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ABSTRACT
Objectives Generalizable, high-throughput
phenotyping methods based on supervised machine
learning (ML) algorithms could significantly accelerate
the use of electronic health records data for clinical and
translational research. However, they often require large
numbers of annotated samples, which are costly and
time-consuming to review. We investigated the use of
active learning (AL) in ML-based phenotyping
algorithms.
Methods We integrated an uncertainty sampling AL
approach with support vector machines-based
phenotyping algorithms and evaluated its performance
using three annotated disease cohorts including
rheumatoid arthritis (RA), colorectal cancer (CRC), and
venous thromboembolism (VTE). We investigated
performance using two types of feature sets: unrefined
features, which contained at least all clinical concepts
extracted from notes and billing codes; and a smaller set
of refined features selected by domain experts. The
performance of the AL was compared with a passive
learning (PL) approach based on random sampling.
Results Our evaluation showed that AL outperformed
PL on three phenotyping tasks. When unrefined features
were used in the RA and CRC tasks, AL reduced the
number of annotated samples required to achieve an
area under the curve (AUC) score of 0.95 by 68% and
23%, respectively. AL also achieved a reduction of 68%
for VTE with an optimal AUC of 0.70 using refined
features. As expected, refined features improved the
performance of phenotyping classifiers and required
fewer annotated samples.
Conclusions This study demonstrated that AL can be
useful in ML-based phenotyping methods. Moreover, AL
and feature engineering based on domain knowledge
could be combined to develop efficient and generalizable
phenotyping methods.

INTRODUCTION
In the past decade, the increasing adoption of elec-
tronic health records (EHR) in the healthcare indus-
try has made longitudinal practice-based clinical data
available for clinical, genomic, and translational
studies.1–4 One of the main challenges of EHR-based
research is accurately and efficiently to extract pheno-
typic information (eg, records of disease status and
treatments of patients) from heterogeneous clinical
data. Manual chart review by domain experts can
accurately identify disease cohorts, but it is time-
consuming and costly. Specific disease phenotyping
algorithms consider information from multiple
sources including billing codes, clinical documents,

laboratory data, and medication exposures. They
have been developed and performed well, typically
using combinations of Boolean logic with multiple
modes of phenotype information.1 Generalizable
high-throughput phenotyping methods based on
supervised machine learning (ML) algorithms have
recently gained greater attention.5 6 One limitation of
ML-based phenotyping algorithms is that they often
require large numbers of annotated training sets,
which are costly and time-consuming to create. The
goal of this study was to address this challenge by
applying active learning (AL) approaches to
ML-based phenotyping, which attempts to build
better ML models using fewer annotated samples by
intelligently selecting samples for annotation.
In this study, we used an uncertainty sampling

approach with support vector machines (SVM) to
generate phenotyping algorithms for three diseases:
rheumatoid arthritis (RA), colorectal cancer (CRC),
and venous thromboembolism (VTE). Each of these
is a relatively common healthcare problem asso-
ciated with significant morbidity and mortality, and
has been the subject of genetic association studies,
including some using EHR-linked biobanks.7 8 We
have previously published phenotyping algorithms
for two of these diseases, RA9–11 and CRC,12 using
combinations of natural language processing (NLP),
deterministic, and ML algorithms. We assessed the
effect of AL on two different types of feature sets:
unrefined features that contain at least all clinical
concepts from notes and billing codes; and refined
features that were selected by domain experts. Our
evaluation showed that AL could reduce the
number of annotated samples by up to 68% for a
goal area under the curve (AUC) of 0.95 when
using unrefined features. However, the improve-
ment of AL on refined features was more limited.

