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SUMMARY

Censored quantile regression provides a useful alternative to the Cox proportional hazards model for ana-
lyzing survival data. It directly models the conditional quantile of the survival time and hence is easy
to interpret. Moreover, it relaxes the proportionality constraint on the hazard function associated with
the popular Cox model and is natural for modeling heterogeneity of the data. Recently, Wang and Wang
(2009. Locally weighted censored quantile regression. Journal of the American Statistical Association 103,
1117–1128) proposed a locally weighted censored quantile regression approach that allows for covariate-
dependent censoring and is less restrictive than other censored quantile regression methods. However, their
kernel smoothing-based weighting scheme requires all covariates to be continuous and encounters practi-
cal difficulty with even a moderate number of covariates. We propose a new weighting approach that uses
recursive partitioning, e.g. survival trees, that offers greater flexibility in handling covariate-dependent
censoring in moderately high dimensions and can incorporate both continuous and discrete covariates. We
prove that this new weighting scheme leads to consistent estimation of the quantile regression coefficients
and demonstrate its effectiveness via Monte Carlo simulations. We also illustrate the new method using a
widely recognized data set from a clinical trial on primary biliary cirrhosis.

Keywords: Censored quantile regression; Recursive partitioning; Survival analysis; Survival ensembles.

1. INTRODUCTION

Consider the survival analysis situation with right censoring. A study follows participant i until an event
occurs (e.g. death or development of disease) at time ti which follows the continuous distribution of the
random variable T . There are covariates measured at the beginning of the study that are denoted by a
vector �xi . The goal is to quantify the effect �xi has on the distribution of T . Yet, each study participant
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has a censoring time ci (e.g. closing out of trial or lost to follow-up). The censoring time follows the
distribution of the random variable C that is conditionally independent of T (i.e. T ⊥ C | �x , where
⊥ denotes statistical independence). Hence, a sample of right-censored survival data of size n consists
of triplets {yi , δi , �xi }, i = 1, . . . , n, where yi = min(ti , ci ) and δi = I (ti < ci ). There has been a large
amount of focus on the relatively easy to implement, semi-parametric Cox proportional hazards model
for survival analysis, which models the relationship between covariates and the log hazard function
(Cox, 1972).

Censored quantile regression is a useful alternative to the Cox model that has recently gained con-
siderable attention. Uncensored quantile regression methods have been extensively studied within the
econometrics literature since the seminal work of Koenker and Bassett (1978); see Koenker (2005) for
a comprehensive introduction. Quantile regression models the relationship between the event time and the
covariates using the quantile function:

QT (τ |�x) = �xβ(τ), (1.1)

where τ ∈ (0, 1) is the quantile of interest and β(τ) is the vector of τ th quantile effects. This enables
researchers to model not only measures of central tendency, such as the median, but also other aspects of the
conditional distribution such as the tails. An advantage of quantile regression is its invariance under mono-
tonically increasing transformations, i.e. Qh(T )(τ |�x) = h(QT (τ |�x)) where h is a monotonically increasing
function (Koenker, 2005).

Censored quantile regression was first investigated in the econometrics literature for fixed censoring,
i.e. all the censoring times are known regardless of whether the event occurs; see Powell (1986). This
assumption is almost never met within applied health research. Ying and others (1995) and Yang (1999)
both proposed median estimators (presumably generalizable to any quantile) that assumed unconditional
independence between event and censoring times (i.e. T ⊥ C).

Portnoy (2003) adopted the more relaxed assumption of conditionally independent censoring (i.e.
T ⊥C |�x). He proposed a novel method of recursively estimating a series of quantile regression functions
defined on a grid along (0, τo), where τo is the quantile of interest. However, this recursive estimation
relies on the assumption that the conditional quantile function is linear for all τ ∈ (0, τo). Wang and Wang
(2009) refer to this assumption as the “global linearity assumption”, and observed that noticeable bias can
occur when this assumption is violated.

