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Vasile V. Moca1, Danko Nikolić2,3,4, Wolf Singer2,3,4 and Raul C. Mureşan1,2
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Neuronal mechanisms underlying beta/gamma oscillations (20–80
Hz) are not completely understood. Here, we show that in vivo
beta/gamma oscillations in the cat visual cortex sometimes exhibit
remarkably stable frequency even when inputs fluctuate dramati-
cally. Enhanced frequency stability is associated with stronger
oscillations measured in individual units and larger power in the
local field potential. Simulations of neuronal circuitry demonstrate
that membrane properties of inhibitory interneurons strongly deter-
mine the characteristics of emergent oscillations. Exploration of
networks containing either integrator or resonator inhibitory inter-
neurons revealed that: (i) Resonance, as opposed to integration,
promotes robust oscillations with large power and stable frequency
via a mechanism called RING (Resonance INduced Gamma); reson-
ance favors synchronization by reducing phase delays between
interneurons and imposes bounds on oscillation cycle duration; (ii)
Stability of frequency and robustness of the oscillation also depend
on the relative timing of excitatory and inhibitory volleys within the
oscillation cycle; (iii) RING can reproduce characteristics of both
Pyramidal INterneuron Gamma (PING) and INterneuron Gamma
(ING), transcending such classifications; (iv) In RING, robust
gamma oscillations are promoted by slow but are impaired by fast
inputs. Results suggest that interneuronal membrane resonance can
be an important ingredient for generation of robust gamma oscil-
lations having stable frequency.
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Introduction

Neuronal oscillations in the high-beta and -gamma frequency
bands (20–80 Hz) are associated with visual processing (Gray
and Singer 1989; Tallon-Baudry et al. 1997), motor control
(Schoffelen et al. 2005), cognitive processes (Uhlhaas and
Singer 2006; Melloni et al. 2007), cortical and hippocampal
dynamics (Sirota et al. 2008), and their disruption correlates
with abnormal brain function (Uhlhaas and Singer 2006). Re-
cently, the functional role of such oscillations has been ques-
tioned because of the input dependence of oscillation
frequency in sensory cortices. When visual contrast is ma-
nipulated, the frequency of gamma oscillations covaries with
the strength of input (Ray and Maunsell 2010). Similarly,
when moving stimuli are used, oscillation frequency increases
with stimulus velocity (Gray et al. 1990) and because of the
anisotropy of the cortical magnification factor, stimuli of
equal velocity generate oscillations with different frequencies
when presented at different retinal eccentricities (Lima et al.

2011). Drifting and heterogeneous oscillation frequencies
could impair synchronization of gamma oscillations, raising
doubt on whether these can support binding (Singer 1999) or
communication by coherence (Fries 2005). Because gamma
oscillations are expressed differently under different con-
ditions and are modulated by several factors, there is still a
poor understanding of their implication in various brain pro-
cesses. Arguably, the properties and possible functional role
of gamma oscillations could be better understood if more
details are revealed about underlying mechanisms.

The mechanisms leading to beta/gamma oscillations are
not entirely clear (Tiesinga and Sejnowski 2009), but it is gen-
erally accepted that they rely on push–pull interplay between
excitation and inhibition (Buzsáki and Wang 2012). This can
be mediated either by coupled populations of excitatory and
inhibitory neurons (Hansel and Mato 2003), called Pyramidal
INterneuron Gamma (PING) mechanism (Börgers and Kopell
2003), or by tonic excitation of reciprocally coupled inhibitory
neurons, called INterneuron Gamma (ING) mechanism (Whit-
tington et al. 2000), in which case gamma oscillations can
arise also in purely inhibitory networks (Wang and Buzsáki
1996; Brunel and Hakim 1999). A consensus regarding the
prevalence of PING or ING has not yet been reached (Tiesin-
ga and Sejnowski 2009), but it is likely that both may be at
work in different brain systems, during different brain states,
and under the influence of different neuromodulators (Whit-
tington et al. 1995; Buhl et al. 1998; Fisahn et al. 1998).
Nevertheless, it is now clearly recognized that inhibition plays
a crucial role in emergence of fast oscillations (Whittington
et al. 2000) and it has been demonstrated that parvalbumin
expressing fast-spiking (FS) GABA-ergic interneurons play a
causal role in supporting gamma oscillations (Buzsáki et al.
1983; Bragin et al. 1995; Hasenstaub et al. 2005; Cardin et al.
2009; Sohal et al. 2009).