BACKGROUND
EHR contain detailed longitudinal information
about patients’ disease diagnosis, prognosis, treat-
ment, and response and have become an appealing
data source for clinical and translational research.
For example, institutions such as those in the elec-
tronic medical records and genomics (eMERGE)
network5 have linked EHR data with DNA bio-
banks to facilitate genomic research.4 Importantly,
studies have shown that once an EHR dataset has
been genotyped, it can also be reused to analyze
other phenotypes.13 As genotyping cost gets lower,
phenotyping, the process by which one identifies
cases and controls for a given disease or trait of
interest (ie, the phenotype), becomes the main
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obstacle for EHR-based genomic research. Manual chart review
to extract phenotypic information for clinical studies is not only
costly and time-consuming, but also infeasible when a study
involves a large number of subjects.

Automated phenotyping methods for EHR data have been
extensively studied. For disease cohort identification, early
studies have focused on billing codes such as International
Classification of Disease (ICD) codes, but researchers often
found that billing codes alone were not sufficiently granular or
accurate enough.14 15 Current disease phenotyping methods
often consider information from multiple sources, including
billing codes, clinical text (via NLP or simple text searches),
laboratory data, and medication exposures to identify cases and
controls accurately in selective populations.1 Clinical documents
that contain much more details about patients’ conditions have
been recognized as a valuable source for phenotyping, in add-
ition to coded data. Therefore, NLP methods16 that can extract
clinical concepts from providers’ notes have been used in
various phenotyping algorithms.1 For example, cTAKES17 has
been used to discover peripheral arterial disease cases from radi-
ology notes,18 and combinations of KnowledgeMap19 with
section identification using SecTag20 have been used to extract
additional information from clinical narratives to help identify
RA patients21 and those with normal cardiac conduction.9

The eMERGE network is developing phenotyping algorithms
for approximately 40 diseases and traits, including 12 currently
publicly available algorithms for diseases such as peripheral
arterial disease, normal cardiac conduction, cataracts, and type
2 diabetes (available at PheKB.org). They are rule-based algo-
rithms and rely heavily on domain experts to define specific cri-
teria for each disease. For example, Kho et al22 developed rules
that combine diagnoses codes, medications, and A1C laboratory
test to define type 2 diabetes patients. These algorithms
achieved high accuracy and good portability across three institu-
tions and replicated known genetic associations well. However,
this approach requires significant interaction between domain
experts and informaticians to create algorithms for each disease,
which limits its scalability to different phenotypes. Therefore,
high-throughput phenotyping algorithms that are generalizable
to different diseases are of great interest to both the clinical and
informatics community.23

Recent studies showed that supervised ML algorithms could
potentially offer a generalizable approach for phenotyping.
Wei et al6 developed an SVM classifier to identify a type 2 dia-
betes cohort using all concepts extracted from clinical notes,
achieving F-scores over 0.95. Carroll et al9 applied SVM to

identify RA cases and showed better performance than a previ-
ously published deterministic algorithm. More interestingly,
their study showed that when the sample size was large enough,
the SVM classifier trained on unrefined features (eg, all concepts
from notes and ICD 9 codes) achieved similar performance as
the classifier trained on refined features that were manually
selected by domain experts. In another study, Carroll et al11

also demonstrated that the ML-based phenotyping method has
good portability to identify RA from three EHR systems. These
findings suggest that it is possible to develop generalizable phe-
notyping approaches with minimum domain knowledge-based
features by using ML methods.

However, to achieve high performance, ML-based phenotyping
models often require large numbers of annotated samples, which
are costly to develop. AL24 actively selects the samples judged to
be the ‘most informative’ for annotation (instead of random selec-
tion) when training a ML-based phenotyping algorithm. In the
biomedical domain, AL has been applied to many classification
tasks, including biomedical text classification,25 26 information
extraction,27 imaging classification,28 gene expression analysis,29

etc. However, its utility in phenotyping has not been explored.
Our hypothesis is that AL can reduce annotation effort while
maintaining or improving the quality of ML-based phenotyping
models. The pool-based AL framework25 with uncertainty sam-
pling algorithm30 has been shown to be practical and efficient in
domains with a large sample size but high annotation costs.