Peng and Huang (2008) proposed an estimator, referred to hereafter as “PH”, that utilizes a martingale
estimating equation which exploits the relationship between the quantiles and cumulative hazard function.
Similar to Portnoy’s approach, the PH estimator assumes both conditionally independent censoring and
linearity in all quantiles by estimating a series of regression quantiles along a grid. Although it has not
been investigated in the literature, it is anticipated that the performance of the PH estimator is likely to
be influenced when the global linearity assumption is violated, as reflected in simulation results presented
later in this paper.

Wang and Wang (2009) proposed a new locally weighted censored quantile regression approach that
adopts the redistribution-of-mass idea of Efron (1967) and employs a local re-weighting scheme. Its valid-
ity only requires the conditional independence of the survival time and the censoring variable given the
covariates, and linearity at the quantile level of interest. However, their locally weighted estimator suf-
fers from two notable drawbacks in real data analysis. First, kernel smoothing becomes impractical, i.e.
curse of dimensionality, with only a moderate number of covariates (p > 2). Second, kernel theory was
developed for continuous covariates, so the presence of categorical variables causes the method to become
ill-defined.

This paper proposes a new procedure that uses survival trees with Kaplan–Meier estimates
(Kaplan and Meier, 1958) as the basis for the locally weighted estimator. By avoiding the use of a ker-
nel, the approach is more flexible in handling moderate to high dimensions and discrete covariates while
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avoiding the global linearity assumption. We establish that the procedure leads to consistent estimation of
the quantile regression coefficients.

The next section introduces the estimator, certain important aspects of survival trees and censored quan-
tile regression. Section 3 shows the consistency and discusses the asymptotic normality of the estimator.
Section 4 presents a series of simulations to analyze the finite sample performance of the proposed esti-
mator, which is illustrated in Section 5 with an analysis of data on primary biliary cirrhosis (PBC). Finally,
concluding remarks are discussed in Section 6.

2. PROPOSED ESTIMATOR

We start by making important distinctions and formally defining distribution functions: capitalized letters
with no subscripts indicate a random variable while lower case letters with subscripts indicate an observed
variable, the conditional distribution of the event time is FT (t |�x) = P(T � t |�x), the conditional distribution
of the censoring time is FC(t |�x) = P(C � t |�x).

2.1 Censored quantile regression

When there is no censoring (i.e. yi = ti for all i = 1, . . . , n), the τ th conditional quantile β(τ) can be
estimated by minimizing the following quantile objective function (Koenker, 2005):

Sn(β(τ)) = 1

n

n∑
i=1

ρτ (yi − �xiβ(τ)), (2.1)

where ρτ (z) = z · {τ − I (z < 0)} is the quantile loss function and I (u) is the indicator function (i.e. I (A)

is 1 if the event A is true, and 0 otherwise). When the survival time is subject to random right censor-
ing, Wang and Wang (2009) proposed to estimate β(τ) by minimizing the weighted quantile objective
function

Rn(β(τ), FT ) = 1

n

n∑
i=1

{wi (FT )ρτ (yi − �xiβ(τ)) + (1 − wi (FT ))ρτ (y+∞ − �xiβ(τ))}, (2.2)

where y+∞ represents a number large enough to be effectively infinity, and

wi (FT ) =

⎧⎪⎨
⎪⎩

1 if δi = 1 or FT (ci |�xi ) > τ,

τ − FT (ci |�xi )

1 − FT (ci |�xi )
if δi = 0 and FT (ci |�xi ) < τ,

with FT (t |�x) being the conditional distribution function of T given �x .
The motivation for the weighted quantile objective function in (2.2) is that the contribution of each

point to the estimation of β(τ) depends only on the sign of the residual, where the residual is defined as
ti − �xiβ(τ). For the uncensored observations, the sign of the residual can be directly observed for a given
β(τ). For the censored observations, there are two possibilities.

(1) If ci > �xiβ(τ), then ti − �xiβ(τ) > 0. That is, if the censored time is larger than the predicted quantile
of the survival time, then the sign of the residual is known since ti > ci .
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(2) If ci < �xiβ(τ), then the sign of the residual is not determined. In this case, given (�xi , ci ), the con-
ditional probability of obtaining a negative residual is

E[I (T − �xiβ(τ) < 0)|T > ci ] = P(T < �xiβ(τ)|T > ci )

= P(ci < T < �xiβ(τ))

P(T > ci )

= τ − FT (ci |�xi )

1 − FT (ci |�xi )
. (2.3)

In this ambiguous case, adopting the redistribution-of-mass idea of Efron (1967), we assign weight wi (FT )

to the observation at (�xi , ci ) and redistribute the complimentary weight 1 − wi (FT ) to (�xi , y+∞) without
altering the quantile.

