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Abstract
Although imatinib is an effective treatment for chronic myelogenous leukemia (CML), and nearly
all patients treated with imatinib attain some form of remission, imatinib does not completely
eliminate leukemia. Moreover, if the imatinib treatment is stopped, most patients eventually
relapse (Cortes et al. in Clin. Cancer Res. 11:3425–3432, 2005). In Kim et al. (PLoS Comput.
Biol. 4(6):e1000095, 2008), the authors presented a mathematical model for the dynamics of CML
under imatinib treatment that incorporates the anti-leukemia immune response. We use the
mathematical model in Kim et al. (PLoS Comput. Biol. 4(6):e1000095, 2008) to study and
numerically simulate strategic treatment interruptions as a potential therapeutic strategy for CML
patients. We present the results of numerous simulated treatment programs in which imatinib
treatment is temporarily stopped to stimulate and leverage the anti-leukemia immune response to
combat CML. The simulations presented in this paper imply that treatment programs that involve
strategic treatment interruptions may prevent leukemia from relapsing and may prevent remission
for significantly longer than continuous imatinib treatment. Moreover, in many cases, strategic
treatment interruptions may completely eliminate leukemic cells from the body. Thus, strategic
treatment interruptions may be a feasible clinical approach to enhancing the effects of imatinib
treatment for CML. We study the effects of both the timing and the duration of the treatment
interruption on the results of the treatment. We also present a sensitivity analysis of the results to
the parameters in the mathematical model.
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1 Introduction
Chronic myelogenous leukemia (CML) results from the uncontrolled growth of white blood
cells due to increased and unregulated growth of predominantly myeloid cells in the bone
marrow and the accumulation of these cells in the blood (Sawyers 2000). The standard
treatment for CML is the tyrosine kinase inhibitor imatinib mesylate (marketed as Gleevec
or Glivec) (Angstreich et al. 2004). Although imatinib is an effective treatment for CML and
most patients attain some form of remission, imatinib does not completely eliminate all
leukemia cells, and if the imatinib treatment is stopped, most patients eventually relapse
(Cortes et al. 2005; Michor et al. 2005) (though we do note that in some recent clinical
findings, e.g., (Rousselot et al. 2007; Mahon et al. 2009), several patients have demonstrated
relapse-free survival after imatinib discontinuation). There are three standard types of
remission: hematologic, cytogenetic, and molecular. Each layer corresponds to a 2-log, or
100-fold, difference from the previous layer. According to (Lowenberg 2003), each patient
typically has approximately 1012 leukemia cells prior to imatinib treatment. Hence,
hematologic remission corresponds to 1010 cells, cytogenetic remission corresponds to 108

cells, and molecular remission corresponds to 106 cells. Assuming that the average person
has approximately 6 liters of blood, these remission levels correspond to the concentration
levels given in Table 1. With imatinib treatment, nearly all patients achieve hematologic
remission (Lee 2000), and approximately 75% of patients achieve cytogenetic remission
(Cortes et al. 2005).

Several recent mathematical models have been developed to study the dynamics of CML
under imatinib treatment, including (Komarova and Wodarz 2005; Michor et al. 2005; Kim
et al. 2008), and (Roeder et al. 2006). In all of these studies, the authors conclude that
imatinib does not completely eliminate the leukemia cell population, and propose that
imatinib therapy should be combined with an additional form of treatment. In (Michor et al.
2005), the authors develop a four-compartment differential equations model based on the
known biology of the hematopoietic system to model the dynamics of CML with imatinib
treatment. In (Kim et al. 2008), the authors incorporate the anti-leukemia immune response
in CML patients on imatinib therapy to the model proposed in (Michor et al. 2005) by
adding interactions with anti-leukemia T-cells. The authors of (Kim et al. 2008) formulate
their mathematical model as a system of delay-differential equations (DDEs), and
demonstrate that the immune response may play a critical role in determining the length of
time that CML patients on imatinib treatment remain in remission.

In this paper, we present a strategic treatment interruption treatment strategy for CML based
on the delay differential equation model proposed in (Kim et al. 2008). We use the model in
(Kim et al. 2008) to numerically determine an optimal time period during which imatinib
treatment should be temporarily stopped in order to leverage the anti-leukemia immune
response. Although the leukemia load initially suppresses the T-cell immune response, a
small number of T-cells remain and can eventually be leveraged to potentially eradicate
leukemia. We demonstrate that such a strategic treatment interruption significantly improves
the efficacy of imatinib treatment for CML patients. In particular, the results of our
simulations suggest that, in many cases, leukemia can be completely eliminated with a
strategic treatment interruption timed during the patient’s own anti-leukemia immune
response. In (Kim et al. 2008), the authors consider total leukemia elimination to be
complete if the total cancer population in the body is below 1 cell, i.e.,
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assuming that the average patient has about 6 L of blood. Since the mathematical model
presented in (Kim et al. 2008) is a continuous deterministic system, in reality, the model
never allows the total cancer population to actually reach 0. Since a total cancer
concentration of 10−10k/μL corresponds to less than one cancer cell in the blood, this is a
reasonable indicator for total cancer elimination.

