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Abstract: Geographic atrophy (GA) is a condition that is associated with 
retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It 
appears in advanced stages of non-exudative age-related macular 
degeneration (AMD) and can lead to vision loss. We present a semi-
automated GA segmentation algorithm for spectral-domain optical 
coherence tomography (SD-OCT) images. The method first identifies and 
segments a surface between the RPE and the choroid to generate retinal 
projection images in which the projection region is restricted to a sub-
volume of the retina where the presence of GA can be identified. 
Subsequently, a geometric active contour model is employed to 
automatically detect and segment the extent of GA in the projection images. 
Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in 
eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients 
with GA, respectively, were utilized to qualitatively and quantitatively 
evaluate the proposed GA segmentation method. Experimental results 
suggest that the proposed algorithm can achieve high segmentation 
accuracy. The mean GA overlap ratios between our proposed method and 
outlines drawn in the SD-OCT scans, our method and outlines drawn in the 
fundus auto-fluorescence (FAF) images, and the commercial software (Carl 
Zeiss Meditec proprietary software, Cirrus version 6.0) and outlines drawn 
in FAF images were 72.60%, 65.88% and 59.83%, respectively. 
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(170.4470) Ophthalmology. 
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1. Introduction 

Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss among 
the elderly. The advanced form of AMD is associated with severe vision loss, and it is 
characterized by the development of two major abnormalities: (1) macular neovascularization 
and/or (2) geographic atrophy (GA) [1–3]. The natural course of GA, unlike the neovascular 
form of AMD, progresses slowly and usually involves visual loss, primarily due to RPE 
degeneration and neurosensory retinal atrophy resulting in an absolute or relative scotoma 
affecting the central vision field [4–7]. 

Identification, measurement and evaluation of the amount of GA over time through 
imaging as progression of GA are often related to visual loss. In the United States, GA is 
present in 3.5% of people aged ≥75 years, and its prevalence rises to ≥22% in those >90 years 
old [8–10]. 

Several semiautomatic and automatic GA segmentation methods [11–16] have been 
proposed for FAF images. A region-growing method was proposed by Deckert et al. [13], 
where separate GA regions needed to be manually seeded to be included in the segmentation. 
N. Lee et al. adopted a level set model [14], and proposed a hybrid approach by identifying 
hypo-fluorescence GA regions from other interfering vessel structures in the FAF images [15] 
and an interactive segmentation approach by using the watershed transform algorithm [16]. 
Their method produced accurate segmentation results when evaluating pixel-by-pixel mean 
sensitivity and specificity, resulting in 98.3% and 97.7% respectively. 

SD-OCT is a high-resolution imaging modality for assessing the retina and can be useful 
for visualizing GA. Several studies have compared FAF and SD-OCT with a specific focus on 
morphologic features [17–20]. Since the aberration and loss of neurosensory elements at the 
inner retina can be relate to the visual prognosis in dry AMD [21], longitudinal SD-OCT 
imaging in patients with GA is important if these changes are to be followed and evaluated 
over time [7]. Sayegh et al. [22] evaluated SD-OCT for grading GA compared with FAF 
images, and concluded that SD-OCT is an appropriate imaging modality for evaluating the 
extent of GA lesions. 

To our knowledge, very few methods have been reported in the literature focusing on the 
segmentation of GA in SD-OCT. Most of the prior work focuses on detecting thinning of 
RPE, which is one (but not the only) feature of GA in SD-OCT images. Chiu et al. [23] used 
graph theory and dynamic programming to segment retina layers in eyes with GA and drusen 
(small deposits between the retinal pigment epithelium (RPE) and Bruch’s membrane). Their 
method performed well in computing the retina layer thickness for eyes containing GA, 
however, detecting and segmenting the extent of GA was not the focus of this work. Other 
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available methods for automated GA segmentation are proprietary in commercial systems 
[24], and the details of these methods and results of formal evaluations are not publicly 
available. 

An interesting analysis by Schütze et al. [25] suggests that the current available automated 
segmentation methods are limited in their ability to accurately assess retinal layer thickness 
and are thus not accurate in detecting GA. They compared retinal layer thickness deduced 
from automated segmentation in common commercially-available SD-OCT devices and 
proprietary software, compared with GA areas identified by experts who evaluated GA in 
fundus and FAF images. Their results showed that while segmentation of retinal layers was 
fairly successful, automated retinal thickness measurement in SD-OCT does not seem to be 
good at recognizing GA and defining its extent; the thickness differences observed between 
eyes presenting GA with control eyes were not statistically significant. They concluded that 
current automated SD-OCT methods do not identify the extent of RPE atrophy accurately and 
they are limited in their ability to differentiate discrete zones of RPE atrophy in early disease 
or complicated patterns. 

At present, if quantitative assessment of GA in SD-OCT images is desired, it needs to be 
performed by an expert who manually circumscribes the GA lesions in the B-scan images (the 
primary output from an SD-OCT device, comprising 2D contiguous slices through a 
volumetric cube of the retina), and subsequently projecting the segmentations onto an en face 
image to show the extent of GA across the retinal surface—a similar view to that seen in FAF 
images. Each SD-OCT volumetric image data set generally contains 128 or 200 B-scan 
images (for CirrusOCT (Carl Zeiss Meditec, Inc., Dublin, CA)). Since this manual 
circumscription of GA lesions in the B-scans is very time-consuming, it is not routinely 
performed in clinical practice. 

This paper presents a novel semi-automated GA segmentation algorithm for SD-OCT 
images and results of an evaluation of the accuracy of the method. Our approach to the 
problem starts with the computation of a sub-volume of the retina from the three-dimensional 
(3D) SD-OCT data set which enhances detection of GA (rather than simply segmenting and 
evaluating just the RPE). In addition, we generate a two-dimensional (2D) en face projection 
of the retina from that sub-volume, similar in appearance to FAF images, in order to visualize 
the extent of GA. Finally, we segment the en face projection to quantify the extent of GA. 