To estimate the weights, it is essential to estimate the conditional distribution of the survival time. In
Section 2.2, we propose a new approach for estimating the weights that enjoy some appealing properties.
It is worthwhile to note that the weighting scheme reduces to ordinary quantile regression in the presence
of no censoring or when no censored observations are re-weighted (i.e. extremely late censoring relative
to the quantile of interest). Also, the censoring distribution can have a direct impact beyond the marginal
level of censoring. Depending on the timing, e.g. early vs. late censoring, more or less of the censored
observations would be re-weighted. As an example, across a range from early to late censoring, with the
same marginal level of 35% censoring, the proportion of censored observations that were re-weighted
ranged from 20% to 87% using Portnoy’s approach (more details are presented in Section 4). Furthermore,
the subset of censored observations that are re-weighted would often differ between methods in addition
to the ascribed weight (e.g. due to differences in estimates of F̂(t |�x)).

2.2 Survival trees

The proposed estimator utilizes survival trees, or recursive partitioning, as described by
LeBlanc and Crowley (1993) and Butler and others (1989) to estimate the weights of censored observ-
ations described by (2.3) for the estimating equation (2.2). The goal of this article is not to fully describe
recursive partitioning or survival trees in detail and so some familiarity is assumed. The interested readers
are referred to Breiman and others (1984) for a comprehensive treatment of recursive partitioning and
Bou-Hamad and others (2011) for a review of recent survival tree literature. Briefly, there is a need to
introduce two concepts: splitting and stopping rules.

Splitting rules determine where and how to split a node. The trees used in this paper only consider splits
on one variable at a time, resulting in binary trees. We use a splitting criteria that is the maximum of four
Gρ,γ statistics:

Gρ,γ = M1 + M0

M1 M0

∑
t∈F

n1t n0t

n1t + n0t
Ŝ(t−)ρ[1 − Ŝ(t−)]γ [λ̂1(t) − λ̂0(t)], (2.4)

where M j is the number of subjects initially at risk in group j , F is the set of unique failure times, n jt

is the number of subjects at risk in group j at time t, and λ̂ j (t) is the estimated hazard of group j at
time t (Rudser and others, 2012). The four Gρ,γ statistics used are (ρ, γ ) = {(0, 0), (1, 0), (0, 1), (1, 1)}.
Note that (0, 0) and (1, 0) correspond to the log-rank and weighted Wilcoxon form of the log-rank test,
respectively (the other two do not have common names). This cocktail of Gρ,γ statistics is used to increase
the power to detect a variety of differences between survival functions (Lee, 1996). While this collection
of Gρ,γ statistics is designed to find several different types of differences in survival functions, one may
choose fewer or only one Gρ,γ statistic (e.g. only the log-rank statistic).
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Stopping rules are used to indicate when to stop splitting at a particular node. These are used to prevent
any particular node from not having enough information (e.g. small sample size, lack of events, etc.) to
effectively estimate the probabilities of interest. This naturally leads to two “tuning parameters” that need
to be specified:

(1) “Minimum at Risk”: Each node is required to have a minimum number of subjects at risk for an
event.

(2) “Minimum Events”: Each node is required to have a minimum number of events.

For censored quantile regression, we are interested in the conditional probabilities used in the weights
defined for censored observations by (2.3). By letting the minimum events depend upon the number at
risk within a particular node and the quantile being estimated, we can ensure that each terminal node (i.e. a
node that did not split further) has enough information to effectively estimate the probabilities of interest
using a Kaplan–Meier estimator. While the Kaplan–Meier estimator is used here, it can be replaced by any
cumulative distribution estimator for censored data.