In this study, we assessed the use of AL in identifying three
phenotypes: RA, CRC, and VTE, all of which are important
human diseases with active ongoing clinical and genomic
studies. RA is the most common inflammatory arthritis, affecting
0.5–1% of the world’s population.31 CRC is the fourth most
common cancer and the second leading cause of cancer death in
the USA.32 VTE, also a major cause of mortality including
sudden death, has an incidence of 7.1–11.7 persons per 10 000
person-years for community residents.33 34

METHODS
Datasets
In this study, we used existing annotated datasets for RA, CRC,
and VTE. We have developed ML-based phenotyping models
for RA,9–11 CRC,12 and VTE (a manuscript is in preparation).
Table 1 shows the distributions of three datasets with respect to
sample size, case/control sample ratio, demographics, and
feature dimension. For more details about the construction of
these datasets, please refer to our previous publications.9 12

ML-based phenotyping method
We used SVM35 36 to build supervised phenotyping models for
all three phenotyping tasks. The parameters of SVM classifiers,
such as kernels and regularization, were pre-selected based on
previous research.9–11 We used the predicted distance of a
sample to the SVM hyperplane in the AL querying algorithm
for sample selection (described in the following section).

We investigated two different types of feature sets for each
phenotype: unrefined features that included at least all billing
codes (ICD-9, Current Procedural Terminology, etc.) and
NLP-derived unified medical language system (UMLS) concept
unique identifiers from clinical notes; and refined features, which
included billing codes and UMLS concepts highly relevant to the
specific phenotypes, as selected by domain experts. The NLP
tools included KnowledgeMap concept identifier37 with
SecTag,20 MedLEE,38–40 and MedEx.41 Table 2 summarizes the
details of unrefined and refined features for RA, CRC, and VTE.

Table 1 Sample size, case/control distribution, and demographics
of RA, CRC, and VTE datasets

Phenotypes RA CRC VTE

Sample size 376 300 703
Case samples (%) 185 (49) 121 (40) 502 (71)
Number of women (%)
Cases 141 (76) 54 (43) 269 (54)
Controls 148 (77) 92 (51) 104 (52)

Mean age (SD)
Cases 52.9 (13.1) 69.8 (12.3) 63.6 (15.4)
Controls 56.2 (16.5) 63.1 (18.1) 60.9 (16.1)

CRC, colorectal cancer; RA, rheumatoid arthritis; VTE, venous thromboembolism.
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AL for ML-based phenotyping
When building ML classifiers for phenotyping, the conventional
method is to select a set of samples randomly for annotation,
which is also called passive learning (PL). On the contrary, AL
uses a querying algorithm actively to select the most informative
samples for annotation in an iterative and interactive fashion. In
this study, we simulated a pool-based AL strategy25 in ML-based
phenotyping tasks using existing datasets. We assumed that all
samples of a phenotype (eg, 376 samples for RA) were
unlabeled and they formed the pool for AL. We then took the
following steps:
1. Initialize—we randomly selected two samples from the pool

(one control and one case) and used them to build the initial
ML model.

2. Predict—we used the trained ML model to predict remain-
ing samples in the pool.

3. Query—we used the uncertainty sampling algorithm30 to
find most informative samples, which are samples that have
the most uncertain predicted labels by the ML model. For
binary SVM classifiers, uncertainty sampling-based algorithm
queries the samples that are closest to the hyperplane, which
separates cases and controls. We queried one sample in each
iteration.

4. Annotate and re-train the ML model—we annotated the
next most informative sample from step 3 (by assigning
labels from gold standard) and re-built the ML model by
combining the new training sample with previous ones.

5. Repeat and stop—we repeated steps 2–4 until the stop criter-
ion was met. In this study, the learning process stopped
when the unlabeled pool was empty.
For PL, we ran the same procedure using random sampling as

its querying algorithm.

