previous eMERGE-developed algorithms have not gone through
the thorough manual review that was performed for this algo-
rithm. The time constraints of individuals with the clinical expert-
ise to review algorithm-selected DILI cases were therefore the
primary factor limiting eMERGE institution involvement. After
two institutions validate the algorithm, the current practice is for
other institutions to complete ‘algorithm verification’ involving
manual review of a small number of algorithm-selected cases. To
improve on our ability to achieve meaningful sample sizes, we are
implementing this algorithm across other eMERGE institutions
that are performing such algorithm verification. For the dataset to

Table 4 Evaluation approach and results

CU Mayo MSSM

General approach to
assign TP and FP status

A. First-pass visualization of temporal data to assign
preliminary TP, FP, and unknown status.

B. Manual chart review to confirm suspected TP and
assign TP or FP for unknown status from previous step

Manual chart review of all
algorithm-selected DILI cases

Manual chart review of all
algorithm-selected DILI cases

Number and type of
reviewers

4 reviewers (2 clinical and 2 non-clinical) 1 reviewer (1 DILI expert) 1 reviewer (1 clinical)

Final decisions Consensus, determination by 5th clinical reviewer for
questionable results

Expert decision Expert decision, determination by DILI
expert for questionable results

PPV 32% (18% to 50%) 16% (5% to 37%) 29% (13% to 51%)
NPV 100% (91% to 100%) 100% (83% to 100%) 100% (91% to 100%)
Sensitivity 5.5% (0.2% to 29%) – –

Specificity ∼100% ∼100% ∼100%

95% CI presented as percentages.
CU, Columbia University; DILI, drug-induced liver injury; FP, false positive; Mayo, Mayo Clinic; MSSM, Mount Sinai School of Medicine; NPV, negative predictive value; PPV, positive
predictive value; TP, true positive.

Table 3 DILI EHR phenotyping algorithm implementation: data access in use

CU Mayo MSSM

Diagnoses ICD-9 codes and UMLS codes for NLP of discharge
summary notes only

ICD-9 codes and NLP of clinical notes ICD-9 codes

Medications MED codes and UMLS codes for NLP of discharge
summary notes only

RxNorm codes (data derived from a structured registry
and NLP of drug orders)

Medication codes and text terms of
medication fields

Laboratory
values

MED codes Laboratory information system Test codes and text terms of procedure
fields

Data access CDW. 1 045 125 patients. 2004–10. Limited to
inpatients, >1 year old

Mayo Clinic eMERGE cohort. 6916 patients. 2007–13 Biobank clinical datamart. 23 200
patients. 2006–13

CDW, clinical data warehouse; CU, Columbia University; DILI, drug-induced liver injury; EHR, electronic health record; eMERGE, Electronic Medical Records and Genomics; ICD-9,
International Classification of Diseases, revision 9; Mayo, Mayo Clinic; MED, medical entities dictionary; MSSM, Mount Sinai School of Medicine; NLP, natural language processing;
UMLS, unified medical language system.
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be of most use in future genetic studies, however, all algorithm-
selected cases should be reviewed.

Computerized methods to characterize DILI cases by pattern of
liver injury and drug causality may be of interest in future EHR
phenotyping studies. Furthermore, as a next phase in algorithm
development, it is worth exploring data-driven approaches to case
identification given the challenges highlighted in this work.
However, in order to facilitate scientific communication of pheno-
typing algorithms, we may not be able to avoid completely textual
descriptions of algorithms or algorithm components, which often
have inherent ambiguities or imperfect concept granularities that
can lead to interpretation and implementation variations. This is
the well-known semantic gap challenge.39

CONCLUSION
Phenotyping algorithms developed for rare and complex condi-
tions such as DILI are likely to require a systematic process for
local adaptation to maximize consistency when implementing
them at multiple institutions. There is also a need for better
approaches to share EHR phenotyping algorithms given that
our documented algorithm was interpreted in different ways. It
appears, however, that our early agreement on goals, data
sources, and validation methods may have improved the port-
ability of our algorithm and thus can serve as the best practice
for sharing phenotyping algorithms. Despite adaptations, algo-
rithm performance was comparable with other computerized
approaches to identify ADEs, and we were able to demonstrate
its portability across three institutions.
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