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ABSTRACT
Background The secondary use of electronic
healthcare records (EHRs) often requires the identification
of patient cohorts. In this context, an important problem
is the heterogeneity of clinical data sources, which can
be overcome with the combined use of standardized
information models, virtual health records, and semantic
technologies, since each of them contributes to solving
aspects related to the semantic interoperability of EHR
data.
Objective To develop methods allowing for a direct
use of EHR data for the identification of patient cohorts
leveraging current EHR standards and semantic web
technologies.
Materials and methods We propose to take
advantage of the best features of working with EHR
standards and ontologies. Our proposal is based on our
previous results and experience working with both
technological infrastructures. Our main principle is to
perform each activity at the abstraction level with the
most appropriate technology available. This means that
part of the processing will be performed using
archetypes (ie, data level) and the rest using ontologies
(ie, knowledge level). Our approach will start working
with EHR data in proprietary format, which will be first
normalized and elaborated using EHR standards and
then transformed into a semantic representation, which
will be exploited by automated reasoning.
Results We have applied our approach to protocols for
colorectal cancer screening. The results comprise the
archetypes, ontologies, and datasets developed for the
standardization and semantic analysis of EHR data.
Anonymized real data have been used and the patients
have been successfully classified by the risk of
developing colorectal cancer.
Conclusions This work provides new insights in how
archetypes and ontologies can be effectively combined
for EHR-driven phenotyping. The methodological
approach can be applied to other problems provided that
suitable archetypes, ontologies, and classification rules
can be designed.

INTRODUCTION
Objective
Our main goal is providing methods allowing for a
direct utilization of data from electronic health
records (EHRs) in the process of identification of
patient cohorts. Leveraging of current EHR stan-
dards and semantic web technologies is also
regarded as an important objective in this work.

Background and significance
With the increasing adoption of EHRs there is a
growing interest in methods to enable the secondary
use of EHR data, for example in clinical research.
This secondary use often involves the identification
of patient cohorts from EHR data (or EHR-driven
phenotyping), which is an expensive and time-
consuming process. According to recent reviews,1

there are many publications reporting on automated
systems to facilitate this task. Most of these works
rely on proprietary formats for data integration, and
rarely use EHR interoperability standards like HL7,
openEHR, or ISO13606. In this context, an import-
ant problem is the heterogeneity of clinical data
sources, which usually differ in the data models,
naming conventions, and degree of detail for repre-
senting similar data.2 Another problem related to
clinical data sources is the ‘impedance mismatch’3

that usually exists between EHR data and the data
required by the EHR-driven phenotyping algo-
rithms, at a rather high level of abstraction.
There is evidence that the use of standardized

information models can help to solve the integration
problem of clinical data sources. Some initiatives use
a virtual health record (VHR) over the set of local
EHR systems to overcome the aforementioned pro-
blems.4–6 The VHR includes a generic information
model potentially capable of representing a wide
range of clinical concepts, and a query language.
Standardization of the VHR is regarded as an import-
ant issue. Consequently, several works have based
their VHR on standard EHR architectures. However,
the use of a VHR based on a standard EHR architec-
ture is not sufficient for semantic interoperability in
the context of EHR-driven phenotyping. The main
problem is the partitioning of concepts between the
information and domain models. To solve this
problem it is necessary to make explicit all the
assumptions about the representation of data. Thus,
specific domain concept definitions are needed rather
than the generic concepts provided by EHR architec-
tures. Examples of such definitions are openEHR/
ISO13606 archetypes,7 clinical document architec-
ture templates, and detailed clinical models.8

Currently, the Clinical Information Modeling
Initiative (CIMI)9 is working on providing a common
format for the definition of health information
content.
In addition, there is an increasing use of semantic

web technologies for managing EHR information
and knowledge. The reason for this is the potential
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of technologies like web ontology language (OWL),10 which
enables a formal representation of the domain information
entities and knowledge that can be exploited by automated
means. In line with this, important international initiatives11 12

consider that semantic web technologies are fundamental to
achieve consistent and meaningful representation, access, inter-
pretation, and exchange of EHR data. To mention some exam-
ples, EHR standards have been represented by means of OWL
ontologies with different purposes.13–15 OWL technologies
make automated reasoning possible, which has been exploited
in the validation of clinical models,16 17 and for reasoning over
EHR data.18 19 There are also numerous studies making use of
ontologies for biomedical data integration.20 One of the pro-
blems identified is the availability of ontologies corresponding
to the needs of a specific application.