Sensitivity to small changes in the data is a common criticism of trees. Breiman (1996) suggested that
one effective way to alleviate this problem is to perform “bagging”. Bagging requires taking a prespecified
number of bootstrapped data sets that are sampled with replacement, and then uses the average of the esti-
mand over the bootstrapped data sets as the “bagged” estimate. In terms of trees, this means bootstrapping
the data set a number of times, say bagN , and obtaining F̃bagb(t |�x) for the bth bootstrapped data set. Then
the final conditional distribution estimate for subject i is defined as

F̂(t |�xi ) = 1

bagN

bagN∑
b=1

F̃bagb(t |�xi ). (2.5)

This is expected to have a stabilizing effect on the tree-based estimate of F(t |�xi ).

2.3 Implementation

To implement the proposed method, a researcher needs to specify three aspects of the survival trees: the
splitting and stopping rules, and how many bags to use. After using (bagged) survival trees to determine the
weights, re-weighted censored observations are split with weight wi (FT ) at (yi , xi ), and weight 1 − wi (FT )

at (y∗
i , xi ), where y∗

i is a large enough number to ensure a positive residual (e.g. 1000 × (maxi {yi } + 1)).
After splitting the appropriate observations between yi and y∗

i , the estimating equation (2.2) can be fitted
in R (R Development Core Team, 2011) using the function rq() from the “quantreg” package (Koenker,
2011) with user-defined weights.

3. ASYMPTOTICS

The proposed tree-based censored quantile regression estimator is consistent given certain regularity con-
ditions (see supplementary material available at Biostatistics online). The following theorem summarizes
this property.

THEOREM 3.1 Assume that {yi , δi , �xi }, i = 1, . . . , n, are independent and identically distributed with T
independent of C conditional on �x , and that assumptions (A1) through (A5) in supplementary material
available at Biostatistics online hold. Let β̂(τ ) be the minimizer of (2.2) with F̂T (·|�x) computed using a
survival tree. Then

β̂(τ ) → β(τ), (3.1)

in probability, as n → ∞.
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The proof relies on the theory of Chen and others (2003) for non-smooth estimating equations with an
infinite-dimensional nuisance parameter that requires the survival tree estimate to be uniformly consis-
tent for the conditional survival function. This is shown using recursive partitioning theory developed by
Gordon and Olshen (1984) and Butler and others (1989) which require the size of every terminal node to
become arbitrarily small in every covariate. This suggests that the tree size, i.e. number of terminal nodes,
needs to grow at a slower rate than the sample size within each terminal node with both tending to infinity
or, practically, that the minimum number of events increases with the sample size.

Showing asymptotic normality is not straightforward. The sufficient conditions outlined by
Chen and others (2003) for asymptotic normality require substantial additions to the recursive partition-
ing asymptotic literature for censored data: a more accurate limit on the rate of convergence of survival
trees, and a linear representation of survival trees into mean 0 and finite variance random variables. To our
knowledge, there is little to no survival tree literature on these specific topics. Most recursive partitioning
asymptotic results focus on showing the consistency of estimated summary measures of conditional distri-
bution functions while avoiding the discussion on rates of convergence and linear representations. These
topics are beyond the scope of this paper.

Inference is an important matter in statistics, which motivates showing the asymptotic distribution of an
estimator. With any conditional quantile regression method the covariance matrix of β̂(τ ) depends upon an
unknown conditional density (Koenker, 2005). The unknown density function makes accessible variance
solutions extremely difficult to obtain. Portnoy (2003) proposed to sample the observed triplets {yi , δi , �xi }
with replacement (i.e. non-parametric bootstrap). After drawing a sufficient number of bootstraps, confi-
dence intervals can be constructed based on sample quantiles or normal approximations of the bootstrap
distribution. The tree-based method presented here utilizes the 2.5th and 97.5th sample quantiles of the
bootstrap distribution to construct an approximate 95% confidence interval.

4. SIMULATIONS

We assess the finite sample performance of the tree-based estimator (TW) compared with the Portnoy and
PH estimators through two simulation scenarios. When analyzing the effectiveness of tree-based weights,
we include only bagged trees (bagN = 10). The minimum number at risk is 60 and the minimum number
of events is NT N · τ , where τ is the quantile being estimated and NT N is the number of observations within
a node. All simulations were performed using R version 2.12.2 with the “quantreg” package used to fit
the Portnoy and PH estimators. Approaches are compared based on operating characteristics of bias, mean
squared error (MSE), coverage of 95% confidence intervals (Cov.), average confidence interval lengths
(ECL), and power for a variety of simulation scenarios at the median (τ = 0.5) and τ = 0.25 quantile. The
Wang and Wang estimator was left out due to the computational difficulties associated with moderate- to
high-dimensional kernel estimation, but extensions are discussed in supplementary material available at
Biostatistics online.