This paper is organized in the following way. In Sect. 2, we provide an overview of the
delay-differential equation model for the dynamics of CML, imatinib, and the anti-leukemia
immune response presented in (Kim et al. 2008). In Sect. 3, we propose several strategic
treatment interruption treatment programs for CML patients based on the anti-leukemia
immune response described in (Kim et al. 2008), and we present and analyze the results of
these simulated treatment plans. In particular, we study the effects of changing the timing
and duration of the treatment interruption on the time required for the patient to achieve
cytogenetic remission and (in many cases) the time required for total cancer elimination. In
Sect. 4, we study the sensitivity of the results to the universal and patient-specific
parameters used in the mathematical model. We discuss conclusions, drawbacks of the
mathematical model used for our numerical analysis, and areas for further research in Sect.
5. In Appendix A, we derive an explicit, closed-form solution for the mathematical model
for CML presented in (Michor et al. 2005).

2 A Mathematical Model for CML with Imatinib Treatment
Michor et al. (2005), used data from 169 patients to develop and analyze a mathematical
model for CML. In this model, leukemia cells are assumed to develop through four stages of
differentiation. The different cell populations at time t are denoted as follows: y0(t),
leukemia stem cells; y1(t), progenitor cells; y2(t), differentiated cells; and y3(t), terminally
differentiated cells. Leukemia cells progress through the various stages in the following
way. Stem cells regenerate themselves at rate ry. Stem cells expand and progress to become
progenitor cells at rate ay and die at rate r0. Progenitor cells become differentiated cells at
rate by and die at rate d1. Differentiated cells expand and progress to become terminal cells
at rate cy and die at rate d2. Terminal cells die at rate d3. With imatinib treatment, the rate at
which leukemia cells pass from one stage to the next is greatly reduced, thus causing a rapid
drop in the leukemia population. In particular, according to this model, imatinib treatment
reduces the parameters ay and by by 100-fold and 750-fold, respectively. For the initial
conditions, it is assumed that all four leukemia compartments are in steady state relative to
one another.

In addition, Michor et al. included a second set of leukemia cells to incorporate the
possibility of imatinib-resistant mutations. It was assumed that the only cells that can
acquire imatinib-resistant mutations are stem cells, and they mutate at a rate u per division.
In this paper, we will assume that there are no imatinib-resistant mutations (i.e., u = 0), so
we do not include the second set of differential equations here. However, we describe them
in Appendix A. The system of ODEs that describes the model for the leukemia cell
populations is given below. Although Michor et al. did not derive an explicit solution for
this system of differential equations in their original work, the system can be solved exactly
using diagonalization and we present the solution in Appendix A:
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In (Kim et al. 2008), the authors modified this model to incorporate an anti-leukemia
immune T-cell response into the ODE model. The motivation for their model is based on
experimental data taken from (Chen et al. 2008), in which the authors conducted TNF-α and
IFN-γ ELISPOT analyses at multiple time points to measure the evolution of the anti-
leukemia T-cell responses of CML patients undergoing imatinib treatment. To incorporate
the dynamics of the imatinib-induced T-cell immune response in the system of equations
governing the CML dynamics, the authors of (Kim et al. 2008) added interactions with T-
cells and a delay-differential equation to model the T-cell population. In the modified
system, each equation contains an added term which accounts for the death of leukemia cells
as a result of an interaction with T-cells. In addition, a delay-differential equation is included
for the population T of anti-leukemia T-cells. The leukemia cell death rates di, 0 ≤ i ≤ 3, in
(Michor et al. 2005) correspond to the natural death rates of the leukemia populations under
imatinib treatment. In the DDE model of (Kim et al. 2008), the authors distinguish between
the natural death rate of leukemia and the death rate due to the cytotoxic T-cell response.
Thus, the death rates di in the DDE model are a fraction, λ, of the combined death rates
estimated in (Michor et al. 2005). The parameter λ represents the fraction of the leukemia
cell deaths that results from nonimmune (versus immune) causes. It is assumed that λ is
greater than 0.5, so that the anti-leukemia immune response contributes to less than half of
the decline in leukemia under imatinib treatment (Kim et al. 2008). In (Kim et al. 2008), the
authors set λ = 0.75; we include a discussion of the sensitivity of our results on the choice of
λ. Following (Kim et al. 2008), we assume that u = 0 and that there are no imatinib-resistant
leukemia cells. In Sect. 5, we discuss the possibility of acquired imatinib resistance. The
mathematical model which includes the immune response is given by the following:

