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SUMMARY

Empirical Bayes methods have been extensively used for microarray data analysis by modeling the large
number of unknown parameters as random effects. Empirical Bayes allows borrowing information across
genes and can automatically adjust for multiple testing and selection bias. However, the standard empirical
Bayes model can perform poorly if the assumed working prior deviates from the true prior. This paper
proposes a new rank-conditioned inference in which the shrinkage and confidence intervals are based on
the distribution of the error conditioned on rank of the data. Our approach is in contrast to a Bayesian
posterior, which conditions on the data themselves. The new method is almost as efficient as standard
Bayesian methods when the working prior is close to the true prior, and it is much more robust when the
working prior is not close. In addition, it allows a more accurate (but also more complex) non-parametric
estimate of the prior to be easily incorporated, resulting in improved inference. The new method’s prior
robustness is demonstrated via simulation experiments. Application to a breast cancer gene expression
microarray dataset is presented. Our R package rank.Shrinkage provides a ready-to-use implementation of
the proposed methodology.
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1. INTRODUCTION

Large-scale technologies, which measure many similar entities in parallel, have emerged as an impor-
tant tool in biomedical research. For example, the expression level of thousands of genes is compared
between cancer and normal tissues in microarray experiments. In genome-wide association studies, the
log odds ratio of the association of disease status (disease vs. control) and single-nucleotide polymorphism
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(SNP) frequency is estimated for thousands or millions of SNPs in a single case–control study. There are
two prominent features in large-scale data. First, different parameters (e.g. difference in expression levels
between cancer and normal tissues for different genes) are often studied with the same set of subjects and
using the same design. Second, a large majority of the underlying parameters are 0. Because of this, the
unknown parameters can be profitably modeled as random effects in an empirical Bayes framework. A
popular model is to treat the large number of parameters as draws from a spike-and-slab prior distribution
that is a mixture of a large mass at 0 and a non-zero component. The parameters in the spike-and-slab prior
can be estimated from the many parallel measurements, resulting in an empirical Bayes analysis that bor-
rows information across different genes or SNPs. The empirical Bayes framework automatically adjusts
for the large number of hypothesis tests or effect estimates. The application of empirical Bayes to large-
scale testing naturally leads to the false discovery rate (FDR) and the local FDR (Benjamini and Yekutieli,
2005; Efron and others, 2001; Newton and others, 2004; Efron, 2008). The application to parallel estima-
tion (e.g. of the log fold changes in expression level) in the microarray context includes Newton and others
(2001), Kendziorski and others (2003), and Smyth (2004). There is substantial literature in this area and
the reader is referred to Efron (2010) for a summary of the state of the art in the empirical Bayes approach
to large-scale inference and for complete references.

This paper focuses on estimating the effect sizes, the log fold change in gene expression level in microar-
ray data, for example. We show that a popular empirical Bayes random effects model can lead to poor
performance if the form of the prior is mis-specified; this has important practical implications because
in real applications we are never certain of the correct distributional form, especially in the tails of the
distribution, which often produce the most interesting observations. Motivated by this sensitivity to the
form of the random effects model, we propose a new rank-conditioned inference in which shrinkage and
confidence intervals are based on the distribution of the measurement error conditioned on the rank of
the data instead of on the data themselves as in a traditional Bayesian posterior. The primary advantage
of the rank-conditioned method is that it is almost as efficient as standard Bayesian methods when the
working prior is close to the true prior, and it is much more robust when the working prior is not close.
In particular, the proposed method provides efficient and valid inference even when the working random
effects model substantially deviates from the true model in location. The proposed method can, therefore,
substantially improve empirical Bayes inference for microarray studies as well as other large-scale data
such as for genome-wide association studies and flow cytometry.

To put the rank-conditioned method in the context of the broader literature, we note the following.
First, we condition on rank of the observed data in order to obtain more robust estimation of effect size.
This is different from Noma and others (2010), whose aim is to better rank the effect sizes. Second, the
idea of combining a Bayes formulation with rank-based likelihood has previously been proposed and
studied in other context; for example, Dunson and Taylor (2005) use the idea for estimating quantiles,
Gu and Ghosal (2009) for estimating receiver operating characteristic curves, and Hoff (2007) in estimat-
ing semi-parametric copula. Large-scale data is an area where this idea can be more profitably used because
rank of the observed data and the observed data themselves are closely correlated. We are, therefore, able
to take advantage of the robust property of the rank method with little loss of efficiency compared with
standard empirical Bayes. Third, improved robustness can also be achieved through a more diffuse prior
for the random effects. For example, Do and others (2005) and Kim and others (2009) combine Dirichlet
process with spike-and-slab prior in a non-parametric Bayes model for random effects. A more diffuse
prior, however, necessarily weakens the effectiveness of shrinkage and information borrowing as seen in
the simulation study in Section 4.2.