2. Methods 

2.1 Overview of the method 

Figure 1 shows the flowchart of the algorithm, which comprises three steps: (1) For each B-
scan, the RPE layer is segmented automatically, and from this, a sub-volume of the retina in 
the SD-OCT cube is extracted which facilitates generating a projection image with minimal 
noise where possible GA lesions reside. This sub-volume is restricted to a region beneath the 
RPE layer containing the choroid, which is the site where abnormal high reflections due to the 
presence of GA and RPE thinning can be observed in OCT images. (2) An en face GA 
projection image is generated from the SD-OCT image sub-volume. (3) A geometric active 
contour model is adopted to segment GA detected in this projection image, and this contour is 
used to calculate the area (extent) of GA lesions. 

 

Fig. 1. Flowchart of the proposed algorithm 

To illustrate the intuition behind our method, Fig. 2 shows a single B-scan obtained from a 
SD-OCT image volume in a GA patient displaying a cross section of the retina layers in the 
macula. In GA, the RPE atrophies (and may or may not show thinning). In regions of RPE 
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atrophy, the RPE absorbs less light, thus transmitting more light beyond it (into the choroid 
layer beneath the RPE). The increased transmission of light into the choroid is manifest in 
SD-OCT images as regions of increased reflectivity (bright areas). Thus, in areas of GA on B-
scans, there are regions of bright pixels beneath the RPE in the B-scan (Fig. 2). Our method 
detects these regions of increased reflectivity in the choroid layer by generating and analyzing 
a sub-volume that includes it. We also propose an active contour model as a GA segmentation 
tool on en face projection images with enhanced GA visualization, which are generated from 
the three dimensional SD-OCT sub-volume data. These planar images are constructed by 
projecting those voxels contained in a restricted volume within the choroid region (where 
bright pixels manifest the presence of GA) in the axial direction along each A-scan. 

 

Fig. 2. B-scan from SD-OCT volume scans of the retina. The RPE layer and GA region are 
marked with red and blue lines, respectively. The presence of GA appears as bright pixels in 
choroid coat (the region underneath the RPE layer) due to the loss of the RPE layer and 
subsequent increased reflections from the underlying choroid. 

2.2 RPE layer segmentation 

Several automatic segmentation methods of SD-OCT retinal layers have been presented in 
previous literature [26–28]. These methods use the knowledge of normal retinal layers, and do 
not consider the possible presence of GA. Thus, they are not ideal for the segmentation of the 
RPE layers containing GA and tend to fail when GA in present. We adopted a simplified RPE 
segmentation method [29] that takes into account the possible presence of GA. As a first step, 
the SD-OCT retinal images are smoothed with bilateral filtering [30]. Next, the location of the 
retinal nerve fiber layer (RNFL, shown in Fig. 2) is estimated by detecting the upper vitreous 
region. The purpose of detecting the RNFL layer is to facilitate segmenting the RPE layer. 
The reflectivity of the vitreous region is usually similar throughout the B-scans in an OCT 
cube (Fig. 2), and thus a constant threshold can be used to extract this background region, 
which helps identify the contour of the surface of the RNFL. The bottom boundary of the 
vitreous region is taken as the location of the inner limiting membrane and inner boundary of 
the RNFL layer, as shown in Fig. 2. 

The RPE layer can be identified in SD-OCT retinal images by its bright pixel values, as 
shown in Fig. 2 and Fig. 3. Thus, intensity-based methods can be useful to extract it. In 
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addition, the healthy RPE has an approximately constant thickness (20μm). Based on this 
information and the histogram statistics of the image pixels underneath the segmented RNFL 
(outside vitreous region), a threshold can be determined, which separates the bright RPE 
region from the darker background to produce a binary image forming an initial RPE 
estimation. A narrow band with a radius 20μm (determined by approximate mean RPE 
thickness) is generated and the regions in the initial estimation not connected with this band 
are later removed. The RPE layer segmentation is then further refined by removing small 
selected regions (regions containing less than 150 pixels). To ensure that the RPE is a 
continuous linear structure, missing pixels between selected regions are also interpolated. 
Finally, the middle axis of the resulting RPE segmentation is computed for each A-scan (i.e., 
the individual axial lines forming a B-scan) which produces the final RPE segmentation. 
Further details are explained in [29]. 

2.3 Generation of GA projection image 

A common method for creating a 2D projection from SD-OCT volumetric data sets is the 
summed-voxel projection (SVP) [31], in which all the voxel values in the 3D data are 
summed along the axial A-scan lines in the B-scans, producing an image showing the retinal 
surface en face, similar to color fundus photographs (CFPs) and FAF images. However, the en 
face SVP fundus image is not ideal for GA visualization due to the confounding influence of 
highly reflective retinal layers above and below GA lesions in the retina (in particular the 
RNFL and RPE layers) which obscure GA lesions. The commercial software on the Cirrus 
HD-OCT (version 6.0) provides a sub-RPE slab function [24]. The sub-RPE slab is formed by 
axially projecting only the OCT image data from a region below the contour of the RPE fit. 
Our projection method, which is also derived by restricting the sum of the voxel values to the 
sub-volume beneath the segmented RPE layer, where the choroid resides and where the high 
reflections indicating GA will be seen, improves the traditional SVP image in terms of GA 
visualization. The lower boundary of the sub-volume is parallel to the top boundary (RPE 
layer), where the parallel distance is equal to the minimum distance between the end of the 
cube and the segmented RPE layer. Then, the average intensity of the sub-volume in the axial 
direction is taken as the intensity value of the GA projection image. We call this the restricted 
summed-voxel projection (RSVP). 