The simulation scenarios are categorized by two sets of covariate distributions (i.e. number of covari-
ates) with varying levels of non-linearity (NL) (i.e. specification of the error distribution). The scenarios
are formed from subsets of

�xiβ = 2 + xi,1 − 2 · xi,2 + xi,3,

xi,1 ∼ Unif(−2, 2),

xi,2 ∼ N (0, 1),

xi,3 ∼ P(X3 = m) = 1
6 for m = 1, 4 and P(X3 = m) = 1

3 for m = 2, 3.
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Table 1. First simulation scenario: N = 400, NSIM = 2500, censoring is 45% and 25% for τ = 0.25 and
τ = 0.5, respectively, β0 = 2, β1 = 1, β2 = −2, 300 bootstrap replicates, 95% nominal coverage with ECL

representing the average CI width

No NL NL

Quantile Variable Method Bias MSE Cov. ECL Power Bias MSE Cov. ECL Power

0.25 Variable 1 Portnoy 0.00 0.04 0.97 0.83 1.00 0.17 0.70 0.95 3.26 0.28
β1 = 1 PH 0.01 0.04 0.97 0.83 1.00 −0.04 0.67 0.96 3.24 0.21

TW −0.06 0.04 0.96 0.81 1.00 0.01 0.59 0.96 3.09 0.25
Variable 2 Portnoy 0.01 0.06 0.96 0.99 1.00 −0.20 0.28 0.96 2.10 1.00
β2 = −2 PH −0.01 0.06 0.96 0.99 1.00 −0.26 0.31 0.95 2.13 1.00

TW 0.10 0.06 0.95 0.97 1.00 0.06 0.21 0.97 2.02 1.00

0.5 Variable 1 Portnoy 0.01 0.03 0.96 0.71 1.00 0.10 0.52 0.95 2.85 0.34
β1 = 1 PH 0.00 0.03 0.96 0.72 1.00 −0.08 0.54 0.95 2.90 0.23

TW −0.01 0.03 0.97 0.71 1.00 0.04 0.52 0.96 2.90 0.31
Variable 2 Portnoy 0.00 0.04 0.96 0.82 1.00 −0.13 0.15 0.95 1.56 1.00
β2 = −2 PH 0.00 0.04 0.97 0.84 1.00 −0.15 0.16 0.95 1.62 1.00

TW 0.02 0.04 0.97 0.84 1.00 −0.03 0.13 0.97 1.60 1.00

The first and second simulation scenarios consist of, respectively, �1 = {xi,1, xi,2} and �2 =
{xi,1, xi,2, xi,3}, where �k is the set of covariates for simulation k. The error structures are defined as
El × (N (0, 1) − 	−1(τ )), where El are the equations that induce NL, τ is the quantile of interest, and 	−1

is the inverse c.d.f. of the standard normal. The linear and non-linear El’s are, respectively, E1 = 3 and E2 =
3
2 + 6 · (xi,1 − 1

2 )2. The censoring distributions are chosen depending upon the error structure with linear
and NL represented by, respectively, Unif(−3, a(�k, El)) and ( 3

10 + (xi,1 − 1
2 )2) × Unif(−3, a(�k, El)),

where a(�k, El) is chosen to ensure 25% censoring for the median scenarios and 45% censoring for
τ = 0.25 scenarios. These censoring distributions lead to fairly even censoring across time and xi,1. Each
simulation scenario and error structure combination is evaluated over 2500 simulation iterations where
each combination has a sample size of 400 with 300 bootstrap replicates for confidence intervals.