The paper is organized as follows. Section 2 describes a model for large-scale microarray data analysis.
Section 3 presents our proposed ranked-conditioned inference. Section 4 consists of simulation studies
assessing the performance of rank-conditioned inference. Section 5 applies the proposed method to a breast
cancer microarray dataset. Section 6 is discussion.
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2. EMPIRICAL BAYES MODEL FOR LARGE-SCALE DATA

For concreteness, throughout the remainder of the paper, we focus on estimating the standardized effect
size in case–control microarray experiments; application of our method in other large-scale data, such as
genome-wide association studies, is similar.

We begin by describing an empirical Bayes model for the log fold change in gene expression. Let y[1]
i j

and y[2]
i j be the log expression level of the i th gene for the j th subject in the cancer and normal group,

respectively. The total number of genes is n so that i = 1, . . . , n. We start with the model

y[1]
i j ∼N (α

[1]
i , ρ2

i ), j = 1, . . . , m[1]
i ,

y[2]
i j ∼N (α

[2]
i , ρ2

i ), j = 1, . . . , m[2]
i ,

where ρ2
i is the variance of the i th gene expression common for the cancer and normal groups, and

m[1]
i and m[2]

i are the respective sample sizes. The quantity α
[1]
i − α

[2]
i is the average (log) fold change

(Guo and others, 2006; Choe and others, 2005). Let ȳ[1]
i be the mean of y[1]

i j over j , and similarly let ȳ[2]
i

be the mean of y[2]
i j . It then follows that

zi ≡ ρ−1
i (ȳ[1]

i − ȳ[2]
i ) ∼N (θi , σ

2
i ),

where

θi ≡ ρ−1
i (α

[1]
i − α

[2]
i )

is the standardized log fold change and σ 2
i = (m[1]

i )−1 + (m[2]
i )−1. Note that m[1]

i and m[2]
i typically do not

vary much from gene to gene in a microarray experiment so that variance σ 2
i should be relatively constant

across i .
The first stage of our empirical Bayes model is

zi = θi + εi , i = 1, . . . , n, (2.1)

where εi ∼N (0, σ 2
i ) independently for i = 1, . . . , n. In application, the ρi in the definition of zi will be

replaced by its pooled estimate using y[1]
i j and y[2]

i j and ziσ
−1
i will then follow a t-distribution. For simplicity,

we shall use normal error model (2.1), since the t degrees of freedom, m[1]
i + m[2]

i − 2 = 207, is large for
the breast cancer data in Section 6. For a smaller m[1]

i + m[2]
i − 2, a modified version of (2.1) based on a

non-central t-distribution can be used instead. For a genome-wide association study, zi can be the estimated
log odds ratio from a logistic regression for the association between disease status and the i th SNP, θi be
the unknown true log odds ratio and σi be the standard error of estimate zi . Next, we will model θi as
independent random draws from a prior π . Given prior π , the Bayesian inference for θi is based on the
posterior distribution of θi given zi with density

f (θi |zi , π) ∝ π(θi )φi (zi − θi ), (2.2)

where φi is a N (0, σ 2
i ) density. The posterior mean θ̂

Bayes
i ≡ E[θi |zi ] is a standard Bayes estimator of θi

and the α/2 and 1 − α/2 quantiles of the posterior distribution provide the 1 − α confidence limits 	
Bayes
i

and uBayes
i .