Figure 3 shows an example, comparing the traditional SVP projection [31] and the RSVP 
projection in a patient with GA. Figure 3 shows that the contrast of GA in the RSVP image is 
higher than in the SVP image, which can improve the performance of a computerized GA 
segmentation method. On the other hand, this process can introduce aberrant bright signals 
(e.g., the bright spots near the upper blood vessels in Fig. 3), caused by an inaccurate RPE 
layer segmentation. In practice, this did not negatively impact our results (see the evaluation 
of our GA segmentation method below). 
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Fig. 3. (a) and (c): SVP and RSVP projection for visualizing GA lesions. The red lines 
correspond to the cross section of retina visualized in the B-scan shown (b). The top boundary 
and the lower boundary of the projection sub-volume are marked with two parallel yellow dash 
lines in (b). 

2.4 GA segmentation based on geometric active contour model 

To derive the shape and size of GA lesions, we employed a geometric active contour model 
for the segmentation of the GA lesions on the RSVP images. These images were denoised 
using bilateral filtering [30] as a preliminary step to reduce the influence of noise on the 
segmentations. Geometric active contour (GAC) models were simultaneously proposed by 
Caselles et al. [32] and by Malladi et al. [33], introduced as an alternative to parametric 
deformable models and as a way to overcome their limitations. GAC models are based on the 
theory of curve evolution and geometric flows, and implemented using the level-sets based 
numerical algorithm. The basic idea of these models is to transform a planar curve movement 
track into a three-dimensional curved surface movement track, which has the advantage of 
being able to handle the change of topological structure easily. During the evolution of 
traditional level set methods, re-initialization is necessary to keep the evolving level set 
function close to a signed distance function. In order to eliminate the need of the costly re-
initialization procedure, Li et al. [34] presented a new formulation that forces the level set 
function to be close to a signed distance function. The formulation proposed is 

 ( ) ( ) ( ) ,mE P Eφ μ φ φ= +  (1) 

where 

 ( ) ( )21
1 .

2
P dxdyφ φ

Ω
= ∇ −  (2) 

The internal energy ( )P φ  characterizes how close a level set function φ  is to a signed 

distance function in the image domain 2Ω ⊂ ℜ , which penalizes the deviation of φ  from a 

signed distance function during its evolution. 0μ >  is a parameter controlling the effect of 

the internal energy. The external energy ( )mE φ  drives the zero level set toward the object 

boundaries, which is defined as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,m g gE L A g I dxdy g I H dxdyφ λ φ ν φ λ δ φ φ ν φ
Ω Ω

= + = ∇ ∇ + ∇ −   (3) 
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where 0λ >  and ν  are constants, and ( )xδ  and ( )H x  are the univariate Dirac function and 

the Heaviside function, respectively. ( ),I x y  denotes the image pixel values, and the edge 

indicator function g  is defined by ( ) 2

1

1
g I

G Iσ

∇ =
+ ∇ ∗

 where Gσ  is Gaussian kernel with 

standard deviation σ . 
Solving the minimization problem by gradient descent results in the evolution equation 

 ( ) ( ) ( ) ( ).div div g I g
t

φ φ φμ φ λδ φ ν φ δ φ
φ φ

    ∂ ∇ ∇= Δ − + ∇ + ∇     ∂ ∇ ∇     
 (4) 

In numerical implementation, the regularized Dirac ( )xεδ  is defined by 

 ( ) ( ) ( )2 2 0

1
, lim ,x x x

xε εε

εδ δ δ
π ε →

= ⋅ =
+

  (5) 

where ε  is a constant, selected as 1.5ε =  in this work. The initial function φ  is defined as 

 ( )
( )

( )
( )

, ,

0, , 0, , ,

, , \

x y

x y x y

x y

ρ ω
φ ω

ρ ω

− ∈
= ∈∂
 ∈Ω

 (6) 

where ω  is a subset in the image domain Ω , and ω∂  is all the points on the boundaries of 
ω . 4ρ =  is a constant in this paper. 

The geometric active contour (4) is an edge-based model, where the edge indicator 
function depends on image gradients. In addition, the edge-based geometric active contour 
can only evolve in one direction (inward or outward), which requires the initial curve to 
surround (let in or keep out) the objects to be tracked. To reduce the number of iterations and 
allow the curve to evolve in any direction, two modifications were made in the traditional 
formulation, as follows: 

(1) The results obtained from the global binarization method [35] were taken as the initial 
function φ . Since the GA regions are generally brighter than background regions, as shown in 

Fig. 3(c), the initial object boundaries provided by this binarization are generally close to the 
real GA boundaries, which can reduce the evolution time. An alternative initialization may be 
used for those cases in which the results from the global binarization were far away from the 
real GA boundaries in order to speed up the algorithm. This alternative initialization consisted 
in the interactive specification of a polygonal region vaguely around the GA regions and then 
the binarization of that restricted polygonal region, which result is then taken as the initial 
function. 

(2) The geometric active contour was modified to allow the curve to evolve in any 
direction. The geometric active contour is traditionally defined to evolve either inward or 
outward the initial curve, which makes it unsuitable in our case since the initial object 
boundaries may be inside or outside GA contours. In order to make the curve evolve in any 
direction, we propose the sign of the coefficient ν  of gA  to be adaptively determined 

according to the image gradient. This adaptive coefficient is then defined as 

 ( ) , ,IIν φ φ φ∇ = −  (7) 

  ( ) ( ) { }, , , , 1,0,1 ,I x y x rx y ry rx ryφ φ= + + ∈ −  (8) 
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where Iφ  is a changed signed distance function of φ , and rx  and ry  denote the translations 

in the horizontal and vertical directions, respectively. The translations ( rx  and ry ) depend on 

the image gradient I∇ . To further reduce the computational complexity, the evolution curve 
is restricted in a narrow band based on the narrow band level set method [36]. For the points 

outside this narrow band, Iφ  equals to φ . For each point inside this narrow band, we search 

the maximum image gradient within its eight-neighbor directions. Figure 4 illustrates the 
construction of the adaptive coefficient. Figure 4(a) is a signed distance function φ  generated 

with the curve shown in yellow. The sign of φ  is negative inside and positive outside the 

region specified by the curve in blue, which represents the evolving curve. Figure 4(b) shows 

one pixel ‘O’ (shown in red) and the pixels in its eight-neighbor directions { }8