Evaluation
The AL experiments were conducted using fivefold stratified
cross-validation, which controls the percentage of positive cases
in each fold to be similar to the entire dataset. In each iteration,
samples in four folds were used as the pool for AL and the
remaining fold was used as the test set for independent evalu-
ation of the phenotyping model. For each phenotype, method,
and feature set, we generated learning curves by plotting the
AUC score of a classifier on the test set as a function of the
number of annotated training samples. The area under the

learning curve (ALC) score was used to compare different learn-
ing curves.

As a baseline companion, a PL curve was generated by using
random sampling and fivefold cross-validation. To improve the
expectation estimate of the PL curves, this process was repeated
10 times and averaged. The final PL curve, serving as the base-
line result, would compare with other learning curves generated
by AL approaches. To evaluate whether the global performance
of AL is significantly better than PL, the Wilcoxon rank sum test
was performed to test the null hypothesis that the medians of
AUC scores in the learning curves by AL and PL are equal.

RESULTS
Figures 1–3 illustrate the AL and PL learning curves using
refined or unrefined feature sets for RA, CRC, and VTE. The
ALC score of each learning curve is shown in the legend of
each figure. In all scenarios, ALC scores of AL learning curves
were better than ALC scores of corresponding PL learning
curves, indicating that AL is helpful in ML-based phenotyping
methods. For all phenotypes, the learning curve using the
refined feature set always performed better than the learning
curve using the unrefined feature set, indicating that domain
knowledge also improves phenotyping algorithm performance.
AL improved ALC more when unrefined features were used
than when refined features were used. For example, the
improvement on the ALC score was 0.0044 (AL vs PL) for the
RA refined feature set, compared to 0.0200 for the RA unre-
fined feature set.

Table 3 shows the p values for three phenotypes using refined
and unrefined feature sets. AL significantly outperformed PL in
all circumstances. Furthermore, the ML-based phenotyping
method showed different optimal performance for the three dif-
ferent diseases. When all training samples were used, the SVM
classifier achieved an optimal AUC of greater than 0.95 for RA
and CRC. For VTE, the best performing model only achieved
an AUC of 0.75 for VTE, suggesting that VTE is a more challen-
ging phenotype.

To illustrate further how AL helps improve ML models and
reduces annotation cost, we compared the number of required
samples for AL or PL in order to reach a specific AUC score
(table 4). For RA, AL using the unrefined set achieved 0.95
AUC by training on 96 annotated samples, while PL needed
298 training samples (a 68% reduction). For the refined
feature set, AL needed 42 samples versus 97 for PL (a 57%

Table 2 Unrefined and refined feature sets for RA, CRC, and VTE

Task
Feature
set Description

No of
features Details

RA Unrefined All ICD-9 codes; all UMLS CUI, which are neither negated nor associated with other people; all
medication names

13 043 Carroll et al9

Refined ICD-9 codes 714.*, 696.0 and 710.0; selected CUI of RA and related diseases; medications
commonly used in treating RA

23

CRC Unrefined All ICD-9 and CPT billing codes and all UMLS CUI, which are neither negated nor associated with
other people

18 059 Xu et al12

Refined CRC related ICD-9 and CPT codes and selected UMLS CUI related to CRC 12
VTE Unrefined All ICD-9 codes; all UMLS CUI, which are neither negated nor associated with other people; and

all medication names
13 862 Online supplementary tables S1

and S2
Refined ICD-9 codes 453.*, 415.*, and V12.51; selected VTE-related CUI; medications including ‘lovenox’,