The first error structure E1 possesses linearity in all quantiles for all variables. Owing to their implicit
assumption of linearity in all quantiles, it is expected that the Portnoy and PH estimators will perform
better than the tree-based approach. The second error structure imposes NL in all quantiles for xi,1 except
the quantile of interest. This scenario is likely to be more favorable for the tree approach compared with
Portnoy and PH. Note that xi,1 is the only covariate that possesses NL in all quantiles except the quantile
of interest.

The potential advantage of the proposed tree-based estimator is improved performance in multivari-
ate scenarios with NL in some quantile. As such, we have two primary interests: whether the tree-based
estimators are competitive in scenarios with linearity through all quantiles and, second, whether the tree-
based estimators outperform the Portnoy and PH estimators in the presence of NL. The tree-based estimator
accomplishes the former at some cost of bias for τ = 0.25, but are similar to the Portnoy and PH estimators
for the median (“No NL” columns in Tables 1 and 2). For the latter question (“NL” columns), the tree-based
estimator possesses less bias and MSE when estimating the median and τ = 0.25. Finally, all the methods
either maintained nominal coverage or were conservative (i.e. up to 97%). While the NL described above
is severe, a simulation scenario with less severe NL showed advantages for the tree-based estimator albeit
attenuated (see supplementary material available at Biostatistics online, Section 2.4).

The advantage of the tree-based estimator appears to depend upon the level of censoring. In particular,
the tree-based estimator shows less improvement for bias when the percent of censoring increases with
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Table 2. Second simulation scenario: N = 400, NSIM = 2500, censoring is 45% and 25% for τ = 0.25 and
τ = 0.5, respectively, β0 = 2, β1 = 1, β2 = −2, β3 = 1, 300 bootstrap replicates, 95% nominal coverage

with ECL representing the average CI width

No NL NL

Quantile Variable Method Bias MSE Cov. ECL Power Bias MSE Cov. ECL Power

0.25 Variable 1 Portnoy −0.01 0.04 0.97 0.86 1.00 0.16 0.75 0.95 3.37 0.26
β1 = 1 PH 0.00 0.04 0.96 0.86 1.00 −0.04 0.73 0.95 3.35 0.20

TW −0.06 0.04 0.97 0.86 1.00 −0.01 0.68 0.95 3.28 0.22
Variable 2 Portnoy −0.01 0.06 0.97 1.01 1.00 −0.19 0.29 0.97 2.27 0.99
β2 = −2 PH −0.02 0.06 0.97 1.01 1.00 −0.24 0.33 0.96 2.29 0.99

TW 0.06 0.06 0.97 1.02 1.00 0.02 0.25 0.97 2.21 0.98
Variable 3 Portnoy 0.00 0.06 0.97 1.04 0.98 0.10 0.27 0.96 2.24 0.53

β3 = 1 PH 0.01 0.06 0.97 1.03 0.98 0.12 0.28 0.96 2.26 0.54
TW −0.09 0.07 0.96 0.99 0.97 −0.11 0.21 0.97 2.01 0.44

0.5 Variable 1 Portnoy −0.01 0.03 0.96 0.73 1.00 0.11 0.56 0.95 2.93 0.32
β1 = 1 PH −0.01 0.03 0.96 0.74 1.00 −0.07 0.56 0.95 2.96 0.23

TW −0.01 0.03 0.97 0.74 1.00 0.03 0.56 0.95 2.98 0.28
Variable 2 Portnoy −0.01 0.05 0.96 0.85 1.00 −0.12 0.17 0.95 1.66 1.00
β2 = −2 PH −0.01 0.05 0.95 0.86 1.00 −0.15 0.19 0.95 1.72 1.00

TW 0.00 0.05 0.96 0.86 1.00 −0.04 0.16 0.96 1.71 1.00
Variable 3 Portnoy 0.00 0.05 0.97 0.88 0.99 0.05 0.15 0.97 1.68 0.72

β3 = 1 PH 0.00 0.05 0.97 0.89 1.00 0.06 0.16 0.97 1.74 0.70
TW 0.00 0.05 0.97 0.89 1.00 0.02 0.15 0.97 1.71 0.69

Table 3. Percent of total observations re-weighted by the simulation scenario (i.e. number of covariates)
and the degree of NL

Scenario 1 Scenario 2

Quantile Method No NL (%) Mild NL (%) Severe NL (%) No NL (%) Mild NL (%) Severe NL (%)