Another important mechanism related to oscillations is the
intrinsic frequency preference of neurons (Llinás et al. 1991;
Gray and McCormick 1996; Hutcheon and Yarom 2000), also
called membrane resonance (Izhikevich 2007; Mureşan and
Savin 2007) that can naturally support rhythms. For example,
membrane resonance in hippocampal pyramidal neurons
(Leung and Yu 1998; Leung and Yim 1991), manifest in the
theta frequency band, was shown to contribute to development
of theta oscillations in models of CA3 (Tiesinga et al. 2001).
Membrane resonance was studied relatively seldom in the
context of fast oscillations, in spite of the fact that inhibitory
interneurons, especially of parvalbumin expressing FS type,
can exhibit frequency preference, usually in the beta/gamma
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bands (20–80 Hz) (Pike et al. 2000; Fellous et al. 2001; Bracci
et al. 2003). So far, it is not clear how membrane properties of
inhibitory interneurons may complement or interact with the
widely accepted push–pull emergence mechanism of fast
network oscillations, nor is it clear which properties of such
oscillations may be influenced by resonance.

Here, we first show that in vivo gamma oscillations in the
cat visual cortex can sometimes exhibit remarkably stable
oscillation frequency and most likely emerge from a PING-like
mechanism. Based on in vivo findings, we further use compu-
tational modeling to establish how the observed properties of
beta/gamma oscillations are determined by membrane prop-
erties of inhibitory interneurons, with a focus on the stability
of oscillation frequency when the input fluctuates. Through-
out the rest of this paper, we will use the term gamma oscil-
lation to refer to a broad frequency band of 20–80 Hz,
because there is evidence that high-beta (20–30 Hz) and
gamma (30–80 Hz) frequency bands are not clearly separated,
but seem to be generated by the same underlying process
(Steriade 2006).

Materials and Methods

Ethics Statement
Experimental data were recorded from anesthetized and paralyzed
adult cats, bred in the facilities of the Max-Planck Institute for
Brain Research. All the experiments were conducted in accordance
with the European Communities Council Directive of 24 November
1986 (86/609/EEC), according to the guidelines of the Society for
Neuroscience and the German law for the protection of animals,
approved by the local government’s ethics committee and overseen
by a veterinarian.

Experimental Procedures and Recording
Anesthesia was induced with ketamine (Ketanest, Parke–Davis, 10
mg kg−1, intramuscular) and xylazine (Rompun, Bayer, 2 mg kg−1,
intramuscular) and maintained with a mixture of 70% N2O and
30% O2 supplemented with halothane (0.5–1.0%). After tracheot-
omy, animals were placed in a stereotactic frame. A craniotomy
was performed, and the skull was cemented to a metal rod. After
completion of all surgical procedures, the ear and eye bars were
removed, and the halothane level was reduced to 0.4–0.6%. After
assuring that the level of anesthesia was stable and sufficiently
deep to prevent any vegetative reactions to somatic stimulation,
animals were paralyzed with pancuronium bromide (Pancuronium,
Organon, 0.15 mg kg−1 h−1). The end-tidal CO2 and rectal tempera-
ture were kept in the range of 3–4% and 37–38 °C, respectively.
Stimuli were presented binocularly on a 21-inch computer screen
(HITACHI CM813ET) with 100 Hz refresh rate. To obtain binocular
fusion, the optical axes of the two eyes were first determined by
mapping the borders of the respective receptive fields and then
aligned on the computer screen with adjustable prisms placed in
front of one eye. Visual stimulation was achieved through ActiveS-
TIM (www.ActiveSTIM.com). Data were recorded from area 17 of 2
adult cats by inserting multiple silicon-based multi-electrode probes
(16 channels per probe) supplied by the Center for Neural Com-
munication Technology at the University of Michigan (Michigan
probes). Each probe consisted of four 3 mm long shanks that were
separated by 200 µm (inter-shank distance) and contained four
electrode contacts each (1250 µm2 area, 0.3–0.5 MΩ impedance at
1000 Hz, inter-contact distance 200 µm). Signals were amplified
10 000× and filtered between 500 Hz and 3.5 kHz and between 1
and 100 Hz for extracting spiking activity and local-field potentials
(LFPs), respectively. Waveforms of detected spikes were recorded
for a duration of 1.2 ms, which allowed the later application of
offline spike-sorting techniques to extract single units (SUs).

