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SUMMARY

Cause-specific proportional hazards models are commonly used for analyzing competing risks data in clin-
ical studies. Motivated by the objective to assess differential vaccine protection against distinct pathogen
types in randomized preventive vaccine efficacy trials, we present an alternative case-only method to stan-
dard maximum partial likelihood estimation that applies to a rare failure event, e.g. acquisition of HIV
infection. A logistic regression model is fit to the counts of cause-specific events (infecting pathogen
type) within study arms, with an offset adjusting for the randomization ratio. This formulation of cause-
specific hazard ratio estimation permits immediate incorporation of host-genetic factors to be assessed as
effect modifiers, an important area of vaccine research for identifying immune correlates of protection,
thus inheriting the estimation efficiency, and cost benefits of the case-only estimator commonly used for
assessing gene–treatment interactions. The method is used to reassess HIV genotype-specific vaccine effi-
cacy in the RV144 trial, providing nearly identical results to standard Cox methods, and to assess if and
how this vaccine efficacy depends on Fc-γ receptor genes.
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1. INTRODUCTION

Competing risks data occur in medical studies when there are multiple causes of a failure event. For
estimating covariate effects on cause-specific hazard functions, a standard analysis approach uses a
proportional hazards model (Prentice and others, 1978). An example of cause-specific hazards modeling
includes assessment of how vaccine protection varies against distinct circulating pathogen types in
preventive vaccine efficacy (VE) trials (Gilbert and others, 1998; Gilbert, 2000). This type of analysis,
termed “sieve analysis” (Gilbert and others, 1998), was an important component of assessing immune
correlates of protection in a recent HIV VE trial (Rolland and others, 2012). This trial, namely the
RV144 trial, randomized 16 395 HIV negative volunteers to receive an HIV vaccine regimen or placebo
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regimen over a 24-week period, and monitored participants for the primary endpoint of HIV infection
(Rerks-Ngarm and others, 2009). The primary analysis assessed VE against HIV infection with any
viral genotype using the standard Cox model, and a secondary sieve analysis assessed VE against HIV
infection with particular HIV genotypes defined by match or mismatch to the HIV strains represented
in the vaccine construct at HIV Envelope amino acid positions 169 or 181. The standard cause-specific
Cox model (Prentice and others, 1978) was used to assess VE against the particular HIV genotypes,
and a simple augmented data extension of this model was used to compare the genotype-specific VEs
(Lunn and McNeil, 1995).

In this article, we present a novel and easily implementable method for estimating pathogen type or
strain-specific VE in vaccine trials, which also applies to general clinical trials with rare competing risks
failure time endpoints. As does the method of Gilbert and others (1998), the proposed method ignores
failure times and is based on counts of HIV infections in vaccine and placebo recipients. The difference
is, rather than using a multinomial logistic regression (MLR) model, we regress the vaccine or placebo
assignment on the indicator of a specific virus strain, which allows the inference of interest without the
restrictive proportional baseline hazard assumption. Because HIV infection is a rare event in preventive
HIV VE trials, ignoring the failure times leads to minimal, if not negligible, loss of statistical precision for
estimating treatment effects.

Our formulation of strain-specific vaccine effects resembles the case-only estimator widely used
to estimate gene–environment interactions or gene–treatment interactions (Piegorsch and others, 1994;
Vittinghoff and Bauer, 2006; Dai and others, 2012). Indeed, we show that the strain-specific VE within a
host-genetic subgroup can be estimated similarly in this form of case-only estimator, exploiting the inde-
pendence between treatment assignment and host genes. This development of competing risks modeling
contributes to HIV vaccine research, because assessing if and how vaccine protection against HIV infec-
tion varies with viral and host genotypes helps to better understand the mechanisms of vaccine protection
and to design more efficacious HIV vaccines in the future. Beyond HIV vaccine trials, the niche for the
method is clinical trials with rare competing risks failure time endpoints for which it is of interest to assess
treatment effects in expensive-to-identify subgroups, for which the case-only method is highly appealing
for its statistical and measurement efficiency.

2. CASE-ONLY METHOD FOR CAUSE-SPECIFIC COMPETING RISKS MODELS WITH RARE EVENTS

2.1 Background and existing methods

Consider an observed continuous failure time T with a failure cause J , where J is a discrete cat-
egorical variable with m possible levels, J ∈ {1, . . . , m}; T can be viewed as the minimum of the
latent failure times Y1, . . . , Ym corresponding to each type of the m causes. We are interested in the
effect of a randomized binary treatment indicator Z (Z = 1 denotes the treatment condition and Z = 0
denotes the control condition) on the m cause-specific hazard functions (Prentice and others, 1978),
defined by

λ j (t; Z) = lim
�t→0

Pr(t � T < t + �t, J = j |T � t; Z)

�t
, j ∈ {1, . . . , m}.