0.25 Portnoy 26.8 30.1 29.1 21.3 28.9 31.1
TW 31.2 32.8 29.5 32.3 33.3 30.8

0.5 Portnoy 18.3 20.2 16.9 17.5 20.7 19.2
TW 19.5 21.0 17.0 21.2 21.9 19.2

The marginal censoring for all simulation scenarios was 45% and 25% for τ = 0.25 and τ = 0.5, respectively.

respect to the quantile of interest (see supplementary material available at Biostatistics online, Section 2.2).
This may be due to our strict stopping rule that forces the number of events to be proportional to the
quantile of interest. This stopping rule is increasingly restrictive when the marginal censoring is closer
to the quantile of interest, but is necessary to guarantee coherent estimation of the weights, i.e. for the
Kaplan–Meier estimate to reach the quantile of interest.

Additionally, the performance of all censored quantile regression estimators can vary wildly, depending
on the location of the censored observations even, while keeping the overall marginal level of censoring
constant. As an illustration, a small univariate simulation study is designed similarly to the above (see
supplementary material available at Biostatistics online, Section 2.1). The bias was unaffected when the
covariates were uniformly linear, but—in the presence of NL—we observed that the bias ranged from
0.17 to 0.26 for “late” to “early” censoring, respectively. Owing to the large variations in performance
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and percent of re-weighted observations, it is important for the literature to specify the censoring used
when evaluating censored quantile regression methods, and ensure that resulting patterns of censoring are
realistic. Explicitly stating the censoring distributions and the percent of observations re-weighted (Table 3)
when presenting simulation results would be helpful as well.

5. ANALYSIS OF PBC DATA SET

As an illustration, we apply the proposed method to the well-recognized PBC data set described by
Fleming and Harrington (1991) from a clinical trial investigating the effect of the drug D-penicillamine
conducted at the Mayo Clinic in Rochester, Minnesota. The data set is readily available in the R package
“survival” as the “pbc” object (Therneau, 2012), and is widely considered a benchmark data set for survival
analysis. We are interested in evaluating the association of the treatment, age, bilirubin, and prothrombin
time with the log time till death or transplant. Yet bilirubin and prothrombin time appear to violate the global
linearity assumption (see supplementary material available at Biostatistics online, Section 3), which is a
scenario suited for the proposed tree-based estimator.

Considering only complete cases, this results in 312 patients with approximately 53.8% censoring.
Portnoy’s approach is compared with the proposed estimator with 10 bags. The minimum number at risk is
set to 60, and the minimum number of events is NT N · τ , where τ is the quantile being estimated and NT N

is the number of observations within a node. Both approaches use bootstrap re-sampling for confidence
intervals: the 2.5th and 97.5th quantiles were used to construct the 95% confidence intervals using 1000
bootstraps for both estimators.

Figure 1 displays the covariate effects on quantiles from τ = 0.05 to τ = 0.50. Of the four variables of
interest, the treatment appears to have no effect along the estimated quantiles, while bilirubin appears to
have a substantial constant effect on time till transplant or death. Longer prothrombin times appear to have a
significant negative effect on survival time that attenuates for quantiles closer to the median. The estimated
effects of bilirubin and age are different between the tree and Portnoy approaches. In particular, the tree-
based weights have estimates closer to the null relative to Portnoy’s estimator. Taking the 25th quantile as an
example, the Portnoy estimator displays about 30% and 18% larger absolute effect estimates (for log(T ))
compared with the tree-based estimator for the effect of age and bilirubin, respectively. This direction and
relative ordering of the two estimates are consistent with the anti-conservative bias for Portnoy’s estimator
in the presence of NL that was observed in the simulation results of Section 4. Additionally, the tree-based
estimator generally has narrower confidence intervals around τ = 0.25 compared with Portnoy, which is
consistent with the simulation results. The tree-based estimator has wider confidence intervals toward
the median. However, the censoring rate is above 50% for the PBC data set; hence neither method can
accurately estimate the median or higher quantiles.