Stimuli

Center-surround Grating Stimuli
Sinusoidal gratings of three different sizes (small, medium, and large)
and two orientations (horizontal and vertical) were presented indivi-
dually or superimposed. Gratings spanned visual angles of 7°, 14°,
and 21°, had a spatial frequency of 1° per grating cycle, and were
drifted at a speed of 1.5° per second, orthogonal to their orientation
and in one direction only. Stimuli included 6 individual gratings, 4
superimposed gratings with a small central grating surrounded by an
orthogonal medium or large grating, and 4 superimposed gratings
consisting of a small grating separated by a gray ring (3.5° wide) from
a surrounding large grating of identical or orthogonal orientation.
The resulting 14 stimuli were randomly presented 20 times each,
leading to a total number of 280 trials. Trials were 6000 ms long with
the stimulus presented between 1000 and 5000 ms. These stimuli
were used to record from Cat 1, with 85 SUs isolated off-line.

Drifting Sinusoidal Grating Stimuli
Sinusoidal gratings moving in 12 directions in steps of 30° were pre-
sented in trials of 4800 ms duration (1000 ms spontaneous activity,
3500 ms stimulus, 300 ms stimulus-OFF response). Gratings spanned
12° of visual angle, had a spatial frequency of 2.4° per cycle, and
drifted with a speed of 2° per second. Each direction was presented
20 times in a randomized order leading to the total of 240 presenta-
tions (trials). These stimuli were used to record data from Cat 2 (39
SUs).

Estimation of Oscillation Strength and Oscillation Frequency
The oscillation strength and frequency of the activity of single cells
were estimated by using the oscillation score (OS) (Mureşan et al.
2008). The OS relies on the autocorrelation histogram (ACH) com-
puted over all presentations of the corresponding stimulus. The
central peak of the ACH is then removed and the fast Fourier trans-
form (FFT) of the peakless ACH is computed. We used an ACH of
±256 ms (512 bins), yielding an FFT bin of ∼2 Hz (the sampling fre-
quency for spike-trains was 1000 Hz). Therefore, the precision of the
oscillation frequency estimate was ±1 Hz. After computing the FFT, a
peak was identified in the frequency band of interest, and the OS was
defined as the size of the peak relative to the average (baseline) of the
FFT spectrum. The oscillation frequency corresponded to the location
of the peak in the analyzed frequency band. To avoid false estimates
of frequency due to harmonics or overestimation of OS due to data
with very low spike rate, ACHs and their corresponding frequency
spectra were frequently inspected visually—see (Mureşan et al. 2008).

It is recommended to compute the OS in a narrow band of interest,
usually not exceeding one biological frequency band (Mureşan et al.
2008). Here, we computed the OS in a broad band spanning both
high-beta and gamma (20–80 Hz) for the sake of covering the entire
relevant frequency range. Analyses were, however, repeated also in a
narrow band, between 20–40 Hz, around the oscillation frequency ob-
served in the recorded data (28.83 ± 1.66 Hz). The broad and the
narrow band OS analyses yielded similar results.