(1)

(2)

where

The variables in this model are the same as those in the model of Michor et al. (2005), with
the exception of the new variables C and T. The variable C represents the total concentration
of all leukemia cells. The variable T represents the concentration of anti-leukemia T cells.
The final terms qC p0e−cnCkTyi follow the law of mass action. The kTyi is the rate of
interaction between anti-leukemia T-cells and the leukemia cell subpopulation yi, where k is
the mixing coefficient. The coefficient p0 is the probability that a T-cell engages the cancer
cell upon interaction, and qC is the probability that the cancer cell dies from the T-cell
response. Moreover, leukemia cells suppress the anti-leukemia T-cell immune response, and
although the precise mechanism is unknown, this model assumes that the level of down-
regulation depends on the current cancer population. The probability that a T-cell engages a
cancer cell is modeled as an exponential decay as a function of the cancer concentration.
Thus, the probability of a productive T-cell interaction with a cancer cell is p0e−cnC, where
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cn is the rate of exponential decay due to negative pressure. We note that the authors of Kim
et al. (2008) model T-cell dynamics in particular because T-cells are the main mediators of
the anti-leukemia response, as has been demonstrated by the major role that cytotoxic T-
cells play in curing leukemia after an allogenic stem cell transplant. By extension, they are
hypothesizing that autologous T-cells will also be the key players in the anti-leukemia
immune response.

In the delay-differential equation (2) for modeling the anti-leukemia T-cell response, the
parameter sT denotes the constant supply rate of T-cells into the system from stem cells. The
parameter dT represents the natural death rate of T-cells, and p(C, T)C is the rate at which T-
cells engage leukemia cells and commit to n rounds of division. The final term represents
the population increase due to n divisions of stimulated T-cells, where τ is the average
duration of one division, and Cnτ and Tnτ are the time delayed cancer and T-cell
concentrations, respectively. The coefficient qT is the probability that a T-cell survives the
encounter with an activated leukemia cell. Once a T-cell is stimulated, it exits the collection
of interacting T-cells and re-enters the system nτ time units later after n divisions.

The estimated universal and patient-dependent parameter values for this system are given in
Table 2 (and are taken from (Michor et al. 2005) and (Kim et al. 2008)). The parameters n,
sT, dT, and cn are patient-dependent parameters, and in (Kim et al. 2008) the authors use
experimental data for CML patients on imatinib treatment published by Chen et al. (2008) to
estimate values for these parameters for particular patients. It is our goal here to demonstrate
numerically that strategically timed treatment interruptions may lead to total eradication of
cancerous cells, and we wish to study here the activation of T-cells as a general feature,
rather than to focus on particular patient-dependent data sets. Thus, we will present detailed
numerical results here for simulations using the parameter values in Table 2, which are
representative of the parameter values for all patient data in (Chen et al. 2008). To study the
impact of the particular numerical values of the parameters on our results, we present an
extensive sensitivity analysis in Sect. 4, and we vary the parameters to include the ranges of
the parameter values for all patients analyzed in (Chen et al. 2008).

In Fig. 1, we illustrate the results of simulating the delay-differential equations model
presented in (Kim et al. 2008) without imatinib treatment, i.e., ay = 1.6 and by = 10. We plot

the total leukemia cell concentrations  for 0 ≤ t ≤ 500 days. We observe that without
imatinib treatment, the cancer population grows rapidly. Moreover, we note that without
treatment, the immune response is fully suppressed and the T-cell concentration remains at
the initial steady state sT/dT.

Next, in Fig. 2, we illustrate the results of simulating the delay-differential equations model
of Kim et al. (2008) with continuous imatinib treatment, i.e., ay = 1.6/10 and by = 10/750.

We plot the base-10 logarithm of the total leukemia cell concentrations  and the T-
cell concentrations T(t) for 0 ≤ t ≤ 1200 days. In (Kim et al. 2008), it has been demonstrated
that this model that includes the anti-leukemia T-cell response provides a closer fit to the
immunological data than the Michor model (Michor et al. 2005) that does not include the
immune response. In particular, we note that the 2005 model of Michor et al. (2005) predicts
that leukemia relapses after 15 to 24 months, despite continued imatinib treatment.
However, this contradicts clinical observations in imatinib-treated patients, who generally
remain in remission well beyond 30–40 months, as described in Piazza et al. (2006). With
the addition of the T-cell response in the model of Kim et al. (2008), persistence of anti-
leukemia T-cells even at low levels prevents leukemia from relapsing for up to 50 months.
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The graphs in Fig. 2 illustrate several important points about the dynamics of CML under
imatinib treatment and the imatinib-induced immune response as described by the DDE
model of Kim et al. (2008). As soon as imatinib treatment begins, there is a sharp decline in
the leukemia cell concentrations. Although imatinib drives the cancer population to low
levels, it does not completely eliminate the leukemia stem cells, and the result is a situation
in which leukemia is never completely eliminated. In particular, we note that the minimum
total cancer concentration predicted by the model before cytogenetic relapse is 1.1 × 10−4 k/
μL. Assuming that an average person has approximately 6 liters of blood, this concentration
level corresponds to a total leukemia cell population of half a million to a million cells. We
also observe that the model predicts that with continuous imatinib treatment, the patient will
eventually relapse. These observations demonstrate an important point, namely that the
model does not predict that CML is eliminated by imatinib treatment alone. However, the
model does predict that it takes significantly more time for the disease to relapse when
compared with the Michor model that does not include the immune response.