The prior π , however, is unknown. Empirical Bayes analysis uses a working prior πp in place of π

with the parameters in πp estimated from data z1, . . . , zn usually via maximum likelihood (Morris, 1983).
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Our parametric working prior πp is a three-component mixture

πp = (1 − η1 − η2)δ0 + η1N (μ1, ω
2
1) + η2N (μ2, ω

2
2), (2.3)

where δ0 is the delta function (point mass) at 0, and N (μ1, ω
2
1) and N (μ2, ω

2
2), respectively, model the

up- and down-regulated genes. This working prior is the same as that in Noma and others (2010) with one
important difference: we use (2.3) to model the distribution of the standardized differences θi instead of
the raw differences α

[1]
i − α

[2]
i . We show in Section 5 that modeling the standardized differences θi as

draws from a common prior leads to a much better fit to a breast cancer microarray dataset.
An important practical advantage of working prior (2.3) is that the posterior distribution θi |zi is also

a mixture of the same form as (2.3) (see Noma and others, 2010; Muralidharan, 2010 for analytical for-
mula), which makes programming much easier and computing time manageable for large-scale problems.
Spike-and-slab priors such as (2.3) have been used in variable selection and shrinkage estimation (see, e.g.
Ishwaran and Rao, 2005) and have played a prominent role in multiple testing (Efron and others, 2001).

3. RANK-CONDITIONED INFERENCE

3.1 Rank-conditioned shrinkage

For our basic model (2.1), we have
E[θi |zi ] + E[εi |zi ] = zi .

The Bayesian estimate θ̂
Bayes
i = E[θi |zi ] can also be written as

θ̂
Bayes
i = zi − E[εi |zi ],

which reflects the fact that the conditional mean of εi , given the observed zi , is no longer 0.
For the dataset z1, . . . , zn , let r(i) be the rank of zi among z1, . . . , zn . Our rank-conditioned inference

for θi is based on the conditional distribution

εi |r(i) = j, (3.1)

where j is the realized value of rank r(i). The rank-conditioned shrinkage estimator is defined as

θ̂ rank
i ≡ zi − E[εi |r(i) = j], (3.2)

where E[εi |r(i) = j] is the conditional mean of the error εi , given that zi has rank j among z1, . . . , zn .
Given prior π , a draw from (3.1), ε∗

i, j , which is error ε∗
i conditional on r(i) = j , can be generated using

the following three steps:
Step 1: Generate θ∗

i from density π independently for i = 1, . . . , n. Let z∗
i = θ∗

i + ε∗
i , where ε∗

i ∼
N (0, σ 2

i ).
Step 2: Let r∗(i) be the rank of z∗

i among z∗
1, . . . , z∗

n .
Step 3: Repeat Steps 1–2 until r∗(i) = j . Then output ε∗

i, j = ε∗
i .

THEOREM 3.1 Let θi ∼ π and εi ∼N (0, σ 2
i ) independently for i = 1, . . . , n. Let zi be defined as in

model (2.1). Then θ̂i is unbiased in the sense that

E[θ̂ rank
i − θi |r(i) = j] = 0,

for any given i and j , when the expectation is evaluated with respect to the joint distribution of θ1, . . . , θn

and ε1, . . . , εn .
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Proof. Theorem 3.1 follows directly from definition (3.2) and (2.1):

E[θ̂ rank
i |r(i) = j] = E[zi − εi |r(i) = j] = E[θi |r(i) = j].

Theorem 3.1 says that θ̂ rank
i corrects the ranking bias, a concept discussed as in Jeffries (2009).

In addition to point estimate θ̂ rank
i , the proposed method provides a natural confidence interval for θi .

Let 	i, j and ui, j satisfy

Pr{	i, j � ε∗
i, j � ui, j } � 1 − α. (3.3)

It follows that

Pr{zi − ui, j < θi < zi − 	i, j } � 1 − α.

We have, therefore, shown that the interval

(zi − ui, j , zi − 	i, j ) (3.4)

contains the realized θi with 1 − α probability, given r(i) = j when θ1, . . . , θn and ε1, . . . , εn are drawn
as in Theorem 3.1. �

Conditioning on r(i) = j in the rank-conditioned shrinkage estimator (3.2) and confidence limits (3.4)
is in fact closely related to conditioning on zi itself in standard Bayes, as a larger zi generally corresponds
to a higher rank. More specifically, let Gn be the empirical distribution of z1, . . . , zn . Suppose that σi ,
i = 1, . . . , n, can be modeled as draws from some distribution F . It then follows from Glivenko–Cantelli
theorem that Gn converges uniformly to G, the distribution of θ + ε with θ ∼ π , σ ∼ F , and ε ∼N (0, σ 2).
In such a case, conditioning on r(i) = j is almost the same as conditioning on zi ≈ G−1( j/n) so long as
j/n is not close to 0 or 1 (the difference can be more substantial for j/n close to 0 or 1). The proposed
rank-conditioned inference, however, can be much more robust than standard empirical Bayes against mis-
specification of π . For this, we have the following result.