‘heparin’, ‘warfarin’, and ‘coumadin’
56

CPT, Current Procedural Terminology; CRC, colorectal cancer; CUI, concept unique identifiers; ICD, International Classification of Disease; RA, rheumatoid arthritis; UMLS, unified medical
language system; VTE, venous thromboembolism.
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reduction). Similar results were observed for CRC and VTE.
The maximum annotation reduction was also observed in VTE
when refined features were used: to achieve an AUC of 0.70,
AL needed 69 samples while PL required 213 samples (a 68%
reduction). CRC demonstrated a smaller improvement in per-
formance, with a 23% reduction in samples needed to review
for an AUC of 0.95. Supplementary table S (available online
only) shows the AUC scores with SE of AL versus PL for both
refined and unrefined feature sets when different fixed
numbers of training samples were used. For VTE, AL always
showed better performance than PL at any sample size. For RA
and CRC, the performance of AL and PL were close when the
refined feature set was used. However, when the unrefined
feature set was used, the performance of AL was worse than
PL at small sample sizes (eg, 20–40 samples), but the perform-
ance of AL was better than PL with more samples (eg, 60–100
samples). These patterns could also be observed from the
learning curves.

DISCUSSION
In this study, we evaluated the impact of AL for ML-based phe-
notyping methods using physician-reviewed datasets for three
different disease cohorts. AL effectively reduced the needed
annotation set size and produced better classification models.
This finding suggests that AL could be useful for developing
high-throughput phenotyping methods using ML. To the best of
our knowledge, this is the first study to evaluate AL for EHR
phenotyping tasks. In addition, our study also revealed that
some phenotypes are more challenging using simple or expert-
derived features and demonstrated the value of expert-refined
features for ML-based phenotyping algorithms.

As shown in figures 1–3, the best performance for VTE (AUC
0.75) was much worse than that of RA and CRC (AUC above
0.95), indicating that the identification of VTE was harder than
RA and CRC. VTE may be more difficult to identify than the
other phenotypes for several reasons. First, VTE is an acute
disease such that the features based on the count of codes are

Figure 2 Learning curves of area
under the curve (AUC) score for
colorectal cancer phenotyping by
support vector machines. AL, active
learning; PL, passive learning.

Figure 1 Learning curves of area
under the curve (AUC) score for
rheumatoid arthritis phenotyping by
support vector machines. AL, active
learning; PL, passive learning.
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not as efficient as the ones for chronic diseases, such as RA and
CRC. Moreover, as VTE is a life-threatening disease requiring
urgent treatment, a provider may include a bill for VTE and
start appropriate medications before radiographic verification of
the diagnosis. In addition, VTE codes and concepts are fre-
quently mentioned in clinical documents as a ‘rule out’ differen-
tial diagnosis, or for prophylaxis (often found without the
words ‘prophylaxis’). Therefore, false positives in ICD-9 codes,
NLP-derived concepts, and even medications may occur for
VTE. More advanced NLP techniques and patient modeling
may allow the generation of more reliable features in ML-based
methods. An interesting observation was that domain expert-
selected features seemed to play a more critical role in difficult
phenotypes than in easy phenotypes. In the example of VTE,
the best AUC using refined features was much higher than the
best AUC using unrefined features, even when all samples were
used, but for RA and CRC, the best AUC for refined and unre-
fined features were similar when all samples were used. This
finding suggests that the complexity of phenotypes needs to be
considered when developing ML-based algorithms for specific
diseases. More phenotypes need to be investigated to draw gen-
eralizable conclusions.

Domain expert-refined features dramatically improved the per-
formance of ML-based phenotyping models. For RA and CRC,
SVM classifiers using refined features could reach high AUC
(over 0.90) with only one or two dozens of annotated samples.
Therefore, efficient methods to select relevant features for spe-
cific phenotypes are important and need further investigation.
However, selecting relevant features for specific phenotypes may
sometimes not always be a trivial task, even for domain experts.
Many samples may have to be reviewed before relevant features

can be summarized. One possible solution is to combine auto-
matic feature selection methods, such as HITON,42 with expert
review to speed up the identification of relevant features.