In addition, we observe fluctuations in the anti-leukemia T-cell concentrations that
correspond to changes in the leukemia cell concentrations. Initially, the T-cell
concentrations remain low, close to the steady-state level, as the immune response is fully
suppressed by leukemia. As the leukemia cell concentrations decrease, the patient’s immune
response is eventually stimulated and the T-cell concentrations increase accordingly. When
the leukemia cell populations become sufficiently low, the T-cells are no longer stimulated
and begin to contract. As a result, the immune response does not expand sufficiently to
eliminate the leukemia cells. It is clear from these observations that there is a critical time
period during which the anti-leukemia immune response is activated. If the leukemia cell
concentration is too high, the immune response is fully suppressed. On the other hand, if the
leukemia cell concentration is too low, the immune response will not be sufficiently
stimulated. For reference, we note that the T-cell population begins increasing at t = 90 days,
and the maximum T-cell concentration is 3.09 × 10−2k/μL at t = 206 days.

3 Strategic Treatment Interruptions
Strategic treatment interruptions (STIs), also known as “structured treatment interruptions”
or “supervised treatment interruptions” are planned interruptions of drug treatment designed
to reduce and/or relieve the side effects of the drugs, to reduce drug resistance, and/or to
stimulate the immune response. In this section, we study several treatment interruption plans
for imatinib treatment of CML based on the mathematical model for CML discussed in Sect.
2. In particular, we attempt to improve the effectiveness of treatment by strategically
interrupting imatinib treatment in order to leverage the patient’s own anti-leukemia immune
response.

Strategic treatment interruptions have been studied extensively for patients with chronic
HIV infection being treated with highly active antiretroviral therapy (HAART) (Adams et al.
2004; Bajaria et al. 2004; Koup 2004; Maserati et al. 2007). In this context, strategic
treatment interruptions were motivated primarily by the development of drug resistance,
evolution of viral strains, detrimental short- and long-term side effects, and patient
complications (Bajaria et al. 2004). Numerous studies have been conducted to explore the
benefits of strategic treatment interruptions for HIV treatment, but the results vary widely
and are highly dependent on treatment schedules, starting times, and patient-specific factors.

In this work, however, we are primarily interested in the use of strategic treatment
interruptions as a technique for leveraging the patient’s own anti-leukemia immune response
to combat CML. In this first study, we perform several simulations in which we temporarily
stop imatinib treatment once. We vary the length of the interruption and the starting time of
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the interruption, and measure the time required for the patient to achieve cytogenetic
remission and the time required for total cancer elimination (if total elimination occurs). We
assume that when imatinib is stopped, the stem cell and progenitor cell growth rates (ay and
by, respectively) immediately return to their values without imatinib treatment (1.6 and 10,
respectively). Similarly, we assume that when imatinib is restarted, ay returns to 1.6/100 and
by returns to 10/750 immediately.

In Tables 3 and 4, we present the results of several 15-day and 30-day strategic treatment
interruption simulations. In each of these studies, we simulate a single treatment interruption
in an attempt to leverage the first immune response increase. Imatinib treatment is
temporarily stopped on a specified day for either 15 or 30 days. In Fig. 3, we plot the
base-10 logarithm of the total leukemia cell concentration and the T-cell concentrations for 0
≤ t ≤ 1200 days with continuous imatinib treatment (upper left), with a 15-day strategic
treatment interruption from t = 300 days until t = 315 days (upper right), and with a 30-day
strategic treatment interruption from t = 180 days until t = 210 days (lower). In each graph,
the timing of the treatment interruption is marked with vertical lines. These graphs
demonstrate the general dynamics of the leukemia and T-cell concentrations for all the
simulations described in Tables 3 and 4, so we include only these illustrative cases here. For
ease of comparison amongst the scenarios, the axis scales (minimum and maximum values)
are the same for each of the three treatment strategies presented in Fig. 3. With the start of
imatinib treatment at time t = 0, the leukemia cell concentration begins decreasing rapidly,
and at approximately 90 days, the leukemia cell concentration is small enough that the
immune response is no longer significant and the T-cell concentration begins increasing. As
a result of the strategic treatment interruption, there is a small, fast rise in the concentration
of leukemia cells while the imatinib treatment is stopped. However, this increase does not
reach the initial level of leukemia cells present in the patient. Eventually, after imatinib
treatment is restarted, the leukemia cell concentration falls below the level of cytogenetic
remission. For the second case (treatment interruption for 300 ≤ t ≤ 315 days) illustrated in
Fig. 3, the leukemia concentration first falls below the level of cytogenetic remission 408
days after the start of treatment, and after 627 days, cancer has been completely eliminated.