Sliding Window Analysis of Experimental Data (Stability Test)
To determine the stability of the oscillation frequency and firing rate,
we conducted a sliding-window analysis of spike trains by computing
the instantaneous oscillation frequency and instantaneous firing rate
along the presentation of a stimulus, and estimating the fluctuations
of the two. Data were collected from 2 cats and out of a total of 124
SUs isolated through off-line spike sorting, 79 showed oscillatory
responses. However, only 62 out of these 79 oscillating cells produced
enough spikes to allow for the estimation of OS in at least 20 overlap-
ping windows of 500 ms length (see below). There were no other se-
lection criteria for including a cell into analysis: We included not only
cells whose responses were modulated strongly by the passage of the
grating stripes over the receptive fields (i.e. simple cells) but also
those with weak modulation (complex cells) (Hubel and Wiesel
1962).
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A sliding window of 500 ms was moved in steps of 10 ms over the
sustained part of the responses (200 ms following stimulus onset until
the end of stimulation). Not all windows were used in the analysis but
only those for which an oscillation frequency could be measured.
Because the windows were relatively short and the firing rate of corti-
cal neurons was low, there were only few spikes to estimate oscil-
latory patterning and this made estimation of oscillation frequency
very difficult. For very low rates, the OS tends to be overestimated
(Mureşan et al. 2008) and for that reason, when establishing if the
activity in a window was oscillatory or not, we imposed thresholds
also on the number of action potentials in the window. A window
was considered to exhibit oscillatory activity if the OS in the 20–80 Hz
band ≥7, and the window had sufficient number of action potentials
to produce an ACH with ≥0.07 coincidences/ACH-bin (weak oscil-
lations, conservative rate threshold), or if the OS in the 20–80 Hz
band was ≥10 and the baseline of the ACH exceeded 0.025 coinci-
dences/ACH-bin (stronger oscillations, relaxed rate threshold). An
analysis with the frequency band restricted to 20–40 Hz yielded iden-
tical results (not shown). Out of the total 108 980 windows, 56 525
(51.87%) were included in the analysis. For the comparison, firing
rates were always computed for the same windows used for calcu-
lation of the oscillation frequency.

For the 62 selected units (42 and 20 units for Cat 1 and Cat 2,
respectively), we investigated the fluctuation of oscillation frequency
and firing rate along the stimulus for at least 1 and up to 14 (on
average 5.5) different stimuli, that is, for cases where the oscillatory
response could be measured. This led to a total of 341 tests of stab-
ility, with 270 and 71 tests for Cat 1 and Cat 2, respectively. For each
test, we computed the standard deviation and coefficient of variation
of the oscillation frequency and firing rate across the corresponding
sliding windows (on average 161.99 windows for each test). The stan-
dard deviation of the oscillation frequency was termed “frequency
drift”.

Analysis of Putative Excitatory/Inhibitory Neurons’ Firing
Sequence
To attempt to separate putative pyramidal neurons (wider spike) from
putative interneurons (more narrow spike) (González-Burgos et al.
2005; Mitchell et al. 2007), action potential width was quantified as
the time interval between the two extremes of the extracellular
voltage (Supplementary Fig. S1A). This method is different from pre-
viously reported measures of spike width where the beginning and
end of an action potential were defined as the moments at which the
excursion of the voltage was below a certain threshold [e.g. 10% of
the first and second peak, respectively; (González-Burgos et al.
2005)]. Neurons in the cat visual cortex frequently exhibit strong
bursting during epochs with oscillatory activity in the gamma band,
and this makes it difficult to use such methods to detect the beginning
and end of the spike with sufficient precision. We found that measur-
ing the time interval between the two extremes of the extracellular
voltage was more robust, as has been also described previously
(Mitchell et al. 2007). Data were carefully spike-sorted again, only the
cells with clearly identifiable spike shape being selected (22 cells for
Cat 1 and 14 cells for Cat 2).

After computing the width of individual action potentials, we con-
sidered, for each animal and each stimulus, only pairs of cells that ex-
hibited oscillatory activity and were synchronized to make sure they
participated in the same oscillatory process. Thus, we included in the
analysis only cells that had OS >8 and where the central peak of their
cross-correlation histogram (CCH) was at least 2× larger than the base-
line of the CCH. The delay between a pair of cells was inferred from
the offset of the central peak of the CCH relative to zero (Supplemen-
tary Fig. S1B).