Suppose that there is right censoring in the failure time. Let C denote the censoring time, and the data
consist of independent and identically distributed observations (xi , ji , δi , zi ) for i = 1, . . . , n study
subjects, where zi is the treatment assignment, xi is the minimum of the failure time ti and the censoring
time ci , δi is the censoring indicator with 1 indicating a failure event, and ji is the cause of the failure if
δi = 1 and arbitrarily defined otherwise. We assume the usual independent censoring mechanism for the
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minimum cause-specific failure time, i.e.

Pr(t � T < t + �t, J = j |T � t; Z) = Pr(t � T < t + �t, J = j |T � t, C � t; Z). (2.1)

Assume a proportional cause-specific hazards model for the effect of Z ,

λ j (t; Z) = λ0 j (t) exp(Zβ j ), (2.2)

where β j is the vaccine effect expressed as the cause- j specific log hazard ratio and λ0 j (t) is an arbi-
trary baseline hazard function for cause j . In preventive VE trials, the competing causes are J pathogen
strains circulating in the geographic region of the trial that study participants may be exposed to and hence
acquire. The parameter of interest is VE to reduce susceptibility to infection with strain j , typically defined
as 1 − exp(β j ). Based on data from all n subjects, the usual Cox partial likelihood can be employed to esti-
mate β j , treating failures of all other causes as being censored. A data duplication method can be used to
simultaneously estimate differences β∗

j ≡ β j − β1 for j = 2, . . . , m, and hence to estimate ratios of strain-
specific vaccine versus control relative risks (Lunn and McNeil, 1995; Gilbert, 2000). In the simplest case
with two failure types, for each observed failure or censoring event two records are created: one for the
observed failure type, and one for the other failure type but coded as being censored. Both β j and β∗

j
are useful for understanding strain variations in vaccine protection. In addition, these methods may be
implemented with the additional assumption of proportional baseline cause-specific hazards (Holt, 1978;
Prentice and others, 1978; Lunn and McNeil, 1995),

λ0 j (t) = λ0(t) exp(α j ), (2.3)

which may provide more efficient estimation of β j and β∗
j , along with estimation of α j .

A convenient feature following the proportional baseline hazard assumption is that, ignoring the failure
time data, the relative treatment effect β∗

j , and the relative baseline hazard ratio, defined as α∗
j = α j − α1,

can be estimated using an MLR model,

Pr(J = j |Z) = exp(α∗
j + Zβ∗

j )

1 + ∑m
k=2 exp(α∗

k + Zβ∗
k )

. (2.4)

Only count data from failure cases are used in this estimation. Gilbert and others (1998) developed assump-
tions under which the MLR model can be used to estimate ratios of strain-specific hazard ratios, based on
counts of infecting strains from vaccine and placebo recipients. The proportional baseline cause-specific
hazard ratio assumption made by this model can be overly restrictive; for example, the assumption would
be violated if the relative prevalence of different circulating viral strains exposing trial participants shifts
during the follow-up period of a vaccine trial. In HIV vaccine trials, the comparison of the above failure
time and counts-only estimation methods suggested that optimal evaluation of strain-specific VE will not
require the knowledge of infection times (Gilbert, 2000).

2.2 Case-only method for assessing strain-specific vaccine effects

In the rare event setting and as an alternative counts-only method to the MLR model, cause-specific treat-
ment effects can be estimated by a case-only type of estimator, incorporating the randomization ratio to
treatment and control. The probability of treatment assignment for a failure event with cause j occurring
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at time t can be expressed as

Pr(Z = z|J = j, X = t, δ = 1)

= Pr(J = j, T = t |Z)Pr(Z = z)

Pr(J = j, T = t)

= λ j (t |Z = z)Pr(T � t |C � t, Z = z)Pr(C � t |Z = z)Pr(Z = z)∑
l λ j (t |Z = l)Pr(T � t |C � t, Z = l)Pr(C � t |Z = l)Pr(Z = l)

= λ j (t |Z = z)Pr(T � t |Z = z)Pr(C � t |Z = z)Pr(Z = z)∑
l λ j (t |Z = l)Pr(T � t |Z = l)Pr(C � t |Z = l)Pr(Z = l)

. (2.5)

The last equation (2.5) holds because of (2.1), since

Pr(T � t |C � t, Z = z) = exp

⎛
⎝−

∫ t

0

∑
j

λ j (t |Z = z, C � t)

⎞
⎠ = exp

⎛
⎝−

∫ t

0

∑
j

λ j (t |Z = z)

⎞
⎠ ,

where λ j (t |Z = z, C � t) is defined as

lim
�t→0

Pr(t � T < t + �t, J = j |T � t; C � t, Z)

�t
, j ∈ {1, . . . , m}.