With the purpose of providing methods allowing for the
smooth execution of EHR-driven phenotyping algorithms, in
this work we propose to leverage domain concept definitions
based on standard EHR architectures, on the one hand, and
ontology-based descriptions of inclusion/exclusion criteria with
the potential for automated reasoning, on the other hand. Our
proposal is to use archetypes for the former and the OWL for-
malism for the latter. Essential to our proposal, a set of
archetype-based concept models of the kind of a VHR will
serve to solve the integration and mismatch problems inherent
to the direct utilization of EHR data by phenotyping algorithms.
Additionally, OWL ontologies will ensure a precise characteriza-
tion of these algorithms, with the added value of automated
support via classification reasoning, which can be of great help
in the process of identification of patient cohorts.

MATERIALS AND METHODS
Our methodological approach takes advantage of the best fea-
tures of EHR standards and ontologies, at data and knowledge
levels, respectively. Our main principle is to perform each activ-
ity at the abstraction level with the most appropriate technology
available. This means that part of the processing will be per-
formed using archetypes (ie, data level) and the rest using ontol-
ogies (ie, knowledge level). Our approach (see figure 1) assumes
that the EHR data are stored in a proprietary format in the data-
base of the clinical institution. EHR data undergo a transform-
ation pipeline, where the first step is a pre-processing to convert
the relational data instances into XML extracts that can be
readily used in the next step.

Phenotyping algorithms usually require performing a series of
arithmetic and logical operations (or abstractions) on the data, and
subsequently reasoning using these more elaborated data. The
second step of our approach deals with the former processing
using archetypes. In this work, we will use openEHR archetypes,21

however the same approach could be applied to other EHR stan-
dards. In this step the XML extracts will be converted into normal-
ized EHR data compliant with the underling EHR architecture,
and then these data will be transformed to meet the requirements
of the phenotyping algorithm. For instance, if the algorithm uses
the number of adenomas of a patient, first the information about
each adenoma finding would be normalized, and afterwards the
count would be calculated. Accordingly, a series of archetypes will
be necessary to abstract from the raw data to the normalized data
to be processed by the phenotyping algorithm. The corresponding
abstractions and transformations will be carried out via archetype
mappings. The design of this archetype layer (or phenotyping

Figure 1 Overview of the methodological approach.

Fernández-Breis JT, et al. J Am Med Inform Assoc 2013;20:e288–e296. doi:10.1136/amiajnl-2013-001923 e289

Research and applications



archetype) is specific for the particular phenotyping algorithm,
while it is the result of a trade-off between reusability and simpli-
city. In the phenotyping archetype, a distinction can be made
between first-level archetypes and second (and so on) level arche-
types, depending on whether their value can be obtained from the
EHR data or, on the contrary, require data that are not directly
available in the EHR. The outcome of this second step is a collec-
tion of archetype-compliant data instances suitable for being con-
sumed by the next steps.

The objective of the third step is the transformation of the
data instances into a semantic representation. So far, the clinical
data of a patient are represented using archetype-compliant
XML extracts. This representation has limitations with regard
to expressing domain knowledge, and therefore neither supports
inference nor can be used to perform reasoning as required by
phenotyping algorithms (see above). Our proposal is that the
inclusion/exclusion criteria defined in the phenotyping algo-
rithm are implemented in OWL, and that the classification is
performed through automated reasoning. To achieve this, a
mapping is required between the phenotyping archetype and a
domain ontology, which needs to cover the concepts and prop-
erties of the domain in question. This ontology can be built on
purpose or reused in case quality ontologies for the domain
exist. Depending on the scope of the study, extensions to exist-
ing ontologies are likely to be needed, and/or a network of
ontologies rather than a single one can be required. Once this
step is performed, the data will be available in a formalism for
which automated classification and reasoning are natural tasks.

The fourth step of our approach requires enriching the
domain ontology with appropriate classification rules, so that a
reasoner can automatically compute the groups of patients as
well as guarantee the consistency and logical correction of the
ontology. The output of this step will be the clinical group asso-
ciated with each patient. Key methods of the data transform-
ation pipeline are summarized in tables 1 and 2, and detailed in
online supplementary annex I.