1i i
U

=
 (shown in 

gray). Let ( ) ( ){ }max max , , , 1 8o
i iI I x y x y U i∇ = ∇ ∈ =  , be the maximum image gradient 

of each neighbor direction for pixel ‘O’, and { }8

1
max max maxo o

i i
I I

=
∇ = ∇  be the maximum 

value of the eight-neighbor directions. Then, the translations for pixel ‘O’ can be determined 
by using the following rule: 
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
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


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



 = ∇

 (9) 

where oI∇  denotes the image gradient of pixel ‘O’. The relationship between the translations 
and the eight-neighbor directions is shown in Fig. 4(b). The radius considered for the gradient 
computation in each direction, represented by Ur , is an arbitrary value within the interval 

[ ]1, nr , where nr  represents the radius of the narrow band. In Fig. 4(b), this radius was set up 

to 3Ur = . The choice of this radius value affects the ranges in which we want to consider 

possible local evolution of the curve. When the initial object boundaries are very close to real 
GA boundaries, Ur  should be set to small value. If the initial object boundaries are far away 

from the GA boundaries, Ur  should be set to a larger value to prevent the evolving curve 

running into a local optimum. In the experiments presented in this paper this radius value was 
set to 1. By using the adaptive coefficient, the active contour will evolve in the direction of 
the maximum image gradient. 
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Fig. 4. Construction of the adaptive coefficient. (a) A signed distance function generated with 
the initial object contour (yellow curve). The blue curve represents the current evolving curve. 
(b) The evolving direction of each point in the narrow band depends on the maximum image 
gradient in its eight-neighbor directions (gray pixels) and itself (red pixel). 

Based on the modifications above, the modified formulation of the adaptive geometric 
active contour employed in the segmentation is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 , ,

2
E dxdy g I dxdy I g I H dxdy

μ
φ φ λ δ φ φ ν φ φ

Ω Ω Ω
= ∇ − + ∇ ∇ + ∇ ∇ −   (10) 

and the evolution equation of Eq. (10) 

 ( ) ( ) ( ) ( ) ( ), .div div g I I g
t

φ φ φμ φ λδ φ ν φ φ δ φ
φ φ

    ∂ ∇ ∇= Δ − + ∇ + ∇ ∇     ∂ ∇ ∇     
 (11) 

The φ  in the coefficient ν  is the signed distance function of the previous iteration, not the 

current iteration. Thus, the coefficient ν  is a constant matrix for the evolution Eq. (11). Our 
algorithm was implemented in Matlab. 

To discrete the evolution Eq. (11), we used finite differences implicit scheme. Let h be the 

space step, tΔ  be the time step, all the spatial partial derivatives 
x

φ∂
∂

 and 
y

φ∂
∂

 are 

approximated by the central difference, and the temporal partial derivative 
t

φ∂
∂

 is 

approximated by the forward difference 
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+
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+ − + −

− − −∂ ∂ ∂= = = = = =
∂ ∂ ∂ Δ

+ − + −∂ ∂= = = =
∂ ∂

  

So gradient operator is ,
x y

φ φφ  ∂ ∂∇ =  ∂ ∂ 
 . 

The curvature κ  is computed on the level-set of φ : 
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Laplace operator is 1, 1, , 1 , 1 , j4xx yy i j i j i j i j iφ φ φ φ φ φ φ φ+ − + −Δ = + = + + + − . 

Then, the approximation of evolution Eq. (11) by the above difference scheme can be 
simply written as 

 ( )
1

, ,
, ,

n n
i j i j n

i jEnt
t

φ φ
φ

+ −
=

Δ
 (12) 

where ( ),
n
i jEnt φ  is the approximation of the right hand side in (11) by the above spatial 

difference scheme. The difference Eq. (12) can be written as: 

 ( )1
, , , .n n n

i j i j i jt Eφ φ φ+ = + Δ ⋅  (13) 

In our experiments, we have used the parameters 
0.1

2, , 5, 1, 1.5t h
t

μ λ εΔ = = = = =
Δ

. The 

stopping criteria of the algorithm is the number of iterations, which is 20 in this paper. These 
values were derived heuristically, being derived by visual inspection of the results produced 
by the algorithm, tuning them until we obtained satisfactory qualitative results. 

2.5 Experimental evaluation studies and results 

We used two different data sets to evaluate our algorithm, where all the cases presented with 
advanced non-neovascular AMD with extensive GA. The first data set consisted of 55 
longitudinal SD-OCT cube scans from twelve eyes in eight patients with GA (acquired with 
the CirrusOCT device, Carl Zeiss Meditec, Inc., Dublin, CA.). Each cube consisted of 512 × 
128 × 1024 voxels corresponding to a 6 × 6 × 2 mm3 volume centered at the macular region 
of the retina in the lateral, azimuthal and axial directions, respectively). The SD-OCT scans 
were segmented using our algorithm. The RSVP images from those SD-OCT scans were also 
segmented by hand twice by two different graders in separate reading sessions separated by 
several weeks to minimize recall of cases. We then performed a qualitative and quantitative 
comparison between the semi-automated segmentation results produced by our algorithm and 
the manual segmentation drawn by graders. We also established the variability observed in 
the manual segmentations drawn by different graders (inter-grader agreement) and by the 
same grader at different times (intra-grader agreement) in the RSVP images. 