If the failure event is rare, Pr(T � t |Z) ≈ 1 for all t , and the censoring time C is independent of treatment
assignment Z , it follows that

Pr(Z = 1|J = j, X = t, δ = 1)

Pr(Z = 0|J = j, X = t, δ = 1)
= exp

⎧⎨
⎩log

(
π

1 − π

)
+

m∑
j=1

I (J = j)β j

⎫⎬
⎭ , (2.6)

where π is the probability a trial participant is randomized to the vaccine arm and I (·) is an indicator
function. This result suggests that the cause-specific hazard ratio can be estimated by a simple logistic
model regressing Z on m indicator variables I (J = j) among participants who have an event, entering
log{π̂/(1 − π̂)} as an offset, where π̂ is the fraction of randomized subjects assigned to the vaccine arm.
Reparameterization of β j to β1 and β∗

j ≡ β j − β1 enables the estimation of ratios of strain-specific hazard
ratios. The variance of the estimated β j can be estimated by the inverse of the observed information matrix
derived from (2.6). Advantageously, compared with the MLR model (2.4), the proportional baseline haz-
ards assumption (2.3) is not needed in (2.6); both the strain-specific treatment effect β j and the relative
treatment effect β j − β1 are directly estimated.

2.3 Case-only method for assessing strain-specific vaccine effects within host-genetic subgroups

The estimator derived in (2.6) is analogous to case-only estimators for assessing gene–treatment inter-
actions in randomized clinical trials (Vittinghoff and Bauer, 2006; Dai and others, 2012). See, for exam-
ple, Dai and others (2012, Appendix), where the treatment assignment is regressed on the genetic factor
among all disease cases with the logarithm of the randomization ratio as an offset. The case-only estimator
of gene–treatment interaction is nearly as efficient as the full cohort analysis with all participants being
genotyped, and is much more efficient than the case-cohort approach (Vittinghoff and Bauer, 2006). In
vaccine research, host-genetic subgroup analysis is of keen interest for assessing strain-specific vaccine
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protection, as certain host genes may be required for the vaccine to stimulate immune responses protec-
tive against certain pathogen strains. Interestingly, as we discuss next, this case-only formulation of cause-
specific treatment effects permits straightforward incorporation of host-genetic factors as effect modifiers,
such that strain-specific genetic-subgroup treatment effects can be estimated efficiently and economically.

In addition to the data (xi , ji , δi , zi ) previously defined, suppose that a host-genetic factor G is ascer-
tained for all cases, with G ∈ {1, . . . , K }. Interest is in estimating VE against the j th viral strain in the kth
host-genetic subgroup. Define the cause-specific hazard function for the kth subgroup to be

λ jk(t |Z) = lim
�t→0

Pr(t � T < t + �t, J = j |T � t; Z; G = k)

�t
, j ∈ {1, . . . , m} and k ∈ {1, . . . , K }.

For the j strain-specific vaccine effect in the subgroup k, assume a proportional cause-specific hazards
model:

λ jk(t |Z = 1) = λ jk(t |Z = 0) exp(β jk).

We assume the usual independent censoring similar to (2.1), now conditional on both Z and G. For
every failure event, observe that

Pr(Z = 1|X = t, J = j, G = k, δ = 1)

= λ jk(t |Z = 1)Pr(T � t |Z = 1, G = k)Pr(C � t |Z = 1, G = k)Pr(Z = 1|G = k)

Pr(X = t, J = j, δ = 1|G = k)
,

because of independent censoring. By randomization, Z is independent of G, so that Pr(Z = z|G = k) =
Pr(Z = z). If the failure event is rare and the censoring time C is independent of treatment assignment in
each genetic subgroup, it follows that

Pr(Z = 1|T = t, J = j, G = k)

Pr(Z = 0|T = t, J = j, G = k)
= exp

⎧⎨
⎩log

(
π

1 − π

)
+

∑
j

∑
k

I (J = j, G = k)β jk

⎫⎬
⎭ , (2.7)

where π is the fraction assigned to the vaccine arm. Therefore, the strain-specific vaccine effect among
host-genetic subgroups can be obtained by fitting a logistic regression in all infected participants, in which
the randomized assignment is regressed on the indicator variable I (J = j, G = k) and log(π̂/(1 − π̂)) is
treated as an offset. As for previous case-only methods (Piegorsch and others, 1994; Dai and others, 2012),
a vital assumption is Z being independent of G, which holds in randomized studies.