RESULTS
Case study description
Colorectal cancer is one of the most important causes of mortal-
ity in many developed countries according to the Global Burden
of Disease study, with an expected increase in incidence for the
coming years.32 Developing effective mechanisms for the early
detection of colorectal cancer would contribute to a better man-
agement and control of this disease. Our case study focuses on
the program for colorectal cancer screening in the Murcia
region (Spain). To date, the physicians involved in this program
apply the screening protocols drawn from the European and
American guidelines33 to classify patients in levels of risk, and,
according to such classifications, make clinical decisions. As
result, a database recording clinical data and decisions taken has
been compiled. This database, with data about more than
20 000 patients, is the source of the anonymized EHR data used
in our study. Our hypothesis is that our approach can help phy-
sicians in their activity by suggesting the classification of the
patients according to their risk of colorectal cancer.

Next, we summarize our main results. More information,
including the archetypes, ontologies, mappings, and datasets, is
available at http://miuras.inf.um.es/colorectal.

Archetype infrastructure and mapping
In our case study, we started by analyzing the archetypes in the
openEHR Clinical Knowledge Manager to identify suitable
archetypes. The most suitable one was openEHR-EHR-

OBSERVATION.lab_test-histopathology, that models a generic
anatomical pathology or histopathology test. In order to accom-
modate the additional concepts required by our phenotyping
algorithm, the archetype was specialized using the LinkEHR
archetype editor. The specialization, named openEHR-EHR-
OBSERVATION.lab_test-histopathology-colorectal_screening,
incorporates detailed information about adenoma findings, such
as type, maximum size of the recorded dimensions (width,
breadth, and height), dysplasia grade, and whether they are
sessile and/or advanced. Our case study requires concepts at dif-
ferent level of granularity: at finding and study levels. In order
to represent study level concepts (maximum size of all aden-
omas and number of adenomas) we developed a second-level
archetype (openEHR-EHR-EVALUATION.colorectal_screening.
v1) from scratch.

For the generation of archetype instances we need to access
the required EHR data and then to transform them into arche-
type instances. First, the data access module of LinkEHR was
used to generate a canonical XML view over the EHR system.
This XML view was then used as source schema in the mapping
of the openEHR-EHR-OBSERVATION.lab_test-histopathology-
colorectal_screening archetype, since their instances can be
obtained directly from EHR data. When a local EHR is involved
in a mapping scenario, the mapping specification requires a
clear understanding of the source schema, thus we worked
closely with the database administrator. Figure 2 shows an
example of value correspondence used to map the first-level
archetype to the local EHR. Finally, we defined the mapping
between the first- and second-level archetypes. In this case and
due to the presence of aggregation functions we employed a

Table 1 Summary of activities performed at archetype level

Clinical concept modeling using archetypes (archetype level)
Goal Development of the phenotyping archetype for the normalization

and abstraction of the EHR data to be used in the phenotyping
algorithm

Input ▸ Documentation about the domain and phenotyping algorithm
(eg, medical encyclopedias, clinical guidelines)

▸ Terminological resources (eg, SNOMED CT22)
▸ Archetype repositories

Output ▸ (Semi)formal specification of domain concepts
▸ Phenotyping archetype

Tasks ▸ Analysis and specification of domain concepts
▸ Design and development of phenotyping archetype

Tools ▸ UMLS Terminology Services23

▸ openEHR Clinical Knowledge Manager24

▸ LinkEHR mapping module7

From EHR data to archetypes (archetype level)
Goal Transformation of EHR data into archetype-compliant normalized

EHR extracts
Input ▸ Source EHR schemas and data

▸ (Semi)formal specification of domain concepts
▸ Phenotyping archetype

Output ▸ Specification of EHR data-archetype mapping
▸ Set of XQuery scripts (one for each archetype) implementing the

mappings
▸ EHR data expressed as archetype-compliant XML documents

Tasks ▸ Definition of high-level mappings between source schemas (local
schemas or archetypes) and phenotyping archetype