THEOREM 3.2 Let θi ∼ π and εi ∼N (0, σ 2
i ) independently for i = 1, . . . , n. Let zi be defined as in

model (2.1). In the case where the σi are equal, conditional distribution (3.1) and consequently rank-
conditioned estimator (3.2) and confidence limits (3.4) remain the same (and valid) when the true prior
density π(θ) is replaced by density π(θ − a) for any given constant a.

Proof. The proof is straightforward. Let θ∗
i ∼ π and z∗

i = θ∗
i +ε∗

i as in the three steps above. When the
σi are equal, the rank of z∗

i is not changed when θ∗
i are all translated by a constant a, so the distribution of

ε∗
i, j does not change. Theorem 3.2 then follows.

For unequal σ1, . . . , σn , Theorem 3.2 remains approximately valid so long as the variation in σ1, . . . , σn

is small. Section 5 demonstrates that the rank-based shrinkage is in general more robust, not just against
location shift. This is a unique feature of rank-conditioned shrinkage: the ranking bias E[εi |r(i) = j] is
negative for lower ranked j and positive for higher ranked j even when evaluated under a badly specified
prior. In the three steps for generating ε∗

i, j at the beginning of this section, the prior π determines which

ε∗
i ∼N (0, σ 2

i ) will be output as ε∗
i, j . As such, the effect of a grossly mis-specified π on θ̂ rank

i remains
limited. A grossly mis-specified π can, however, have a much larger distorting impact on Bayes shrinkage
estimator θ̂

Bayes
i .

Finally, a confidence interval such as (3.4) that adjusts for ranking r(i) can be crucial for valid infer-
ence; Benjamini and Yekutieli (2005) show that the unadjusted marginal confidence interval of θi can
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have coverage probability that differs substantially from the nominal coverage for top-ranked parame-
ters selected based on the same data. They propose the false coverage rate controlled confidence interval
as a solution to this problem. As shown in Efron (2010, pp. 230–233), however, this interval can differ
markedly from the corresponding Bayes interval and can be frighteningly wide. Westfall (2005) suggests
constructing empirical Bayes confidence intervals centered at the shrunken estimators; the same idea is
used and further developed in Qiu and Gene Hwang (2007) and in Ghosh (2009). Our interval is similar,
but is instead based on rank-conditioned shrinkage. It is generally very close to the corresponding Bayes
interval when the working prior is close to the true prior. �

3.2 Non-parametric update of the parametric prior

In Section 2, a parametric working prior πp is used in empirical Bayes to capture the primary structure of
π . For the rank-conditioned method, we propose a non-parametric update of density πp to density πpu by
formula

πpu(θ) ≡ 1

n

n∑
i=1

f (θ |zi ;πp),

where the posterior density f (θ |zi ;πp) is given by (2.2) with π replaced by πp and with θi replaced by
a generic θ . The parameters in πp will take the values of their maximum likelihood estimates. πpu can
be interpreted as the average of the posterior densities for θ, given zi with prior θ ∼ πp. Vardi and others
(1985) use a similar update to improve the estimated image density in positron emission tomography.
They show that it is one expectation-maximization iteration and therefore always increases the (marginal)
likelihood of z1, . . . , zn . See also Eggermont and LaRiccia (1997). The use of πpu in place of πp does
not significantly increase the computational burden for rank-conditioned inference. The density πpu

could potentially be further updated but the analytical complexity and computational cost will increase
drastically.

3.3 Algorithm and implementation

The three-step algorithm for drawing ε∗
i, j in Section 3.1 is greatly simplified for the special case of σi = σ

for all i because the distribution of ε∗
i, j depends only on the rank j and not on i . Under this condition, Steps

2 and 3 become

Let z∗
[1] � · · · � z∗

[n] be the order statistics of z1, . . . , zn . Let ε∗
[ j] be the ε∗

i that corresponds to
z∗

[ j]. Output ε∗
[ j] for j = 1, . . . , n.

In this way, one round of Steps 1–3 generates a complete and independent set of ε∗
[1], . . . , ε

∗
[n]. The

E[εi |r(i) = j] in (3.2) is now simply E[ε∗
[ j]] and the 	i, j and ui, j in (3.3) are defined by Pr{	 j � ε∗

[ j] �
u j } � 1 − α irrespective of the value of i .