The second data set consisted in 56 SD-OCT cube scans from 56 eyes in 56 patients with 
GA (acquired with the CirrusOCT device). Each cube consisted of 200 × 200 × 1024 voxels 
corresponding to a 6 × 6 × 2 mm3 volume centered at the macular region of the retina in the 
lateral, azimuthal and axial directions, respectively). These scans were segmented using our 
algorithm and also by using the Carl Zeiss Meditec proprietary software (Cirrus version 6.0). 
For this second eye data set we also had corresponding FAF images (acquired with Spectralis, 
Heidelberg Engineering, all over 8.56 × 8.56 mm area of retina but with image sizes either 
496 × 496 pixels, 768 × 768 pixels or 1536 × 1536 pixels, due to post-processing). These FAF 
images were segmented by hand by one expert grader, and their outlines were compared to 
those produced by our segmentation method as well as those produced by the Cirrus software. 
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The segmentation results from our method and from the Cirrus software were compared with 
each other as well. In order to compare the GA segmentations drawn in FAF and in SD-OCT 
RSVP images, the RSVP images were computationally transformed into the FAF coordinate 
system by specifying an affine transformation determined by manual registration of the retinal 
blood vessels observed in the image pairs. An example of this correspondence can be 
observed in Fig. 12. We assumed that the agreement between segmented GA lesions in SD-
OCT images and in FAF images may not be perfect, since these are two very different 
imaging techniques, but it provides an idea of the correlation of the segmentation results with 
the method used for GA identification in current clinical practice. 

For the evaluation in the first data set, multiple SD-OCT images had been acquired in the 
eight patients over time, enabling us to visually assess the ability of our method to identify 
temporal changes in GA lesions and to indicate its potential utility to Ophthalmologists in 
evaluating changes in GA by visual inspection. We reviewed the images of the GA lesions in 
the first data set, noting change in the total GA area to detect progression of GA in each 
patient. We computed the total area of all GA lesions present in an eye at each time point for 
two of these patients and generated plots of GA area vs. time for these patients to demonstrate 
the potential of our method to provide a quantitative imaging biomarker for following GA 
disease progression. 

For a quantitative evaluation, we employed four different metrics to assess the differences 
between pairs of the segmentation methods (our method vs. each of the expert graders, each 
grader vs. the other and our method vs. commercial software): Absolute area difference 
(AAD), overlap ratio (OR), correlation coefficient (cc) and the Mann-Whitney U-test. The 
AAD measures the absolute difference between the GA area in two different segmentations of 
the same scan. Their mean and standard deviation values (std) are computed across the 
different scans available in the data set: 

 ( ) ( ) ( )
1

1
X;Y ,

K

k kk
AAD Area X Area Y

K =
= −  (14) 

 ( ) ( ) ( ) ( ) ( )( )2

1

1
; ; ,

K

k kk
std AAD X Y Area X Area Y AAD X Y

K =
= − −  (15) 

where kX  and kY  indicate the regions inside the segmented GA contour of scan k, produced 

by the methods (or grader) X  and Y , respectively. The OR is defined as the percentage of 
area in which both segmentation methods agree with respect to the presence of GA over the 
total area in which at least one of the methods detects GA. The mean OR and standard 
deviation values are computed across scans in the data set in the same way as for AAD: 

 ( )
1

1
; ,

K k k

k
k k

X Y
OR X Y

K X Y=

∩=
∪  (16) 

 ( ) ( ) ( )
2

1

1
; ; ,

K k k
k

k k

X Y
std OR X Y OR X Y

K X Y=

 ∩= − ∪ 
  (17) 

where the operator ∪  indicates union and ∩  indicates intersection. The correlation 
coefficients were computed between the areas of GA segmented by our segmentation method 
and segmentations drawn by hand by expert graders (as well as between different graders and 
sessions), measuring the linear dependence using each scan as an observation. We used the 
Mann-Whitney U-test to measure the possible statistical differences in the area measured 
between our segmentations and those drawn by hand. 
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3. Results 

3.1 Qualitative evaluation 

Figures 5 and 6 show the GA segmentation results for two different patients with GA from the 
first data set who had multiple SD-OCT studies over the course of their disease. The red lines 
in Fig. 7(a) and 7(d) show the quantitative area of total GA lesions plotted (corresponding to 
the segmented GA lesions in Fig. 5 and Fig. 6, respectively). The GA segmentation results 
(Figs. 5 and 6) appeared satisfactory by visual inspection. The property of the geometric 
active contour model ensures that the boundaries of the segmentation results are smooth and 
multiple separated GA regions can be simultaneously segmented. 

Figure 7 shows the GA area changes of the first data set, where the results of two experts 
and our method are given. From Fig. 7, it can be seen that the change tendency of GA areas 
for each eye is almost identical between our results and the two experts, and the GA areas of 
our method are generally smaller than those of the experts. For one patient (Fig. 7(j)), there is 
only one imaging time. 

 

Fig. 5. GA segmentation results on RSVP images for the right eye of an 88 year old female 
patient. The imaging dates of (a)-(f) are 3/14/2008, 9/26/2008, 4/3/2009, 2/17/2010, 6/16/2010, 
12/8/2010, respectively. 
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Fig. 6. GA segmentation results on RSVP images for the right eye of a 76 year old female 
patient. The imaging dates of (a)-(j) are 8/21/2008, 1/6/2010/, 4/7/2010, 7/13/2010, 8/17/2010, 
9/14/2010, 10/12/2010, 11/15/2010, 12/20/2010, 1/24/2011, respectively. 
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Fig. 7. GA area vs. time for segmentation of GA lesions obtained from twelve eyes in eight 
patients. The results of two experts (blue and magenta lines) and our method (red line) are 
marked as shown in (a). Four patients have the results of the right/left eyes, namely (b)/(c), 
(e)/(f), (h)/(i) and (k)/(l). Other four patients only have the results of one eye, namely (a), (d), 
(g) and (j). 

Figure 8 shows the worst segmentation result we observed (from patient shown in Fig. 5). 
Comparison with the segmentations drawn by an expert (Figs. 8(a) and 8(b)) shows that our 
method neglected small GA regions (such as the yellow dash region in Fig. 8(c)) and 
contained other small background regions (such as the white dash region in Fig. 8(c)). These 
segmentation errors were caused by the smoothing effect of the image denoising and the 
external energy of the geometric active contour model. 
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Fig. 8. The worst segmentation result of patient #1. (a) Expert 1. (b) Expert 2. (c) Our 
segmentation algorithm. 