In the analysis, we focus on the 25th quantile which corresponds to the patients with relatively short
survival time. The estimated 25th conditional quantile function using the tree-based estimator is

Qlog(T )(0.25|�x) = 12.43 − 0.02[Trt] − 0.11
[age

5

]
− 0.41[log2(bili)] − 0.35[pro. time], (5.1)

whose coefficients are exponentiated to obtain an interpretation on the original time scale. For example, a
2-fold difference in bilirubin is associated with an average −0.41 shorter log time till transplant/death for
the 25th quantile. On the original time scale, this corresponds to 33.5% shorter survival time for the 25th
quantile on average while adjusting for treatment, baseline age and prothrombin time. On the other hand,
a difference of 5 years of age implies, on average, 10.4% shorter survival time for the 25th quantile while
adjusting for treatment, baseline bilirubin, and prothrombin time. The other covariates are interpreted in a
similar fashion.
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Fig. 1. Estimated multiplicative effects on time to event for 0.05 to 0.5 quantiles (solid lines). 95% confidence intervals
(dashed lines) are formed by taking the 2.5th and 97.5th sample quantiles of 1000 bootstrapped samples. The tree-
based estimator and Portnoy’s estimator are the black and gray lines, respectively.

6. DISCUSSION AND FUTURE DIRECTIONS

Motivated in part by the practical difficulty encountered by the estimator of Wang and Wang (2009) with
moderately high-dimensional data, we propose a new tree-based weighted censored quantile regression
estimator. Under mild conditions, the new estimator is consistent. The simulation study demonstrated that
if any variable possesses NL, then the Portnoy and PH estimators can suffer from bias and loss of precision
in all covariates. Additionally, the proposed tree-based estimator can improve the bias and MSE in the
presence of NL for multivariate scenarios. Interestingly, the largest improvements were for covariates that
possessed linearity through all quantiles when adjusting for a covariate with NL. A limitation is that, due to
strict splitting rules that enforce the quantile of interest to be defined in each node, the proposed tree-based
estimator may be more sensitive to a high censoring rate relative to the quantile of interest compared with
the Portnoy and PH estimators.

We found that the performance of the estimators depended heavily on the censoring distribution. In
particular, in the presence of NL, the Portnoy estimator provides a biased estimate that depends on the
location of the censoring distribution. As such, we recommend that future censored quantile regression
articles explicitly state the censoring distribution used, and where the censoring is occurring and report
the percent of observations re-weighted for approaches based on the weighted estimating equation of the
form (2.2). The extent of the censoring distribution’s impact is less clear for other approaches (e.g. PH).
Further investigation and benchmarking of relative performance of this issue will be an interesting future
research topic.
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Compared with the local Kaplan–Meier estimator-based weights, i.e. Wang and Wang (2009), the
tree-based weights have appealing properties that work better with moderately high-dimensional covariates
while avoiding the linearity assumption of Portnoy (2003) and Peng and Huang (2008). As suggested by
an anonymous referee, an alternative approach to estimating the weights is using flexible spline methods.
For example, the polynomial splines developed by Kooperberg and others (1995) can flexibly estimate
the conditional hazard function (the hare() function in R). This approach could be extended to estimate
the conditional survival function used for censored quantile regression. This is an interesting direction to
explore in our future research.

We briefly described how the sample size within terminal nodes and the overall tree size both need
to approach infinity. This does not provide much guidance on how to select a good tuning parameter for
the minimum number at risk. In practice, cross-validation could be used to select the most appropriate
minimum number at risk, but we are currently investigating ways to combine survival trees across a range
of tuning parameters to obtain better performance.

As pointed out by an anonymous referee, the bagged survival tree used to estimate the weights can
be considered as a non-parametric estimator of the conditional quantile function, equation (1.1). Essen-
tially, the bagged trees can predict quantile values for particular covariate values similar to Meinshausen
(2006). While this is potentially useful for predicting survival times, this does not provide information on
the relationship of the covariates with the event distribution. Rudser and others (2012) show how these
predicted values could be used to form linear contrasts, while local regression extensions, e.g. splines, are
straightforward (see supplementary material available at Biostatistics online).

The code to implement censored quantile regression with tree-based weights is available from the first
author, or at https://sites.google.com/site/andyrswey/software.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at http://biostatistics.oxfordjournals.org.
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