▸ Compilation of high-level mappings into XQuery scripts
▸ Execution of XQuery scripts on EHR data and/or archetype

instances
Tools ▸ LinkEHR archetype editor25

▸ Saxon26

EHR, electronic healthcare records; SNOMED, systematized nomenclature of medicine;
UMLS, unified medical language system.
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structural mapping7 to control the grouping context. An excerpt
of this mapping is shown in figure 3. Since the source path of
the structural mapping is the root entity of the first-level arche-
type, the counting of adenomas and the calculation of the
maximum size of adenomas is done at study level. With this

approach we were able to validate at each step the XQuery
script34 generated by the LinkEHR mapping tool. Figure 6 illus-
trates an example of the data transformations applied to the
adenoma dimensions (length, width, and depth) during the
whole process, that is, from local data to OWL instances. As can
be observed, the canonical XML document is transformed into
an XML instance of the finding (first-level) archetype. The
mapping in figure 2 is used in this transformation. Concretely it
is employed to assign the value to the maxsize element (archety-
pe_node_id=‘at0.0.31’) with the maximum size of any recorded
dimension of a particular finding. By contrast, the mapping
between the first- and second-level archetypes calculates the
maximum size of any recorded dimension only for adenomas
and at study level. For this purpose, a mapping with a similar
structure as the one displayed in figure 3 was used.

OWL infrastructure and reasoning
The starting point was a domain ontology developed by our
clinical partners, called precol, which was designed for the data
management activities they perform rather than for supporting
automated reasoning. Then, we inspected Bioportal ontologies,
looking for more appropriate formalizations of the concepts
and the inferencing capabilities required by the phenotyping
algorithm. Given our goal, we decided that the best option was
to re-engineer the classes of the precol ontology over which rea-
soning is to be performed using Protégé. The ontological infra-
structure includes different ontologies for representing domain
entities (colorectal-domain), the rules for determining the risk
level (colorectalscreening-rules), and the data (colorectal-
instances). The colorectal-domain ontology extends precol by
adding some classes, properties, and axioms oriented to reason-
ing. Figure 4 shows an excerpt of the inferred taxonomy of
Finding. There, we can see different types of Adenoma, each of
which is defined through sufficient conditions, which is an
effective way of representing the axioms for automated reason-
ing. The reasoner exploits this taxonomic structure to answer
the queries.

Next, we manually defined the mappings between the pheno-
typing archetype and the colorectal-domain ontology using
semantic web integration tool (SWIT).29 An excerpt of the
mapping rule for Finding is shown in figure 5, where the lines
show the correspondence between the archetype and ontology
entities. Once defined, the mappings were automatically exe-
cuted on the archetyped data instances to generate the OWL
dataset. It should be noted that in this study, the mapping is
defined between the first- and second-level archetypes and the

Table 2 Summary of the activities performed at ontology level

Domain knowledge modeling using ontologies (ontology level)
Goal Development of the ontologies for representing the domain

knowledge
Input ▸ (Semi) formal specification of domain concepts

▸ Repositories of ontologies
Output ▸ Set of ontologies representing the domain knowledge
Tasks ▸ Selection of existing ontologies appropriate for being reused

▸ Development of the OWL ontologies by extension of selected
ontologies or from scratch

Tools ▸ Bioportal27

▸ Protégé28

From archetyped data to OWL (ontology level)
Goal Transformation of the normalized EHR extracts into a semantic

representation to facilitate further processing and exploitation.
Input ▸ EHR data expressed as archetype-compliant XML documents

▸ Set of ontologies representing the domain knowledge
▸ Phenotyping archetype

Output ▸ Specification of archetype-ontology mapping
▸ Set of OWL individuals representing the normalized EHR extracts

Tasks ▸ Definition of the mappings between the phenotyping archetype
and the domain ontology

▸ Application of the mappings to the normalized EHR extracts
Tools ▸ SWIT mapping and transformation modules29

OWL reasoning (ontology level)
Goal Design and application of the phenotyping algorithm to the OWL

individuals
Input ▸ Set of OWL individuals representing the normalized EHR extracts

▸ Set of ontologies representing the domain knowledge
▸ Specification of the phenotyping algorithm

Output ▸ OWL ontology that implements the phenotyping algorithm
▸ Classification of the OWL individuals according to the

phenotyping algorithm
Tasks ▸ Implementation of the phenotyping algorithm in OWL

▸ Application of the phenotyping algorithm through automated
reasoning

▸ Querying of the knowledge base to retrieve the classification of
each subject

Tools ▸ Protégé28

▸ Hermit30

▸ OWLAPI31

EHR, electronic healthcare records; SWIT, semantic web integration tool.