Because of the constraints regarding oscillatory activity and syn-
chronization of pairs of cells whose activity has to be recorded simul-
taneously, we could not pool data across different sessions and
animals as was the case in other studies (Mitchell et al. 2007). There-
fore, only a limited number of cells matched all criteria for inclusion
in the analysis. We could not find clear clusters based on action

potential width that would identify the two different groups of princi-
pal cells and interneurons. Rather, action potential width was distrib-
uted in a continuum across the included cells, as was reported also in
other studies (González-Burgos et al. 2005; Krimer et al. 2005). The
lack of clear clustering of action potential widths could be due to fil-
tering (Henze et al. 2000; Constantinidis and Goldman-Rakic 2002;
Mitchell et al. 2007) and/or the spike-sorting procedure (Mitchell
et al. 2007). In cat area 17 identification of inhibitory interneurons
was difficult both because extracellular recording electrodes might
seldom pick up their weaker spikes and because these spikes may be
mixed with others from pyramidal cells and cannot be clearly separ-
ated during spike sorting. As a result, it is possible that waveforms
extracted by spike sorting are a mix of pyramidal and interneuronal
waveforms, yielding a continuum distribution of action potential
widths (Mitchell et al. 2007). For these reasons, we developed a
“smooth” method to get a hint on the likely firing sequence of puta-
tive pyramidal neurons and interneurons: We correlated the CCH
delay with the difference between the widths of the action potential
of the corresponding cells in each pair (Supplementary Fig. S1C).
When wider action potentials precede narrower ones, the correlation
is positive.

Network Architecture and Connectivity
Simulated networks were built on a square grid with an edge length
L = 25 units, resulting in 25 × 25 = 625 neurons. Each unit was either
excitatory or inhibitory and their proportion in the network was 80%
excitatory and 20% inhibitory (Supplementary Fig. S2A). Excitatory
and inhibitory neurons were distributed randomly on the grid. All
neurons belonging to one of the two populations had identical par-
ameters, connectivity parameters, and input statistics. We chose small-
world connectivity between neurons because it matches best the con-
nection patterns in brain circuits, both in terms of anatomical (Sporns
et al. 2004) and functional connectivity (Yu et al. 2008). We have ob-
served a small advantage in obtaining robust oscillations when using
a small-world topology when compared with a random one, but the
connectivity factor was not investigated systematically in the present
study. Nevertheless, results reported with the small-world architecture
were reproduced also with randomly connected networks (not
shown). Network connectivity was governed by the rules summarized
in Supplementary Figure S2B, and as follows: For each postsynaptic
neuron, a set of eligible presynaptic neurons was chosen from its
vicinity. This vicinity circle was centered on the postsynaptic (target)
neuron and was defined by a radius, r, expressed relative to the
largest distance possible on the grid (diagonal). Inhibitory neurons
received more local inputs (rI = 0.2) than excitatory neurons (rE = 0.3).
To eliminate border effects, the grid had a periodic boundary con-
dition (was wrapped around the edges). From the neurons that laid
within the vicinity circle, a set of presynaptic neurons were chosen
based on the local connection probability, P. Local connection prob-
abilities were chosen for excitatory, PE = 0.3, and inhibitory targets,
PI = 0.65, such that the number of connections per target remained
about the same, counterbalancing for the differences in r. No autaptic
(self) connection was allowed. To create small-world topology, some
of the connections were replaced with long-range connections to
neurons outside the vicinity circle. This rewiring probability was the
same for all the neurons (PEl = 0.2 and PIl = 0.2). The wiring pattern
described above took into consideration that parvalbumin-expressing
inhibitory interneurons, known to be involved in gamma oscillations,
are generally contacting proximal pyramidal cells, but can also have
more long-range connections (Thomson and Bannister 2003). Based
on anatomical evidence, we considered that excitatory local connec-
tions spanned a larger territory compared with the local inhibitory
connections and in addition that both the inhibitory and excitatory
populations can contact more distal targets, i.e. corresponding to
cortico-cortical connectivity (Thomson and Bannister 2003). On
average, excitatory neurons were contacted by ∼58 presynaptic
neurons, while inhibitory neurons were contacted by ∼45 presynaptic
neurons.
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Neuron Types
Excitatory neurons were always of the leaky integrate-and-fire (IF)
type with membrane resistance Rm = 20 MΩ and membrane capaci-
tance Cm = 1 nF (time constant of 20 ms) (see Table 1, E_IF). In the
simulations with purely integrator networks, inhibitory interneurons
were of the same type (leaky IF) and had Rm = 10 MΩ and membrane
capacitance Cm = 1 nF (time constant of 10 ms) (see Table 1, I_IF). For
integrator–resonator networks, the inhibitory IF neurons were re-
placed with Izhikevich-type resonators (Izhikevich 2003) (see
Table 1, I_RES):