3. AN EXAMPLE: THE RV144 TRIAL

RV144, a randomized double-blind preventive HIV VE trial conducted by the US Military HIV Research
Program and the Thai Ministry of Health in Thailand, was the first HIV vaccine trial to show positive
VE to prevent HIV infection, estimated at 31.2% using the standard Cox model (Rerks-Ngarm and others,
2009). In vaccine recipients, levels of vaccine-induced IgG binding antibodies to the V1–V2 region of
the HIV Envelope protein measured 2 weeks after the vaccinations were inversely correlated with the
subsequent rate of HIV infection (Haynes and others, 2012). This generated the hypothesis that V1–V2-
directed antibodies played a role in the modest level of protection observed, and, to help test this hypothesis,
HIV viral sequences in the V1–V2 region were measured at the time of HIV infection diagnosis and
compared among vaccine and placebo recipients. For each of eight preselected amino acid positions in V1–
V2 (Rolland and others, 2012), two causes of HIV infection were considered: J = 1 (J = 2) is infection
with an HIV with matching (mismatching) the residue at the same site in the vaccine construct. Using
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Table 1. Comparison of the case-only estimator (2.6) and the estimator using failure time data
(Lunn and McNeil, 1995) in the RV144 trial

Failure time data (Lunn and McNeil, 1995) Case-only data (2.6)

VE† (%) 95% CI p-value‡ p-value§ VE† (%) 95% CI p-value‡ p-value§

169 match 47.57 (18.42, 66.30) 0.0036 — 47.37 (18.11, 66.17) 0.0044 —
Mismatch −54.80 (−257.6, 33.00) 0.3000 0.0342 −55.56 (−100, 32.67) 0.3011 0.0249

181 match 17.02 (−26.2, 45.46) 0.3800 — 16.67 (−26.78, 45.22) 0.3944 —
Mismatch 77.85 (34.54, 92.50) 0.0028 0.0237 77.78 (34.35, 92.48) 0.0065 0.0257

† VE = 1 − exp(β j ) as defined in (2.2).
‡ p-value assessing the significance of strain-specific VE.
§ p-value comparing VE between two virus strains.

the standard competing risks data fitting approach (Lunn and McNeil, 1995), Rolland and others (2012)
found that VE was significantly different when comparing matched HIV with mismatched HIV at amino
acid positions 169 and 181 (Table 1). Biological interpretation of these findings, including the unexpected
sieve effect against 181 mismatched HIV, was discussed in Rolland and others (2012).

Here, we fit the case-only logistic model (2.6) considering position 169 and 181 separately, and we
compare the results to those of Rolland and others (2012) (Table 1). For each position, the estimates of
VE, the 95% confidence intervals, and the p-values comparing VE between the two virus strains are all
numerically close, suggesting that the case-only estimation in (2.6) yields similar results as the full failure
time approach in Lunn and McNeil (1995). The reason is that, in the RV144 trial, the HIV infection rate
over the 3.5-year follow-up period was well below 1% in both randomized arms, rendering the rare disease
approximation in the derivation of (2.6) quite satisfactory.

Many IgG antibody functions depend on Fc-γ receptor genetics, and therefore it was of interest to assess
whether and how strain-specific VE was modified by host-genetic subgroups defined by single nucleotide
polymorphisms (SNPs) covering the five Fc-γ receptor genes Fc-γ R2a, Fc-γ R2b, Fc-γ R2c, Fc-γ R3a,
and Fc-γ R3b. For all 125 of the RV144 cases, 148 SNPs covering these receptors were genotyped. SNPs
that have minor allele frequency <5% or highly correlated with another SNP (Pearson correlation > 0.80)
were screened out, leaving 21 SNPs for analysis. See Li and others (2013) for details about how the SNPs
were measured and screened. For each SNP, the case-only method was applied to estimate VE against 169
matched HIV and against 181 mismatched HIV, which were the two strains with evidence of positive VE
in Table 1, with main questions of interest whether and how VE differed by SNP levels. Table 2 shows the
strain-specific VE estimates in genetic subgroup defined by three SNPs, as an example. After adjusting
for multiple testing among 21 Fc-γ receptor SNPs against 169 matched and 181 mismatched viral strains
(42 tests in total), the VE against 169 matched virus strain in participants who carry CT or TT in the SNP
rs138747765 of Fc-γ receptor 2c gene appears significantly different from the VE in participants with
CC genotype (91% vs 15%, FWER-adjusted p-value 0.0414). FWER-adjusted p-values were computed
using the resampling method (Westfall and Young, 1993). The protection conferred by the vaccine regimen
appeared restricted to 169 matched viruses, and the present result suggests that this 169 matched protection
was stronger in or restricted to the SNP rs138747765 CT/TT genotype subgroup. Results for all SNPs are
presented in Li and others (2013).