In each table, we present the first day of the treatment interruption, the maximum leukemia
cell concentration that occurs after the treatment interruption occurs, the time required for
the patient to achieve cytogenetic remission, and the time required for total cancer
elimination (i.e., total concentration <10−10k/μL). In almost all cases, the strategic treatment
interruption strategies that we consider result in total cancer elimination within the first 3
years of treatment. For reference, we note that the minimum total cancer concentration
predicted by the mathematical model with a 15-day treatment interruption beginning at t =
300 is 1.52 × 10−26k/μL, which corresponds to a total cancer cell count of 9.12 × 10−17 cells
(assuming 6 L of blood). This minimum concentration is significantly lower than (several
orders of magnitude) the cancer elimination criterion of 10−10k/μL.

We summarize the results presented in Tables 3 and 4 with a series of graphs. In Fig. 4, we
plot the maximum leukemia concentration (k/μL) that occurs after the interruption vs.
starting day of the treatment interruption (upper left); the time (in days) until cytogenetic
remission vs. starting day of the treatment interruption (upper right); and the time (in days)
until complete leukemia elimination vs. starting day of the treatment interruption (lower).

In Sect. 4, we perform several hundred simulations in which we vary the parameters in
Tables 2 over a wide range that includes the biologically relevant values determined by the
data presented in (Chen et al. 2008).
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The results presented in Tables 3 and 4 demonstrate that there is a tradeoff between the
starting time of the treatment interruption, the maximum cancer concentration observed after
the interruption, and the time required for the patient to achieve cytogenetic remission and
total cancer elimination. As the starting time of the interruption increases, the maximum
cancer concentration observed due to the spike after imatinib is stopped decreases, and the
time required until cytogenetic remission and total cancer elimination increases. Thus,
before clinical implementation of strategic treatment interruptions for CML patients, these
issues should be studied in more detail, and the individual treatment goals of each patient
should be taken into consideration when devising a treatment plan.

4 Sensitivity Analysis
In this section, we conduct a sensitivity analysis of the model parameters with respect to the
effectiveness of the strategic treatment interruption strategies. We apply the Latin
Hypercube sampling (LHS) method described in (McKay et al. 1979). The LHS technique
provides a method for simultaneously sampling a wide range of parameters and statistically
determining the correlation between the values of the parameters and various outcomes. We
simulate the delay-differential equation model with various strategic treatment interruptions
several thousand times with randomly sampled sets of parameters; using LHS, the values of
the parameters are chosen in such a way that each parameter is well distributed over its
range of possible values. In particular, the parameters are sampled uniformly over the ranges
given in Table 5. We vary every parameter and initial condition used in the model.

We provide in Table 5 the Pearson product-moment correlation (PPMC) and Spearman
rank-order correlation (SROC) coefficients between each parameter and the minimum
cancer concentration attained during the course of treatment before the model predicts a
relapse above the level of cytogenetic remission. To obtain the correlation coefficients in
Table 5, we performed 1000 LHS simulations with a strategic treatment interruption from t
= 300 to t = 315 days after the start of treatment, but we note that the correlation coefficients
obtained with all other strategic treatment interruption strategies considered in Sect. 3 are
comparable. We also note that the relationship between the parameter values and the
minimum cancer concentration is monotonic.

As indicated in Table 5, the most sensitive parameters are n (the average number of T-cell
divisions per stimulation), qT (the probability that a T-cell survives an encounter with a
leukemia cell), and cn (the rate of exponential decay in the probability of a productive T-cell
interaction with a cancer cell, or the level of immune down-regulation). Since we are
specifically timing the interruption to leverage the patient’s own immune response, it makes
sense that the parameters that are most sensitive to the effectiveness of treatment are those
that are directly related to T-cell activity. We note that as a potential clinical application for
treatment of CML, these parameters should be measured before and during treatment so that
the strategic treatment interruption plan can be constructed to optimize the anti-leukemia
immune response. In addition, in Table 6 we present the results of several thousand strategic
treatment interruption simulations using the parameter ranges described in Table 5. In
particular, for each strategic treatment interruption, we perform 500 simulations in which
every parameter is randomly varied over the ranges given in Table 5. In Table 6, we report
the fraction of these simulations that result in a successful treatment. Here, a successful
treatment is a simulation in which the total cancer population falls below the total
elimination criterion.
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5 Discussion and Concluding Remarks
In this paper, we have presented the results of numerous strategic treatment interruption
simulations for CML patients being treated with imatinib. This study used the mathematical
model presented in (Kim et al. 2008), which models the dynamics between CML, imatinib,
and the patient’s own immune response, to simulate strategic treatment interruption
programs designed to leverage the anti-leukemia immune response. Mathematical modeling
is an important tool for investigating the dynamics of this complex system, and it provides
the ability to simulate and investigate treatment interruption therapy techniques as a possible
treatment for CML patients. We have demonstrated numerically that strategically-timed
imatinib treatment interruptions could lead to a potential cure for CML, and that the
effectiveness of the treatment depends on the starting time of the treatment interruption and
the length of time that imatinib treatment is stopped.