_u ¼ 0:04u2 þ 5uþ 140� r þ I

_r ¼ aðbu� rÞ

if u � 30; then
u c

r  r þ d

� ð1Þ

where u is the membrane potential, r is a recovery variable, I is the
input current, and a, b, c, d are parameters (set to a = 0.1, b = 0.26,
c =− 62.5, and d = 2 for resonators).

Parameter c (resting potential) was set to −62.5 mV (−65 mV in the
original Izhikevich model) because the neuron maintains this stable
voltage in the absence of any external input. These resonator neurons
have frequency preference, the input impedance exhibiting a peak
centered around 22–24 Hz (Supplementary Fig. S3B).

To test for the model independence of observed phenomena, in
some simulations we used another model for resonator interneurons,
i.e. the resonate-and-fire model (RF) (Izhikevich 2001) (Table 1,
I_RF). The original RF model was modified by introducing a mem-
brane potential variable that ranges between a resting voltage of −65
mV and a firing threshold of −45 mV, and a refractoriness kernel:

v ¼ 2pfres
_x ¼ bx � vy þ I

_y ¼ vx þ by

_r ¼ �trefr
u ¼ �65þ 20y � r

ð2Þ

where x and y are dynamics variables from the original RF model
(Izhikevich 2001), I is the input current, b represents the rate of attrac-
tion to rest (<0), fres is the resonance frequency of the neuron, r is an
exponentially decaying (with decay constant τref ) refractoriness kernel
introduced after the spike, and u is the membrane potential.

When the membrane potential u exceeds the threshold of −45 mV,
the neuron fires a spike, and variables are reset as follows:

x  0

y  1

r  r þ 40

ð3Þ

such that the membrane is hyperpolarized at −85 mV after spike but
the internal variables x and y continue to evolve on the dampened
resonant oscillation curve. The refractoriness kernel ensures a realistic
dynamics for both the membrane and the postsynaptic currents (de-
pendent on the postsynaptic membrane potential) of the modified RF
neuron.

Importantly, RF neurons exhibit resonance at a frequency that is
explicitly defined in the model (parameter fres), rendering them feas-
ible to study networks with arbitrary interneuronal resonant fre-
quency. Unlike RES neurons, the impedance profile of RF neurons is
not voltage dependent (Supplementary Fig. S3C), as is also the case
with IF neurons.

Synapses
Four types of synapses connect all possible four combinations of
excitatory and inhibitory pre- and postsynaptic neurons. According to
Dale’s law, excitatory neurons were allowed to form only excitatory
connections with postsynaptic targets and inhibitory neurons only
inhibitory connections. Both types of neurons received both excit-
atory and inhibitory synaptic input. Below, the type of synapse is co-
dified by two letters. The first letter corresponds to the type of
presynaptic neuron and thus to the type of the synapses, and the
second letter corresponds to the type of the target neuron. All sy-
napses were conductance-based (postsynaptic currents depend on re-
versal potential and the postsynaptic membrane potential), with an
exponential decay constant of 3 ms for excitatory synapses (EE, EI),
which corresponds to AMPA synapses, and 5 ms for inhibitory sy-
napses (IE, II), which corresponds to GABAA synapses. In some simu-
lations, the time constants of inhibitory synapses were manipulated
systematically between 1 and 11 ms. The amplitudes (weights) of the
synapses were randomly selected from the interval [0, maxSyAmp],
where maxSyAmp depended on the type of the synapse (Table 2) and
was set such that networks had realistically low firing rates, matching
in vivo findings (Olshausen and Field 2006). The maxSyAmp variable
was scaled independently for excitatory and inhibitory synapses in
the simulations that manipulated the strength of connectivity.