AL reduced the number of annotated samples required to
achieve optimal performance for unrefined features. Therefore,
instead of feature engineering, another alternative solution for
building efficient phenotyping models is to improve AL for
unrefined features. We noticed that AL did not perform well
with small numbers of training samples. In the early stages of

Figure 3 Learning curves of area
under the curve (AUC) score for venous
thromboembolism phenotyping by
support vector machines. AL, active
learning; PL, passive learning.

Table 4 Performance comparisons of AL versus PL in annotation
cost when AUC is fixed in RA, CRC, and VTE phenotyping tasks
using both unrefined and refined feature sets

AUC

Phenotype
+feature set 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

RA
Unrefined set
AL 7 9 13 16 21 27 44 96
PL 5 6 7 10 18 32 70 298

Refined set
AL – – – – – – 8 42
PL – – – – – – 5 95

CRC
Unrefined set
AL 6 10 14 21 25 33 53 124
PL 4 9 11 16 21 32 68 161

Refined et
AL – – – – – – – 5
PL – – – – – – – 13

VTE
Unrefined set
AL 2 559 – – – – – –

PL 2 559 – – – – – –

Refined set
AL 2 17 69 492 – – – –

PL 2 42 213 * – – – –

*For PL on VTE with refined set, SVM did not achieve 0.75 AUC from the entire
learning curve; the best AUC was 0.74 when all annotated samples were used.
AL, active learning; AUC, area under the curve; CRC, colorectal cancer; PL, passive
learning; RA, rheumatoid arthritis; SVM, support vector machine; VTE, venous
thromboembolism.

Table 3 p Values of the Wilcoxon rank sum test for the comparison
of learning curves between AL and PL

Phenotypes Refined set Unrefined set

RA 3.2×10−11 1.6×10−18

CRC 1.2×10−22 4.4×10−8

VTE 9.8×10−29 1.2×10−129

AL, active learning; CRC, colorectal cancer; PL, passive learning; RA, rheumatoid
arthritis; VTE, venous thromboembolism.
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RA and CRC learning curves using unrefined features, the AL
learning curves were below PL ones and their amplitude of
oscillation was high. A possible explanation is that the SVM
models were not able to perform well with small sample sizes
and high feature dimensionality. Moreover, uncertainty sampling
relies on the quality of the model. In the early stage, the selected
samples were not necessarily good because of a poor SVM
model. In difficult phenotypes such as VTE, AL may probably
not replace the role of defining relevant features. To achieve
optimal performance for difficult phenotypes, we will have to
combine feature engineering with AL approaches. It is also pos-
sible that a new class of features or modeling of features (eg,
taking into account the temporality or persistence of a concept,
for instance) will engender superior performance on more chal-
lenging phenotypes such as VTE.

This study has limitations. Uncertainty-based AL is very sensi-
tive to the classifier and its parameters. In our study, the para-
meters of SVM, such as kernels and regularization, were
pre-selected based on the previous research. Given a new task
without previous knowledge about optimal parameters, a strategy
that considers automatic parameter selection in different stages
of AL may be beneficial. For example, to avoid over-fitting in the
early stage when a few samples were used in training, we may use
a simple model, such as linear kernel, with a high cost to penalize
over-fitting. In addition, this study assumed that each sample
requires the same effort to annotate. In reality, different samples
take different amounts of time to annotate (eg, based on record
size or clinical factors). Cost-sensitive AL, which also considers
annotation time, is an interesting additional topic to consider for
ML-based phenotyping tasks. In the future, we also plan to inves-
tigate other querying algorithms such as query-by-committee,43

expected model change,44 expected error reduction,45 and
density-based sampling,27 as well as to develop a real-world
AL-enabled system for phenotyping tasks.

CONCLUSION
In this study, we applied AL to ML-based phenotyping methods
for RA, CRC, and VTE, and showed that AL could reduce
annotation cost while maintaining high classification perform-
ance. In addition, we demonstrated that expert-refined features
were also important and should be integrated with active
leaning for developing generalizable and high performance phe-
notyping methods.
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