Figure 9 shows another example of a poor segmentation result (from patient shown in Fig. 
6). The main segmentation errors are the right boundary and center part of the GA region, 
marked with yellow and white dash ovals in Fig. 9(c), respectively. These errors were 
produced by an inaccurate RPE layer estimation, resulting in the coarse right GA boundary. 
Figure 10 is the B-scan corresponding to the red dash line of Fig. 9. It can be seen from Fig. 
10 that most of the RPE layer disappeared and the retinal layers’ structure is greatly changed 
due to the GA influence, which made the RPE estimation difficult and inaccurate in this case 
and led to segmentation errors. 

 

Fig. 9. The worst segmentation result of patient #2. (a) Expert 1. (b) Expert 2. (c) Our 
segmentation algorithm. 
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Fig. 10. B-scan corresponding to the red dash line of Fig. 9. 

3.2 Quantitative evaluation: our method vs. expert graders 

Since there is no absolute ground truth in GA segmentations obtained in-vivo, we evaluated 
the variability observed in the GA segmentations by different graders (inter-observer 
agreement) and by the same grader at different sessions (intra-observer agreement) in the SD-
OCT RSVP images using the first scan data set. Figure 3 indicates that the contrast for the 
visualization of GA in RSVP images is better than that in SVP images. The results from this 
evaluation are summarized in Table 1, where A1 represents the segmentations of the first 
grader in the first session, A2 is first grader in the second session, B1 is the second grader in 
the first session and B2 is the second grader in the second session. For the assessment of the 
differences between the segmentations done by different graders, the union of both sessions 
was considered for each grader: A1&2 and B1&2 represent the first and second grader 
respectively. The correlations observed in measured areas were very high for both 
segmentations drawn by different graders and by the graders at different times. This was also 
the case for the overlap ratios in GA areas. The areas of segmentations created by one grader 
at different sessions were slightly higher than for the other grader. The differences in 
measured areas were small as well, with a mean value under 5% difference for both graders 
and between them (percentages are with respect a mean value between both methods). The 
high p-values in the U-test indicate that there were no statistical differences found in the 
distribution of areas. These results indicate that measurements and quantification of GA in the 
RSVP images proved robust and repeatable compared with segmentations made by different 
graders or by the same grader at different times. 

Table 1. Within-expert and between-expert correlation coefficients (cc), paired U-test p-
values, absolute GA area differences and overlap ratio evaluation between the manual 

segmentations 

Methods compared Number of 
eyes / cubes 

cc p-value 
(U-test) 

AAD [mm2] 
(mean, std) 

AAD [%] 
(mean, std) 

OR [%] 
(mean, std) 

Expert A1- Expert A2 8 / 55 0.998 0.658 0.239 ± 0.210 3.70 ± 2.97 93.29 ± 3.02 

Expert B1- Expert B2 8 / 55 0.996 0.756 0.243 ± 0.412 3.34 ± 5.37 93.06 ± 5.79 

Expert A1&2- Expert B1&2 8 / 110 0.995 0.522 0.314 ± 0.466 4.68 ± 5.70 91.28 ± 6.04 
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We compared the segmentations produced by our algorithm with those drawn by the two 
graders in this first data set by creating an “average expert segmentation.” This was generated 
by averaging the four segmentations drawn by the two experts at the two separated sessions, 
computed as a two or more vote. Table 2 summarizes the results for this comparison. The 
correlations between the areas computed by our method and those produced by the average 
expert were high. The measured overlap ratios were lower in this case than when comparing 
segmentations drawn by individual graders, but still showed good agreement (around 72.6% 
with an average expert segmentation). Similarly, the measured area differences were higher 
when evaluating our segmentation algorithm against expert segmentations (Table 2, 
percentages are with respect the ground truth area, considered as the grader segmentation) 
than when evaluating manual segmentations against each other (Table 1). Nevertheless, visual 
inspection of the segmentation results (Fig. 5 and Fig. 6) showed that our segmentations 
appeared satisfactory. 

Table 2. Correlation coefficients (cc), paired U-test p-values, absolute GA area differences 
and overlap ratio between our segmentation method (Our Seg.) and expert segmentations 

Methods compared Number of 
eyes / cubes 

cc p-value 
(U-test) 

AAD [mm2] 
(mean, std) 

AAD [%] 
(mean, std) 

OR [%] 
(mean, std) 

Our Seg. - Avg. Expert 8 / 55 0.970 0.026 1.438 ± 1.26 27.17 ± 22.06 72.60 ± 15.35 

Our Seg. - Expert A1 8 / 55 0.967 0.047 1.308 ± 1.28 25.23 ± 22.71 73.26 ± 15.61 

Our Seg. - Expert A2 8 / 55 0.964 0.024 1.404 ± 1.31 26.14 ± 21.48 73.12 ± 15.15 

Our Seg. - Expert B1 8 / 55 0.968 0.017 1.597 ± 1.33 29.21 ± 22.17 71.16 ± 15.42 

Our Seg. - Expert B2 8 / 55 0.977 0.022 1.465 ± 1.14 27.62 ± 20.57 72.09 ± 14.82 

3.3 Quantitative evaluation: our method vs. commercial method and FAF manual 
segmentations 

We used the second data set to compare the performance of our method with a commercial 
GA segmentation software system and expert segmentation drawn in FAF images, which is 
commonly used for GA assessment in clinical practice. Since SD-OCT and FAF are two very 
different techniques producing images of different sizes and extent, the pixel sizes and 
structures found in them needed to be adjusted and registered in order to establish a 
meaningful comparison. As described in the Methods section, the structure correspondence 
between these techniques was found by an affine transformation defined by manual 
registration of retinal blood vessels between the two imaging techniques in a case by case 
basis. Examples of this correspondence for five representative patients are displayed in Fig. 
11, where RSVP image obtained from the SD-OCT scans is superimposed with the FAF 
images, and the manual segmentations drawn in FAF images are shown in red, the results 
obtained from our segmentation algorithm are in green, and the results obtained from the 
commercial software are in blue. 
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Fig. 11. FAF and RSVP composite images displaying the overlapping segmentations drawn by 
hand by an expert in the FAF images (red), our proposed algorithm (green) and commercial 
software (blue). The composite image was obtained by manual registration to align retinal 
blood vessels. (a) Patient 1. (b), Patient 2. (c), Patient 3. (d), Patient 4. (e), Patient 5. 