For most large-scale problems, the values of error standard deviation σi may not be constant but they
are not far apart (say within a factor of 3 or 4) because of the inherent common design structure. For the
microarray example in Section 2, σi for standardized difference θi depends only on sample size m[1]

i and
m[2]

i . Therefore, σi does not differ too much unless the number of missing data points varies dramatically
between genes. Similarly, in genome-wide association study, each SNP is compared between the same
set of cases and controls. For such dataset, we can partition the n observations, z1, . . . , zn , into several
sub-groups so that σi for observations within each sub-group varies within a factor of 1.5, for example.
The simplified algorithm above can then be applied to each subgroup separately as an approximation.
Monte Carlo Markov chain type of algorithm is under investigation to efficiently sample from the rank-
conditioned distribution (3.1) without requiring σi to be constant.
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Table 1. Mean square error of the three methods under different model mis-specification

Working prior MSEBayes with πp MSErank with πp MSEBayes with πpu

Same as true prior 0.675 0.677 0.677

μ1p = μ1 + μ1/5 0.763 0.710 0.681
μ2p = μ2 + μ2/5

μ1p = μ1 − μ1/5 0.762 0.685 0.683
μ2p = μ2 + μ2/5

ω1p = 1.25ω1 0.702 0.686 0.683
ω2p = 1.25ω2

ω1p = ω1/1.25 0.699 0.681 0.679
ω2p = ω2/1.25

4. ASSESSING PERFORMANCE OF RANK-CONDITIONED INFERENCE

4.1 Simulation study 1

This example is adapted from Efron (2010, pp. 230–233). Let n = 104 and σi = 1 for all i for model (2.1).
The true π for random effects θi is (2.3) with η1 = η2 = 0.1, μ1 = −3, μ2 = 3, ω1 = ω2 = 1. These param-
eter values are chosen to have a moderate Bayes shrinkage effect. Monte Carlo simulation is conducted
to compare the Bayes shrinkage estimates θ̂

Bayes
i and rank-conditioned shrinkage estimates θ̂ rank

i under
five different specifications of working prior πp. These working priors πp have the same parametric form
of (2.3) but with possibly different values of μ1p, μ2p, ω1p, ω2p as given in various rows of Table 1. Param-
eters not listed are the same as in true prior. For example, η1 = η2 = 0.1 for all the five working priors. Our
simulation study is conducted as follows:

Step 1: Generate θi , i = 1, . . . , n, from prior π . Let zi = θi + εi as in model (2.1).
Step 2: Let z[1], . . . , z[n] be the order statistics of z1, . . . , zn . Let θ[ j] be the θi corresponding to z[ j]. The

θ[ j] can, therefore, refer to different θi for different realizations of z1, . . . , zn .

Step 3: Compute empirical Bayes estimate θ̂
Bayes
[ j] under working model πp. Compute the rank-

conditioned estimate θ̂ rank
[ j] under working model πp and its non-parametric update πpu , respectively.

Step 4: Let S = { j : j = 1, . . . , 500, j = n − 501, . . . , n}. Calculate the mean square loss

1

1000

∑
j∈S

(
θ̂[ j] − θ[ j]

)2
,

for estimator θ̂[ j] = θ̂
Bayes
[ j] and estimator θ̂[ j] = θ̂ rank

[ j] for both πp and πpu . We only include the 500 lowest
and 500 highest j in S because these θ[ j] are most interesting in large-scale data analysis.

Steps 1–4 are replicated 1000 times and the mean square error MSEBayes for Bayes method and mean
square error MSErank for rank-conditioned inference are estimated by averaging the squared error loss
over these replications. The estimated MSEBayes and MSErank values are given in Table 1. In row 1, the
working prior is the same as the true prior and the standard Bayes is therefore optimal. The rank-conditional
inference under both πp and πpu shows little loss of efficiency with almost the same mean square error.
In rows 2 and 3, μ1p and μ2p in the working prior are shifted away from μ1 and μ2 in the true prior.
The MSEBayes increases noticeably with this model mis-specification. The rank-conditioned inference,
especially under πpu , proves robust with a much smaller change in MSErank from row 1. In rows 4 and
5, ω1p and ω2p in the working prior are inflated or shrunk from ω1 and ω2 in the true prior. Again, rank-
conditioned inference is more robust.
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4.2 Simulation study 2