In this first study, we have used numerical results (such as the time required for total cancer
elimination) to make general observations about the effectiveness of different start times and
durations for various treatment interruption programs. In the future, we plan to study this
optimization problem in more detail; we also plan to consider treatment interruption
programs in which treatment is stopped more than once. In (Kim et al. 2008), the authors
presented a vaccination strategy as a possible immunotherapy treatment for CML, and in a
future work, we plan to study combinations of strategic treatment interruptions and
vaccinations as a possible treatment for CML.

There are two major drawbacks to the delay differential equations model of Kim et al.
(2008) that we have used to perform numerical simulations of strategic treatment
interruption plans. First, the model does not consider competition among hemapoetic stem
cells. In (Dingli and Michor 2006), Dingli and Michor presented a mathematical model for
cancer stem cell development that assumes that normal stem cells and tumor stem cells
compete for a common resource. Similarly, in (Roeder and Glauche 2008), Roeder and
Glauche presented a mathematical model which assumes a stochastic competition between
normal stem cells and tumor stem cells. Although there is not sufficient quantitative data on
the growth dynamics of stem cells in patients before diagnosis to validate one of these
models over another, the models that consider competition among hemapoetic stem cells are
consistent with current clinical data (Roeder and Glauche 2008), and in a future work, we
plan to numerically simulate strategic treatment interruptions using the mathematical models
presented in (Dingli and Michor 2006) and (Roeder and Glauche 2008). Generally, we
hypothesize that the inclusion of such a competition process would actually improve the
results of strategic treatment interruptions. During imatinib treatment of CML, competition
between normal and tumor cells has the effect of increasing the time that CML remains in
remission. During a treatment interruption, on the other hand, CML is expected to relapse,
and the leukemia cell population will quickly overpower the normal cell population during a
relapse. Thus, the relatively small population of normal cells present during a relapse will
provide little competition.

Second, we have not considered here the possibility of imatinib-resistant mutations. In
(Komarova and Wodarz 2005), the authors presented a mathematical framework for the
emergence of cancers treated with targeted drugs, and for the specific case of CML, the
authors estimate that imatinib-resistant stem cells are generated maximally at a rate of 10−9–
10−8 mutations per division. In future work, we plan to study in detail the effects of
imatinib-resistant mutations on strategic treatment interruptions. In particular, we plan to
add a set of imatinib-resistant leukemia cells to the delay differential equations model of
Kim et al. (2008), and to derive new parameter values with resistant cells using the patient
data presented in (Chen et al. 2008) and (Kim et al. 2008). We note that a treatment
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interruption may potentially impose an increased risk of mutations, as drug resistant
mutations may be more likely to emerge when the patient stops taking imatinib and only low
levels remain. For example, in (Koup 2004), the author observed that although researchers
were initially enthusiastic about the possibility of successfully treating HIV with strategic
treatment interruptions (primarily to give patients a respite from side effects), several
clinical trials demonstrated that patients developed an increased amount of drug resistance
while receiving strategic treatment interruptions. This observation has since been repeated in
several other studies on the use of treatment interruptions during antiretroviral therapy for
HIV patients. Thus, the potential effects of treatment interruptions on the resistance
mutation rate for CML patients should be thoroughly investigated.
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Appendix A: Exact Solution of the Michor Model
The system of ODEs that describes the mathematical model of Michor et al. (2005) is given
below. We include here the second set of differential equations which describe the dynamics
of the imatinib-resistant leukemia cells. These populations are denoted z0, z1, z2, z3
(imatinib-resistant stem cells, progenitor cells, differentiated cells, and terminally
differentiated cells, respectively).