Each synapse had in addition a conduction delay proportional to
the distance between the pre- and postsynaptic neuron. The
minimum delay was 0.1 ms and, unless specified otherwise, the delay
between the two most distant neurons was 3 ms. The latter value was
an upper bound on local circuit conduction delays in the cortex
(Sabatini and Regehr 1999).

Simulations were carried out with the Neocortex environment
(Mureşan and Ignat 2004) using an integration time step of 0.1 ms.
For additional details on the shape of synaptic currents and simu-
lation, see Mureşan and Ignat (2004) and Mureşan and Savin (2007).

External Drive
Each neuron received two types of inputs. The first input was a sinu-
soidal current, corresponding to an external stimulation similar to a
grating passing trough the receptive field of a simple cell. The sinusoi-
dal input was shifted such as to prevent negative values (not centered
on 0, but with an offset equal to the amplitude of the sine function)
and was present between stimulus onset, at 1000 ms, and stimulus
offset, at 5000 ms, in trials lasting 6000 ms. Amplitudes of this input
depended on the simulation and the type of neuron: both the excit-
atory and inhibitory populations received input (Table 2). The fre-
quency of the sine was 0.5 Hz if not otherwise specified. Each
stimulation epoch was repeated 20 times, yielding 20 trials. In some
simulations, we also used constant currents instead of sinusoidal
inputs (this was always specified).

The second type of input modeled the spontaneous release of min-
iature synaptic potentials—minis (Paré et al. 1997; Paré et al. 1998).
Minis were modeled as exponentially decaying synaptic conductances
released with a given probability (0.09/ms for glutamate and 0.02/ms
for GABA) similarly as reported in Mureşan and Savin (2007). Gluta-
mate minis had a decay time constant of 3 ms, while GABA minis had
5 ms. Similarly to the case of synapses, the amplitudes of minis were
randomly selected from an interval between 0 and a maximum value.
With this maximum value, the level of spontaneous activity in the

Table 1.
Parameters of neuron models

Parameter name Value

E_IF Rm (MΩ) 20
Cm (nF) 1
Urest (mV) −65
Ureset (mV) −65
Threshold (mV) −45

I_IF Rm (MΩ) 10
Cm (nF) 1
Urest (mV) −65
Threshold (mV) −45

I_RES a 0.1
b 0.26
c −62.5
d 2

I_RF fres Between 20–40 Hz, depending on setup
b −30
τref 5 ms
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network was regulated. Amplitudes of minis are given in Table 2.
Both synapses and mini amplitudes had to be scaled differently for
IF, RES, and RF populations due to the different excitability of these
models (Mureşan and Savin 2007) (see Table 2).

Calibration of Reference Networks
To make sure that IF–IF, IF–RES, and IF–RF networks are in the same
operating regime, we first calibrated the parameters for reference net-
works. Calibration started by considering IF–IF, IF–RES, and IF–RF
networks that had identical connectivity, differing only in the type of
interneuron. We first silenced the sinusoidal input and set all synaptic
strengths to zero, yielding only uncoupled populations of neurons
driven by minis. Amplitudes of minis were tuned such that corre-
sponding populations of excitatory and inhibitory neurons had the
same spontaneous firing rates in all types of networks. Sinusoidal
input to inhibitory neurons had to be different for IF, RES, and RF
interneurons because of differences in excitability of these models
(Mureşan and Savin 2007), and was set such as to obtain the same
average firing rate of interneurons in all networks. Input to excitatory
neurons was the same in all networks because the excitatory popu-
lation was identical. Synaptic connections were then added and tuned
until excitatory and inhibitory populations exhibited firing rates con-
sistent to those observed in the data.