For simulation 2, we continue to let n = 104 and σi = 1 for all i in model (2.1). The true prior π of θi now
has the form

π = 0.8δ0 + 0.1{−(k, β) − 5 + kβ} + 0.1{(k, β) + 5 − kβ}, (4.1)

where (k, β) is the Gamma distribution with shape k and scale β. We take β = k−1/2 so that
−(k, β) − 5 + kβ always has mean −5 and variance 1 and (k, β) + 5 − kβ always has mean 5 and
variance 1 for any k. For the simulation study, we generate θi ∼ π and zi = θi + εi , i = 1, . . . , n, as spec-
ified by (2.1) and (4.1). Let z[ j] be the j th order statistic of z1, . . . , zn and let θ[ j] be the correspond-
ing θi . For every dataset z1, . . . , zn , we compute a point estimate and 90% confidence limits for θ[ j],

j = 1, . . . , 100, using three different methods. Method 1 is Bayes estimate θ̂
Bayes
i and confidence limits

	
Bayes
i and uBayes

i in Section 2 using πp in (2.3) as the working prior. In accordance with empirical Bayes,
parameters η1, η2, μ1, μ2, ω

2
1, ω

2
2 in πp are substituted by their maximum likelihood estimates using data

z1, . . . , zn under models (2.1) and (2.3). We shall call this parametric Bayes method. Method 2 is also
based on Bayes posterior but with a more diffuse prior using Dirichlet process mixture. Let DP(G j0) be
the Dirichlet process with base distribution G j0 and scaling parameter 1 and let f j ∼ DP(G j0) be a (ran-
dom) distribution drawn from this Dirichlet process. Following Do and others (2005) and Dunson (2010),
we take the more diffuse prior, πDP, as

πDP = (1 − η1 − η2)δ0 + η1 f1 + η2 f2,

where f j , j = 1, 2 is generated as

f j ∼ DP(G j0),

G j0(μ, ω2) = N (μ|μ j , ω
2)Inv-Gamma(ω2|a j , b j ).

To be consistent with Method 1, η1 and η2 in πDP and μ j in G j0(μ, ω2) are substituted by their maximum
likelihood estimates under models (2.1) and (2.3) as in Method 1. For the inverse gamma distribution, we
choose shape parameter a j = 2 and scale parameter b j = ω̂2

j , where ω̂2
j is maximum likelihood estimate

of variance ω2
j in (2.3), so that the mean of the inverse gamma equals ω̂2

j . Note that the prior πDP is
considerably more diffuse and less informative than πp due to the extra variation in f j ∼ DP(G j0). We
call Method 2 non-parametric DP Bayes. Method 3 is the proposed rank-conditioned inference under πpu ,
the non-parametric update of πp. Again, the parameters in πp are substituted by their maximum likelihood
estimates. Let θ̂[ j] be the point estimate and (	[ j], u[ j]) be the confidence limits of θ[ j] from one of the three
methods. Let 1(·) be the indicator function. The mean square error and actual coverage rate for parameter
θ[ j], j = 1, . . . , 100, are estimated by averaging

(θ̂[ j] − θ[ j])
2 and 1(	[ j] � θ[ j] � u[ j])

over 1000 replications of z1, . . . , zn .
The simulation study is conducted for k = 1000, k = 8, and k = 2 with prior π given by (4.1); the