Figure 2 Value correspondence for calculating the maximum size (depth, width, or length) of an adenoma finding. As it can be observed, if none
of the dimensions has been recorded the value −1 is assigned.
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domain ontology. Figure 6 illustrates how the data is trans-
formed into OWL. There, an individual of the class
Histopathology Report is created. This report has two findings,
whose data come from the two ELEMENTs defined in the
Histopathology colorectal screening archetype (top-right).
Besides, this report has a max_size, whose value is obtained by
executing the mapping with the colorectal screening archetype
(bottom-left).

The European and American screening protocols have been
implemented in the colorectal screening-rules ontology. Table 3
explains the rules defined in this ontology for low, intermediate,
and high risk according to the European and American proto-
cols. Finally, OWL-description logics (DL) reasoning over the
OWL dataset generates the classifications according to each
protocol, which are retrieved by using the OWLAPI or through
DL queries.35

Evaluation
We have carried out an overall evaluation using a small selection
of 33 histopathology reports from the database. These reports
were selected to cover a wide range of value combinations.
Based on the mappings specifically designed for this purpose,
appropriate archetype and OWL instances have been generated.
OWL-DL reasoning was applied to classify the histopathology
reports according to the European protocol. The classification
results matched the results obtained by manually applying the
protocol in 100% of cases.

In addition, we have evaluated the performance of the main
steps of our data transformation pipeline, namely the archetype
level mapping, the ontology level mapping, and the OWL rea-
soning. In this evaluation we used a bigger number of histopath-
ology reports (503 reports), randomly selected. Default values
provided by our expert were used in case of missing data, for
example a missing value in the dysplasia type was interpreted as

a low-grade dysplasia. To evaluate the performance of the
mapping steps we tested the instance generation scripts to
analyze the response time thereof. The mean time required for
the archetype mapping step was 13 ms per report, and about
150 ms per report for the ontology mapping step. Regarding
the performance of the reasoning step, the mean time to classify
each report using Hermit was 2.1 s.

Finally, we have compared the results of the OWL classification
step with the classifications done by physicians as recorded in the
original database (see table 4). Despite the default values, the rea-
soner did not yield any classification result for a small number of
reports (8 reports), due to data values not covered by the classifi-
cation rules (eg, dysplasia type with ‘could not be determined’ as
value). Focusing on the reports for which the reasoner yielded a
classification, this classification matches the database one in
64.4% of the cases. Among the discrepancies (35.6% of the
cases), 58% correspond to reports classified as high-risk by physi-
cians and as intermediate-risk by the OWL classifier. This sug-
gests that physicians may tend to assign a higher risk level when
compared to the protocol. Note that discrepancies with respect
to the protocol do not necessarily imply non-compliance, as phy-
sicians were not supposed to follow it. The list of discrepant
cases and the corresponding data files are available at http://
miuras.inf.um.es/colorectal. A sample of 17 cases from this list
was presented to the physician for revision, selected among dis-
crepancies involving low risk versus the other two classifications.
The physician determined that the OWL classification was the
correct one in 100% of cases. Analyzing the reasons for the mis-
classifications in the database remains as future work.

DISCUSSION
In this work, we have presented a novel method to support
EHR-driven phenotyping that combines EHR standards, arche-
types, ontologies, and reasoning. The novelty of the approach

Figure 3 Calculation of the number of adenomas in a histopathology study. The variable $finding represents the path of microscopic findings
(CLUSTER at 0.81.6) in the source archetype. The complete source instance provides the context for grouping and counting in the structural
mapping. The values 181 and 182 identify the types of adenoma in the database.
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lies in how these technologies are combined for taking full
advantage of their benefits. On the one hand, archetypes define
semantically rich data structures based on EHR standards. They
abstract from how the data are stored in a particular EHR
system and, therefore, provide a meaningful way for exchanging
healthcare data. Our approach considers the use of an
archetype-based VHR to normalize and further elaborate EHR
data (at the data level) so that the requirements of phenotyping
algorithms can be met. On the other hand, ontologies serve to
provide a formal specification of domain knowledge for pheno-
typing purposes. Current languages like OWL make automated
reasoning possible such that new knowledge can be inferred.
Our approach uses OWL ontologies and classification reasoning
(at the knowledge level) for the bulk of phenotyping
algorithms.