Visual inspection of the 56 different eyes segmented indicated that our method appeared 
to produce better quality GA segmentations overall than the commercial software, and it even 
performed in a satisfactory manner in some of the cases where the commercial software 
seemed to fail. For example, in Fig. 11(c)-11(e) the commercial software clearly 
overestimated the area of GA, segmenting independent areas where clearly no sign of GA can 
be observed. In Fig. 11(e), this overestimation involved the optic disk, as it was partly present 
in the OCT scan. We observed these large overestimation errors in the segmentations with the 
commercial software in 19 out of the 56 cases, whereas our method did not produce such 
large overestimation in any of the cases. 

A quantitative comparison of the segmentations produced by our algorithm, the 
commercial software, and the expert segmentations in the FAF images is summarized in 
Table 3. The correlation coefficient between areas measured using our algorithm and the 
expert segmentations in FAF images was very high (0.955), much higher than that observed 
between the commercial software segmentation results and expert segmentations (0.807) and 
between the two segmentation algorithms (0.820). All p-values for the correlation coefficients 
were statistically significant (p<0.0001). The area differences were also the lowest between 
our algorithm and manual segmentations, lower than between Cirrus and manual 
segmentations and the comparison between the two methods (Table 3, percentages are with 
respect the grader manual segmentations when comparing with them and with respect an 
average of the two methods when comparing between them). Surprisingly, the differences in 
mean AAD between our method and manual segmentations were lower in data set 2 than in 
data set 1 (Compare Tables 2 and 3); while in data set 2 semi-automated and manual 
segmentation were obtained on different imaging techniques (SD-OCT and FAF), in data set 
1, both segmentation methods were performed in SD-OCT images, but fewer patients were 
considered. The smaller differences in AAD in data set 2 may be due to the fact that the 8 
patients in the data set 1 were more complex cases for segmentation of GA. The large values 
in AAD standard deviation observed in Table 3, comparable in magnitude with the mean 
values, was expected since we were comparing segmentations in two different techniques. 
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Nevertheless, a standard deviation comparable to the mean indicates agreement between the 
segmentations since a 0% AAD is included in the distribution, which would indicate no 
differences found between the segmentations. No significant statistical differences were found 
between the differences in GA area via U-test (all p-values well over p>0.05). The mean 
overlap ratio (Table 3) was higher between our method and the manual segmentations in FAF 
images than between Cirrus and manual segmentations. The differences between the 
measured overlap ratios in Table 3 were high, although not statistically significant (analysis of 
variance (ANOVA) resulted in p = 0.062). The overlap ration between our method and 
manual segmentations was lower than in the previous data set (Table 2), most probably due to 
the intrinsic differences between SD-OCT and FAF images and possible bias introduced by 
the registration process. 

Table 3. Correlation coefficients (cc), paired Mann-Whitney U-test p-values, absolute 
differences and overlap ratio in areas of GA between our segmentation method (Our 

Seg.), commercial software segmentation (Com. Sw. Seg.), and expert segmentations in 
FAF images 

Methods compared Number of 
eyes / cubes 

cc p-value 
(U-test) 

AAD [mm2] 
(mean, std) 

AAD [%] 
(mean, std) 

OR [%] 
(mean, std) 

Our Seg. - FAF 56 / 56 0.955 0.524 0.951 ± 1.28 19.68 ± 22.75 65.88 ± 18.38 

Com. Sw. Seg. - FAF 56 / 56 0.807 0.140 1.796 ± 2.51 34.13 ± 38.62 59.33 ± 22.48 

Our Seg. - Com. Sw. Seg. 56 / 56 0.820 0.448 1.746 ± 2.34 32.85 ± 42.41 59.33 ± 22.48 

4. Discussion 

Our work provides improved en face visualization technique of GA in SD-OCT images and a 
new semi-automated GA segmentation method. Our techniques demonstrated good 
performance overall, both in qualitative visual assessment and when compared with manual 
segmentations created by experienced graders. One advantage of developing GA 
segmentation and quantification techniques in SD-OCT images over other modalities, like 
FAF images, is its ability for depth-resolved imaging. While multiple GA segmentation 
methods have been described for FAF, their images are the results of depth-integration, 
superimposing different retinal structures which may result in masking pathologies or retinal 
features. A substantial challenge in GA quantification is that, even when segmentations are 
drawn by hand, there is variability in the results due to this masking effect. Our proposed 
methods take advantage of depth information available in OCT images by producing an en 
face image derived from the projection of a sub-volume containing the choroid region (the 
RSVP image), which is the site where abnormal high reflections due to the presence of GA 
and RPE thinning can be observed in OCT images. This results in images in which the 
contrast of GA visualization is enhanced. The low inter-grader and intra-grader variability in 
RSVP images shown in Table 1 demonstrates the utility of these images for GA visualization. 

However, there are also some limitations in our methods. An erroneous segmentation of 
the RPE layer may produce artifacts in the RSVP images, like those observed in Fig. 2(c). 
Though we observed that such artifacts produced little or no effect in GA visualization and 
GA segmentation, they are nonetheless challenges that could have clinical impact and should 
be addressed in future work. Another potential limitation is that our segmentation technique 
considers a two-dimensional segmentation of the RPE layer, that is, B-scan by B-scan. 
Numerous recent publications have pointed out the improvements in retinal layer 
segmentation by taking a three dimensional approach, considering information from adjacent 
B-scans. In this work, our focus was in the use of a geometric active contour model for 
segmentation of GA in SD-OCT images. The precision of RPE segmentation certainly 
influences the quality of the RSVP images and a better and more precise segmentation 
method could be adopted in further development of our methods, though not using three-
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dimensional segmentation does not diminish the significance of our method and its results 
segmenting GA. Nevertheless, our current work includes a novel three-dimensional multiple 
layer segmentation method and the evaluation of our GA segmentation technique using these 
layer segmentations, which will be presented in the future. 