results are given in Figures 1–3, respectively. In each figure, the left panel shows the estimated root MSE
for the lowest 100 ranked genes, θ[ j] for j = 1, . . . , 100, and the right panel shows the estimated actual
coverage rate of nominal 90% confidence intervals for θ[i]. Figure 1 shows the case where k = 1000; when
k is large, the normal distribution in the working prior πp approximates (k, β) in true prior π extremely
well. As expected, the parametric Bayes performs the best among the three methods with the smallest mean
square errors and close (to nominal) actual coverage rates for all θ[ j], j = 1, . . . , 100. The non-parametric
Bayes with Dirichlet process prior performs poorly as the mean square errors are large and the actual
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Fig. 1. Simulation study of Section 4.2 with the correct prior in (4.1) and parameter k = 1000. The left panel is the
root mean square error for parameter estimate θ̂[ j], j = 1, . . . , 100, and the right panel is the actual coverage rate of
confidence intervals for θ[ j] at the 90% nominal level. Parametric empirical Bayes and rank-conditional inference
perform similarly in this case with smaller mean square error and correct actual coverage rates. The non-parametric
Bayes model with Dirichlet prior performs considerably worse compared with the other two methods in both mean
square error and actual coverage rate.
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Fig. 2. Simulation study of Section 4.2 with the correct prior in (4.1) and parameter k = 8. The rank-conditioned method
has the smallest root mean square errors and close actual confidence rates. The parametric Bayes and non-parametric
Bayes with Dirichlet prior perform badly due to the large mean square error especially for j < 10.
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Fig. 3. Simulation study of Section 4.2 with the correct prior in (4.1) and parameter k = 2. The rank-conditional
inference is the best in terms of MSE and non-parametric Bayes with Dirichlet prior is the close second best. The
parametric Bayes is the distant third, with much larger MSE for j < 10. For the actual coverage rates, non-parametric
Bayes method with Dirichlet prior is the best and the rank-conditioned inference is the close second. The parametric
Bayes again is the distant third due to its much lower actual coverage rates.

coverage rates are far off. This is not surprising because an overly diffuse prior πDP does not bring the
needed shrinkage. Figure 3 shows the case for k = 2, in which the working prior deviates substantially
from the true prior. The parametric Bayes performs poorly with huge MSE and far off actual coverage
rates, while the non-parametric Bayes is much superior in both MSE and coverage rates. Figure 2 is for
k = 8, an intermediate case between k = 1000 and k = 2. Neither of the two methods works well especially
for j < 15. Our proposed rank-based inference, however, performs well for all the three cases. In particular,
it is only slightly worse than the parametric Bayes for k = 1000 when the prior is correctly specified. When
the prior is mis-specified as in k = 2 and k = 8, its mean square errors are the smallest among the three
methods and its actual coverage rates are not too far off from the nominal 90%. The rank-conditioned
inference therefore achieves robustness against mis-specified prior with minimal loss of efficiency under
correctly specified prior. While not shown in the graphs, the superior performance of the rank-conditioned
inference is similarly observed for the highest ranked θi such as θ[n], θ[n−1], . . . , θ[n−99]. The difference
between the methods is small for middle-ranked θ[i] as their inference are primarily determined by the
large mass at 0 which is present in both the true prior π and working prior πp. Finally, our implementation
of Method 2 is based on R package DPpackage (Jara and others, 2011). Two additional simulation studies
are included in supplementary material available at Biostatistics online.

5. APPLICATION TO BREAST CANCER MICROARRAY DATASET

We now apply our proposed method to the breast cancer data in Wang and others (2005). This was a large
Affymetrix-based gene expression profiling study of n = 22 283 genes on 286 untreated patients with
lymph node-negative primary breast cancer. The data are available at http://www.ncbi.nlm.nih.gov/geo/

http://www.ncbi.nlm.nih.gov/geo/
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as dataset GSE2034. We will compare gene expression level between patients who developed distant
metastasis (74 subjects) and patients who were relapse-free at 5 years (135 subjects) among the 209 estro-
gen receptor positive patients. These data were also analyzed in Noma and others (2010). We use the gene
expression model described in Section 2 with zi being the standardized sample mean difference in log gene
expression level and θi being the true standardized mean difference for the i th gene. We have m[1]

i = 74 and
m[2]

i = 135 for all i as there are no missing values for any gene. It then follows that σ 2
i in (2.1) is 1

74 + 1
135

for all i .
The maximum likelihood estimates of the parameters in the working prior πp obtained by assuming

models (2.1) and (2.3) for z1, . . . , zn are

η1 μ1 ω1 η2 μ2 ω2

0.0856 0.258 0.0426 0.315 −0.159 0.0470

which suggests about 40% of non-zero θi among n = 22 283 genes. In order to check the fit of the paramet-
ric prior πp, we simulated new data from the fitted πp and compared its distribution to that of the original
data through the following algorithm. Let z∗

k = θ∗
k + ε∗

k , where θ∗
k ∼ πp and ε∗

k ∼N (0, 1). The percentiles
of z1, . . . , zn and z∗

1, . . . , z∗
n are given in the table below, which shows excellent fit of model πp to data

z1, . . . , zn . As comparison, we also fit the model used in Noma and others (2010), which formulates in
terms of the unstandardized log fold change di ≡ ȳ[1]

i − ȳ[2]
i . Using notation of this paper, their model is

di ∼ N (α
[1]
i − α

[2]
i , ρ2

i σ 2
i ), α

[1]
i − α

[2]
i ∼ πp,

where πp has form (2.3). The discrepancy between the percentiles of the original data d1, . . . , dn and the
simulated new data d∗

1 , . . . , d∗
n is much larger here. Modeling the standardized log fold change therefore

provides much better fit to this dataset.