Phenotyping algorithms require working at both data and
knowledge levels, since the inclusion/exclusion criteria are calcu-
lated from raw EHR data but usually also need data not directly
available in the EHR. For example, in our case study, the classifi-
cation of a patient in the ‘high risk’ group requires to find either
one advanced adenoma or at least three adenomas. In turn, the
classification of an adenoma as ‘advanced’ is done based on
the specific value ranges for the size, histology, and dysplasia of
the adenoma. We have addressed the classification tasks at the
knowledge level, and processing tasks such as counting and neg-
ation (eg, if an adenoma is ‘not sessile’) at the data level. The
separation of concerns between data and knowledge levels is
not a clear-cut issue. The decision will depend on the particular
application as well as on the features of the representation lan-
guage chosen for the knowledge level. To explore this issue, for
our case study we have developed an archetype infrastructure
which is able to determine directly at data level for example, if
an adenoma is advanced. This has been done to facilitate the
reusability of the archetype infrastructure in platforms other
than OWL. As criterion, it can be considered to include a
domain concept definition in a particular level according to the
expected reuse of the corresponding artifact (ontology or
archetype).

Reuse is one of our main interests, of both archetypes and
ontologies. The reusable archetype infrastructure provides stan-
dardized access to clinical data, possibly coming from different
EHR systems, by just defining the necessary mappings between
the source databases and the first-level archetypes (note that the
mappings for second- and higher-level archetypes can be fully
reused). Coupled with the archetypes, the ontology infrastruc-
ture (including definitions and mappings) can also be reused to
work with different EHR systems. The definitions in the ontol-
ogy themselves can indeed be reused to a large extent, for
example, in the use case we have used them to define the rules
for both the American and European protocols without modify-
ing the archetype infrastructure.

We use OWL classes with sufficient conditions for defining
the categories of interest related to the phenotyping algorithm.
This means that those classes represent explicitly the knowledge
on the categories as OWL content and, therefore, can be com-
bined with additional knowledge for further studies and infer-
ence. Alternative representations like simple protocol and
resource description framework query language (SPARQL)36

could have been used. In that case, however, the conditions of
each category of interest would be embedded within queries,
with no possibility of exploitation as separate knowledge.

Figure 5 Partial view of the mapping for Finding.

Figure 4 Excerpt of the domain ontology.
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Besides, the SPARQL inference possibilities based on properties
are limited. For example, it would not be possible to identify
which findings are advanced adenomas by just using SPARQL,
unless the queries replicated all the conditions for a finding to
be classified as such. In that case, the most reasonable option
would be to reason over the OWL content first, to obtain all the
finding classifications from the data, and then issue the SPARQL
queries against the inferred knowledge base.

The use of OWL is appropriate for phenotyping algorithms
where the classification of patients is based on the analysis of
individual patient features, rather than, for example, features of
relatives. Otherwise, some options are: (1) dealing with the
problem at the data level; and (2) implementing those rules
with languages such as SWRL37 or SPARQL and combine them
with OWL reasoning. The decision must be made based on the

particular problem. Examples of the first solution can be seen in
our case study (see table 3), since operations like count,
maximum, and negation cannot be easily performed using OWL
reasoning. Our solution was to perform such activities at the
data level, and the time performance obtained suggests that our
modeling decisions have been effective. Consequently, our rec-
ommendation is to carefully analyze the requirements of the
phenotyping algorithm, also taking into account the reuse pro-
spects of the archetypes/ontologies (see above).

Terminologies should play an important role to bridge the
gap between EHR data and archetypes, and between archetypes
and ontologies. In previous work we have managed systematized
nomenclature of medicine (SNOMED)-CT content in both
EHR-archetype38 39 and archetype-ontology17 transformation
layers. In our view the exploitation of the terminological

Figure 6 Example of a complete data transformation process.
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bindings defined in the archetypes and the increasing availability
of terminologies in a processable form should be helpful not
only to drive the transformation process but also for the semi-
automatic generation of the required mappings. However, for
simplicity, in this research work we have opted for disregarding
terminological issues, focusing instead on the combination of
EHR standards and semantic web technologies.