Another limitation of our method is that the segmentation technique relies on numerous 
thresholds determined by the histogram of values of each B-scan. Although such thresholds 
are determined automatically and directly from the sample to be segmented and they produced 
appropriate results in the cases included in our analysis without our needing to vary any 
parameters between cases, they may not be optimal for OCT cubes obtained from different 
commercial systems and vendors. In the future, we will test our methods in a larger range of 
SD-OCT cubes obtained from different clinical systems to evaluate the extensibility of our 
approach. In addition, we will expand our current automated RPE layer segmentation to adopt 
a three-dimensional algorithm using information from adjacent B-scans, which may further 
improve the resulting RSVP images and GA segmentation. 

Apart from the mentioned artifacts in the RSVP images, our method produced satisfactory 
GA segmentations when compared to manual segmentations drawn by expert graders. One of 
the difficulties when performing a meaningful quantitative evaluation of our algorithm is the 
lack of a detailed performance evaluation of other similar methods in SD-OCT against which 
to compare. While automated GA segmentation in OCT is a very active area of research, most 
of the methods developed to date reside in commercial systems, the details of their methods 
have not been published, and it is difficult to reproduce or compare those methods in 
comparison evaluation studies. To our knowledge, the only published evaluation of several 
GA segmentation methods in OCT based its evaluation on the differences observed among 
areas of retinal thinning [25]. The results were not optimal due to the lack of correlation 
between those segmented areas of retinal thinning and actual GA size as identified in 
scanning laser ophthalmoscope and fundus photography, and also showed substantial 
limitations in identifying zones of GA reliably when using automatic segmentation procedures 
in current SD-OCT devices [25]. Nevertheless, recent articles have provided evidence of 
differences in retinal thickness in eyes presenting intermediate AMD stages, including eyes 
presenting GA, and healthy controls. A recent article from Farsiu et al. [37] defined possible 
areas of GA as those with a RPE complex thickness smaller than 3 standard deviations from 
the mean presented in control subjects when observed using SD-OCT. Although the 
performance of determining areas of GA employing such method was not evaluated in the 
study, such definition seemed improve the differentiation between AMD and control subjects 
when used in concordance with other characteristics evaluated via SD-OCT, such as abnormal 
thickness areas in the RPE complex due to drusen and total retinal and RPE complex volume. 
A more similar approach to our work presented here in terms of extent of GA definition was 
described in a recent article by Nunes et al. [38]. In this article, areas of GA were defined by 
manually outlining “brighter” regions observed when projecting a thin slab of the SD-OCT 
cube onto an en face image. Such slab was formed by the image data from a region extending 
65 µm to 400 µm below the RPE. Additional observation of en face images produced in 
another thin slab around the IS/OS junction (20-µm thick slab representing the region located 
between 20 µm to 40 µm above the RPE) in a longitudinal study showed potential of areas 
presenting thinning in the IS/OS region being predictors of the areas where GA is likely to 
progress within one year. The study indicates that although loss of outer retinal thickness 
appears to be a predictor of future GA appearance, it does not perfectly correspond to the 
current extent of GA. Moreover, the patterns of outer retinal disruption extending beyond the 
borders of GA accurately predicted progression within one year in 13 of 30 eyes (43.3%) 
while it was much larger in the rest of the cases. 

We undertook a performance evaluation of our method as well as a comparison with 
known commercially available GA segmentation software (Cirrus), and compared both results 
with hand-drawn segmentations. It is interesting to note that among the evaluated 
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segmentation methods in the previously mentioned publication [25] the Cirrus software 
seemed to perform the best, so we selected it as the commercial software to compare to our 
method. These results are summarized in Tables 2 and 3. The segmentations produced by our 
method presented high area correlation and overlap ratio as well as relatively low area 
differences with the manual segmentations. Our method also produced segmentation results 
that were more similar to the manual segmentation drawn by an expert grader than those 
produced by the commercial software we evaluated. We hope that our quantitative results and 
measurements can also serve as benchmarks to enable comparing performance in future GA 
segmentation methods in SD-OCT. 

Quantifying GA over time is extremely important, as disease progression is directly 
related to objective changes in GA, such as total area. We believe that our RSVP technique to 
enhance visualization of GA and our segmentation method can provide a better estimation of 
GA extent as well as reduce the time burden and labor costs of manual segmentations. The 
results shown in Fig. 7 suggest that there is variability in the GA area estimated by our 
method (since GA extent is not expected to alternatively grow and decrease in time), probably 
due to noise. However, this variance in area is small. Further investigation of the robustness 
and reproducibility of area estimations of our method as well as other segmentation methods 
will be pursued in the future. Ultimately, our methods could enable quantitative evaluation of 
a longitudinal series of GA lesions which could be useful for clinical evaluation of disease. 

5. Conclusions 

This paper presents a semi-automated segmentation algorithm for GA in SD-OCT images. A 
projection image constructed from a sub-volume of the retina beneath the RPE which shows 
the GA abnormalities most clearly appears to improve the visualization of GA lesions. A 
study of the variability in segmentations between experts and within the same expert at 
different sessions suggests that these projection images provide a robust visualization of GA. 
An edge-based geometric active contour model was adopted to segment GA on the resulting 
RSVP projection images. Qualitative and quantitative experimental results indicate that the 
algorithm shows promising results when compared to expert segmentations in the patient data 
sets studied and that the method may be effective for the GA segmentation in SD-OCT 
images. This segmentation algorithm can also be used to extract and assess GA quantitative 
features in longitudinal OCT studies, such as the area and extent of GA. A performance 
comparison of our algorithm with a commercially-available GA segmentation software 
program suggests that our algorithm provides more accurate GA segmentations than the 
commercial software. 
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