(A.1)

To find the exact solution of this system of ODE’s given, we first write the system in matrix
form x′ = Ax, where

and A is the coefficient matrix of the system. The eigenvalues of the coefficient matrix A are
given by

(A.2)

and we obtain the following explicit solution of the Michor model for CML:
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where the αi and βi are arbitrary constants of integration that are determined by the initial
conditions of the leukemia cell populations. Since the solutions yi and zi are all linear
combinations of exponential functions, it is clear that the long-term behavior of the system
depends only on the relative sizes of the eigenvalues λi, i = 0..7. For the particular values of
the parameters given in Table 2, the only positive eigenvalues are ry(1 − u) − d0 and rz − d0,
so the leukemia stem cell populations y0 and z0 dominate the dynamic of this system.
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Fig. 1.
Total leukemia concentration without imatinib treatment for 0 ≤ t ≤ 500 days
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Fig. 2.
The logarithm of the leukemia concentration and the T-cell concentration with continuous
imatinib treatment
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Fig. 3.
Logarithm of the leukemia concentrations and the T-cell concentrations for 0 ≤ t ≤ 1200
days with continuous imatinib treatment (upper left), with a 15-day treatment interruption
(STI) from t = 300 to t = 315 days (upper right), and with a 30-day treatment interruption
from t = 180 to t = 210 (lower). The treatment interruption is indicated with vertical lines
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Fig. 4.
Summary of the results of several 15-day and 30-day strategic treatment interruptions.
Upper left: The maximum leukemia concentration (k/μL) that occurs after the interruption
vs. starting day of the treatment interruption. Upper right: Time (in days) until cytogenetic
remission vs. starting day of the treatment interruption. Lower: Time (in days) until
complete leukemia elimination vs. starting day of the treatment interruption
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Table 1

Leukemia cell concentrations (in k/μL) corresponding to hematologic, cytogenetic, and molecular remission
levels

Remission level Hematologic Cytogenetic Molecular

Concentration (k/μL) 1.67 1.67 × 10−2 1.67 × 10−4
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Table 2

Estimates of parameters (Kim et al. 2008; Michor et al. 2005)

Parameter Description Estimate

λ Fractional adjustment constant 0.75

d0 Stem cell death rate 0.003 λ/day

d1 Progenitor cell death rate 0.008 λ

d2 Differentiated cell death rate 0.05 λ

d3 Terminal cell death rate λ

ry Stem cell regeneration rate 0.008/day

ay Stem cell growth rate 1.6 (without imatinib treatment)
1.6/100 (with imatinib treatment)

by Progenitor cell growth rate 10 (without imatinib treatment)
10/750 (with imatinib treatment)

cy Differentiated cell growth rate 100

rz Imatinib resistant mutation stem cell regeneration rate 0.023/day

az Imatinib resistant mutation stem cell growth rate 1.6

bz Imatinib resistant mutation progenitor cell growth rate 10

cz Imatinib resistant mutation differentiated cell growth rate 100

k Kinetic (mixing) coefficient 1 (k/μL)−1/day

p0 Probability that T-cell engages cancer cell 0.8

qC Probability that cancer cell dies from encounter with T-cell 0.75

qT Probability that T-cell survives encounter with cancer cell 0.5

τ Duration of one T-cell division 1 day

n Average number of T-cell divisions 1.2

dT Anti-leukemia T-cell death rate 0.001/day

sT Anti-leukemia T-cell supply rate 1.2 × 10−6 (k/μL)/day

cn Decay rate of immune responsivity 1 (k/μL)−1

y0(0) Initial leukemia stem cell concentration 1.8 × 10−5k/μL
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Table 3

Results of several 15-day strategic treatment interruption (abbreviated as STI above) plans. For each
simulation, we report the first day of the 15-day treatment interruption, the maximum leukemia concentration
that occurs after the interruption, the time required for the patient to achieve cytogenetic remission, and the
time required for total cancer elimination (i.e., concentration < 10−10k/μL)

Treatment plan: First
day of 15-day STI

Maximum leukemia concentration (k/μL) after
interruption

Time until cytogenetic
remission (days)

Time until total cancer
elimination (days)

No STI n/a 251 n/a

90 20.6 at t = 106 312 n/a

120 17.25 at t = 136 313 n/a

150 14.58 at t = 166 316 879

180 11.71 at t = 196 329 665

210 8.96 at t = 226 346 616

240 6.75 at t = 256 365 606

270 5.14 at t = 286 386 611

300 4.01 at t = 316 408 627

330 3.21 at t = 346 433 655

360 2.64 at t = 376 459 693

390 2.23 at t = 406 487 739
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Table 4

Results of several 30-day strategic treatment interruption (abbreviated as STI above) plans. For each
simulation, we report the first day of the 30-day strategic treatment interruption, the maximum leukemia
concentration that occurs after the interruption, the time required for the patient to achieve cytogenetic
remission, and the time required for total cancer elimination (i.e., concentration < 10−10k/μL)

Treatment plan: First
day of 30-day STI

Maximum leukemia concentration (k/μL) after
interruption

Time until cytogenetic
remission (days)