Percentile 0 2.5 25 50 75 97.5 100

Modeling
standardized

z1, . . . , zn −0.7248 −0.3848 −0.1512 −0.0325 0.0894 0.3578 0.7569

Log fold change z∗
1, . . . , z∗

n −0.6847 −0.3831 −0.1528 −0.0334 0.0912 0.3639 0.8623
Modeling

unstandardized
d1, . . . , dn −0.9333 −0.2688 −0.0796 −0.0159 0.0430 0.1959 0.7797

Log fold change d∗
1 , . . . , d∗

n −0.7248 −0.3848 −0.1512 −0.0325 0.0894 0.3578 0.7569

Coming back to the model in Section 2 and using the maximum likelihood estimates for η1, μ1, ω1,
η2, μ2, and ω2 obtained above, the standard empirical Bayes estimates θ̂

Bayes
i and the corresponding 90%

confidence interval for all θi are then computed under πp. Rank-conditioned estimates θ̂i and 90% inter-
vals are also calculated under both πp and the non-parametric update πpu . Results for θi that correspond
to the five lowest ranked zi (−0.725,−0.715,−0.695,−0.686,−0.654) and to the five highest ranked zi

(0.700, 0.727, 0.742, 0.752, 0.757) are given in Figure 4 for the three methods. We make three observa-
tions. First, the three methods have a huge shrinkage effect on the raw estimate z[ j] for these top genes. For

example, z[1] = −0.725 but θ̂
Bayes
[1] = −0.212 and θ̂[1] = −0.205 (under both πp and πpu). Second, results

from empirical Bayes and rank-conditioned inference under πp and πpu are very similar although the rank-
conditioned confidence intervals are a little wider. The same is true for other θi not shown in Figure 4. This
is not surprising, given the excellent fit of working prior πp to z1, . . . , zn as discussed above. The agreement
of the three methods and the robustness properties of the rank-conditioned inference should give us more
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Fig. 4. Parametric empirical Bayes and rank-conditional inference of θi for the five lowest ranked and the five highest
ranked zi for the breast cancer dataset in Section 5.

confidence in the result. Third, an oddity of the rank-conditioned inference is that θ̂[1] can be slightly larger
than θ̂[2] even though z[1] � z[2] by definition. This happens when the difference in rank-conditioned bias
for z[1] and z[2] as random variables exceeds their observed difference in the observed z[1] and z[2]. The
same can happen to estimates of other ranks. This is generally a small peculiarity that is appropriately
accounted for by the wide confidence intervals.

6. DISCUSSION

We have proposed a rank-conditioned inference that can substantially improve the prior robustness of
empirical Bayes inference with little loss of efficiency. More research is needed, however, to further develop
and establish the proposed method. For example, in the simulations presented in Section 4, the actual cov-
erage rates for the rank-conditioned intervals, in spite of being a substantial improvement over standard
empirical Bayes, are still below the nominal 90% rate for k = 2 and k = 8. We expect that it is possi-
ble to further improve the actual coverage rate by drawing on similar research in the empirical Bayes
literature, such as in Morris (1983), Laird and Louis (1987), He (1992), Qiu and Gene Hwang (2007),
and Gene Hwang and others (2009). Second, model (2.1) assumes that errors ε1, . . . , εn are independent,
which can be unrealistic in many applications. We are currently working to relax this requirement to accom-
modate a more general correlation structure. Preliminary results show that the method in this paper con-
tinues to work well if the correlation of ε1, . . . , εn is mild. Details will be reported in a future manuscript.
We hope this paper will stimulate more research in robust Bayes inference for large-scale data to meet the
pressing analytical need in genomics and genetics.

7. SOFTWARE

Our R package rank.Shrinkage provides a ready-to-use implementation of the proposed methodology. The
R code for the simulation studies is available at https://sites.google.com/site/jiangangliao/.

https://sites.google.com/site/jiangangliao/
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SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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