4. DISCUSSION

The rare disease assumption is required for the approximation in (2.6) so that Pr(T � t |Z = 1)/Pr(T �
t |Z = 0) ≈ 1, and similarly in (2.7) that Pr(T � t |Z = 1, G = k)/Pr(T � t |Z = 0, G = k) ≈ 1. A similar
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Table 2. Strain-specific VE in several host-genetics subgroups in the RV144 trial

SNP Genotype VE (%) 95% CI p-value† p-value‡ Adjusted p-value§

169 match virus strain
Fc-γ R2b/rs145835719 CC 32.50 (−9.98, 58.57) 0.1146 — —

CA/AA 82.35 (39.78, 94.83) 0.0056 0.0465 0.5826
Fc-γ R2c/rs138747765 CC 15.15 (−40.40, 48.72) 0.5225 — —

CT/TT 90.91 (61.34, 97.86) 0.0012 0.0043 0.0414
Fc-γ R3a/rs147342954 GG 60.98 (30.46, 78.1) 0.0014 — —

GA/AA 12.50 (−79.28, 57.29) 0.7152 0.0857 0.8186

181 mismatch virus strain
Fc-γ R2b/rs145835719 CC 66.67 (−3.35, 89.25) 0.0571 — —

CA/AA 100 (−100, 100) 0.9944 0.9948 1
Fc-γ R2c/rs138747765 CC 69.23 (5.63, 89.97) 0.0393 — —

CT/TT 100 (−100, 100) 0.9961 0.9963 1
Fc-γ R3a/rs147342954 GG 84.62 (31.82, 96.53) 0.0137 — —

GA/AA 50 (−100, 90.84) 0.4235 0.3062 0.9999

† p-value assessing the significance of strain-specific VE within a genetic subgroup.
‡ p-value comparing strain-specific VE between two genetic subgroups.
§ p-value adjusting for the family-wise error rate.

approximation was made for the case-only estimator for assessing gene–treatment interactions. In a simula-
tion study, Vittinghoff and Bauer (2006) showed that the bias and the type I error of the case-only estimator
are satisfactory when the cumulative event rate is 10% or less. This suggests that the proposed case-only
methods are quite applicable to current HIV prevention trials, in which the infection probability during the
follow-up is typically much lower than 10%.

In addition to the usual independent censoring assumption for standard Cox proportional hazards mod-
els, as the full cohort analysis would require, the case-only methods also require that censoring is inde-
pendent of treatment assignment Z (2.6), possibly conditional on the host genotype G (2.7). This is quite
plausible in the placebo-controlled, double-blind vaccine trials. If it is questionable, censoring being inde-
pendent of treatment assignment Z can always be verified by a log-rank test comparing censoring between
treatment arms. Testing censoring being independent of Z given G, however, would require genotypic data
in all participants or a random subset, and thus is not feasible for a host-genetic study with only cases geno-
typed. If censoring is indeed differential between arms, one may add an estimated adjustment factor P̂r(C �
t |Z = 1)/P̂r(C � t |Z = 0) in (2.6), and similarly P̂r(C � t |Z = 1, G)/P̂r(C � t |Z = 0, G) in (2.7).

If the required conditions are met, case-only methods yield nearly equivalent estimators to those
derived from the full cohort analysis where every participant is measured for expensive subgroup variables
(Vittinghoff and Bauer, 2006). The niche for the case-only method is clinical trials with rare competing
risks failure time endpoints, e.g. HIV vaccine trials we presented here. Other applications include trials
with rare but serious adverse events, and the interest is in finding patient subgroups that suffer from these
adverse events. For such settings the case-only method is appealing for its statistical efficiency and for
minimizing the number of subjects from whom the requisite expensive subgroup covariates are measured.
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