CONCLUSION
This work provides new insights into how archetypes and ontol-
ogies can be effectively combined for EHR-driven phenotyping.
The main contribution of this work is the methodological

proposal which describes how those technologies can be com-
bined and how we can take full advantage of their benefits. This
is a progress with respect to our previous work because we had
used ontologies for representing archetypes and data to facilitate
clinical data and models interoperability,7 and used knowledge-
rich clinical models based on archetypes to link clinical decision
support systems with EHR systems,38 39 but never combined in
an effective data analysis pipeline as proposed here.

With respect to related work, we are aware of the MobiGuide
and EURECA projects,40 41 which focus on linking clinical deci-
sion support with EHR systems with the help of archetypes and/
or semantic web technologies. However, to the best of our
knowledge, none of these approaches has achieved the level of
semantic interoperability and integration we demonstrate in this
work. The approach of the SHARPn project42 is similar to ours,
and has proved to be effective in a platform for the secondary
use of EHR data. The major differences are the use of Clinical
Element Models43 (instead of archetypes), the rule-based
description of phenotyping algorithms, and the processing of
textual EHR data. Compared to SHARPn, our approach does
not cover the latter aspect. However it outstands for the clinical
models used, allowing for the standardized representation of
rather abstract clinical concepts, as opposed to raw EHR data.

Table 3 The classification rules defined for the American and European protocols

Group OWL rule and explanation

High-risk American Rule:
(HistopathologyReport and
((hasAdenoma some AdvancedAdenoma) or (number some integer([>=3)])))
or (HistopathologyReport and (max_size some integer([≥20)]))
Explanation:
A histopathology report whose findings describe at least one advanced adenoma or at least three adenomas, or a histopathology report whose
largest adenoma has at least 20 mm
The domain ontology contains the properties that an adenoma must meet to be classified as advanced by the reasoner
Number represents the amount of adenomas described in the histopathology report. This value is calculated in the archetype layer. This could
have been calculated in the ontology layer but that would require more time for reasoning
max_size represents the size of the largest adenoma and this value is calculated in the archetype layer, since it cannot be easily calculated in
the ontology layer

High-risk European Rule:
(HistopathologyReport
and ((max_size some integer([≥20)])
or (number some integer([≥5)])))
Explanation:
A histopathology report whose findings describe an advanced adenoma of size equal or greater than 20 mm or at least five adenomas
For optimization purposes, the condition has Adenoma some (AdvancedAdenoma and (size some integer([≥20)])) is not included, since it is
guaranteed by max_size some integer([≥20)]

Intermediate-risk
European

Rule:
HistopathologyReport
and (((hasAdenoma some AdvancedAdenoma)
and (max_size some integer([<20)])
and (number some integer([<5)]))
or ((hasAdenoma only NormalAdenoma)
and (number some integer([>2)])
and (number some integer([<5)])))
Explanation:
A histopathology report that meets one of the following conditions
a. It contains less than 5 adenomas, at least 1 of which is advanced, and the size of the largest adenoma is less than 20 mm
b. It contains 3 or 4 normal adenomas
It should be noted that normal adenoma and advanced adenoma are disjoint classes.

Low-risk European/
American

Rule:
HistopathologyReport
and (hasAdenoma only NormalAdenoma)
and (number some integer([<3)])
Explanation:
A histopathology report that only contains at most two normal adenomas, but does not contain any advanced one.
This rule is the same for both protocols.

Table 4 Discrepancy matrix

Database classification

High-risk Intermediate-risk Low-risk

OWL classification
High-risk 69 5 2
Intermediate-risk 102 44 24
Low-risk 26 17 206
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The approach is rather generic and can be applied to other
problems provided that suitable archetypes, ontologies, and clas-
sification rules can be developed. Moreover, the approach pro-
motes and emphasizes on the use of international standards and
recommendations like openEHR/ISO13606 archetypes and
OWL. As future work we envisage to perform a more principled
clinical validation of our results. Furthermore, we plan to
incorporate the issues of terminological knowledge and ontol-
ogy alignment in our approach.
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