Time until total cancer
elimination (days)

No STI n/a 251 n/a

90 34.6 at t = 121 342 n/a

120 31.35 at t = 151 345 n/a

150 28.30 at t = 181 350 929

180 24.33 at t = 211 364 711

210 19.92 at t = 241 382 662

240 16.07 at t = 271 404 654

270 13.06 at t = 301 426 656

300 10.77 at t = 331 449 666

330 9.05 at t = 361 473 681

360 7.75 at t = 391 498 699

390 6.75 at t = 421 524 722
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Table 5

Sensitivity analysis of the parameters used in the DDE model for a 15-day strategic treatment interruption
from t = 300 to t = 315. For each parameter, we report the estimate of the parameter, the range used for Latin
Hypercube sampling, and the Pearson product-moment correlation (PPMC) and Spearman rank-order
correlation (SROC) coefficients between the parameter and the minimum cancer concentration. To obtain the
correlation coefficients, we performed 1000 simulations in which every parameter was varied over the given
range

Parameter Estimate Range PPMC SROC

λ 0.75 0.5 to 1 −0.1438 −0.0866

d0 0.003 λ/day ±25% −0.0217 0.0158

d1 0.008 λ ±25% −0.0135 0.0625

d2 0.05 λ ±25% −0.1238 0.0566

d3 λ ±25% 0.0364 0.0718

ry 0.008/day ±25% 0.0342 0.0195

ay 1.6 without imatinib
1.6/100 with imatinib

±25% 0.0224 −0.0235

by 10 without imatinib
10/750 with imatinib

±25% 0.0218 0.0077

cy 100 ±25% 0.0668 −0.0708

rz 0.023/day ±25% −0.0319 −0.0323

az 1.6 Same as ay 0.0224 −0.0235

bz 10 Same as by 0.0218 0.0077

cz 100 Same as cy 0.0668 −0.0708

u 0/division 4 × 10−8 – 8 × 10−8 −0.0854 −0.0889

k 1 (k/μL)−1/day ±25% −0.0871 −0.1246

p0 0.8 ±25% −0.0981 −0.1298

qC 0.75 ±25% −0.0307 −0.0526

qT 0.5 ±25% −0.1174 −0.2229

τ 1 day 12–24 hours 0.0732 0.1217

n 1.17 to 2.2 1 to 3 −0.2534 −0.4543

dT 1 – 7 × 10−3/day 1 × 10−3 to 1 × 10−2 0.1444 0.0372

sT 1 × 10−5 to 1 × 10−6 k/μL/day 1 × 10−5 to 1 × 10−6 −0.0499 −0.0852

cn 0.8 to 7/day 0 to 10 0.1637 0.3921

C(0) 23.1–116.8 k/μL 20 to 200 0.0947 0.0414
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Table 6

Results of LHS sensitivity analysis of the parameters in Table 5. For each strategic treatment interruption
(abbreviated as STI above) plan, 500 simulations are performed in which every parameter is randomly varied
over the ranges given in Table 5. We report the fraction of LHS samples that result in a successful treatment.
A success is defined as a simulation in which the total cancer population falls below 10−10k/μL

Treatment plan: STI days Fraction of successful treatments Treatment plan: plan: STI days Fraction of successful treatments

90 ≤ t ≤ 105 0.488 120 ≤ t ≤ 135 0.544

150 ≤ t ≤ 165 0.568 180 ≤ t ≤ 195 0.450

210 ≤ t ≤ 225 0.544 240 ≤ t ≤ 255 0.546

270 ≤ t ≤ 285 0.468 300 ≤ t ≤ 315 0.650

330 ≤ t ≤ 345 0.512 360 ≤ t ≤ 375 0.486

390 ≤ t ≤ 405 0.474 90 ≤ t ≤ 120 0.434

120 ≤ t ≤ 150 0.458 150 ≤ t ≤ 180 0.480

180 ≤ t ≤ 210 0.516 210 ≤ t ≤ 240 0.542

240 ≤ t ≤ 270 0.566 270 ≤ t ≤ 300 0.588

300 ≤ t ≤ 330 0.624 330 ≤ t ≤ 360 0.578

360 ≤ t ≤ 390 0.550 390 ≤ t ≤ 420 0.542

90 ≤ t ≤ 135 0.450 150 ≤ t ≤ 195 0.524

210 ≤ t ≤ 255 0.578 270 ≤ t ≤ 315 0.624

330 ≤ t ≤ 375 0.528 390 ≤ t ≤ 435 0.536

450 ≤ t ≤ 495 0.530 510 ≤ t ≤ 555 0.544

570 ≤ t ≤ 615 0.528 630 ≤ t ≤ 675 0.526

690 ≤ t ≤ 735 0.518 750 ≤ t ≤ 795 0.494
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