Analyses of Network Activity
All quantitative results were computed by setting up at least 10 differ-
ent networks of each type. The wiring of each network was done ac-
cording to the wiring principles described above, but actual
connections were created randomly with the probabilities and rules
specified before. Thus, each instantiation created a slightly different
network and therefore, in order to obtain robust estimates, we com-
puted all quantitative results by presenting the input 20 times to each
network, and then averaging across networks. In all cases, the stan-
dard deviation was also computed, in order to get an estimate of
variability.

Synchronization Index
To quantify the synchronization of a population of neurons, we devel-
oped a measure called Synchronization Index (SI). The measure first
computes the time resolved (unnormalized) population rate by comput-
ing the spike count across all neurons in bins of 1 ms along the trial. To
identify oscillation cycles more precisely, this population rate is
smoothed with a Gaussian kernel having SD = 5 ms and the local
maxima (peaks) and their neighboring local minima (troughs) of the
smoothed population rate are identified. When networks are engaged
into coherent oscillations, these local maxima and minima occur period-
ically, being located at each oscillation cycle. For each oscillation cycle,
identified as the period between two consecutive troughs, the corre-
sponding piece of the unsmoothed population rate signal reflects
exactly the distribution of spikes within the cycle. The SI corresponding
to the cycle is then defined as the duration of the cycle divided by the
average absolute deviation of the cycle spike distribution around its
median. When neurons in the population fire in synchrony, spikes are
concentrated in a narrow region of the cycle, yielding low absolute devi-
ation and a high SI. At the other extreme, when neurons are poorly syn-
chronized, firing randomly and uniformly in the local cycle window,
their absolute deviation is high and SI has low values. Thus, SI rep-
resents a measure of spread of spikes in relation to the duration of the
cycle. It is independent of oscillation frequency and of firing rate.

Results

Stable Gamma Oscillations in Cat Visual Cortex
Stimulus-selective gamma oscillations, reported in the visual
cortex of cats (Gray and Singer 1989), may exhibit an oscil-
lation frequency that is stable within a few Hz, even when the
firing rate of cells strongly fluctuates during the response to
the stimulus. In Figure 1A, we show the activity of an
example cell from cat area 17 in response to 20 stimulus pre-
sentations (trials) of a drifting sinusoidal grating. The ACHs
computed for four non-overlapping, 500 ms long, epochs
along the trial (Fig. 1A, top) revealed a stable oscillation fre-
quency (∼27.5 Hz), although the firing rate fluctuated
strongly, as shown by the peri-stimulus time histogram
(PSTH; Fig. 1A, bottom).

These results were consistent across all 62 investigated cells
(from two different animals) that exhibited measurable
gamma oscillation. For each cell that exhibited oscillatory
responses to a given stimulus, a stability test for oscillation
frequency and firing rate was carried out using a 500 ms
sliding window along the presentation of the stimulus (see
Materials and Methods). We computed the coefficients of vari-
ation (CV) of the oscillation frequency and firing rate across
the corresponding windows for each stability test, thus quan-
tifying the drift relative to the mean of oscillation frequency
and firing rate along stimulus presentation. The CV of oscil-
lation frequency was considerably smaller than the CV of
firing rate, for all stability tests and in two different animals,
this property being most prominent for the first animal

Table 2.
Simulation and network parameters

Category Parameter name IF–IF IF–RES IF–RF

Simulation Number of trials 20
Trial duration (ms) 6000
Integration step (ms) 0.1
Stim. On (ms) 1000
Stim. Off (ms) 5000

Network Lattice size 25 × 25 (625 neurons)
Percentage of E neurons 80%
Percentage of I neurons 20%

Connectivity PE 0.3
PI 0.65
rE 0.3
rI 0.2
PEl 0.2
PIl 0.2

Neuron types E neuron E_IF
I neuron I_IF I_RES I_RF

Synapses Maximum delay (ms) 3
EE reversal potential (mV) 0
EI reversal potential (mV) 0
IE reversal potential (mV) −90
II reversal potential (mV) −90
EE maxSyAmp 0.022 0.011 0.022
EI maxSyAmp 0.022 0.011 0.0065
IE maxSyAmp 0.2 0.2 0.15
II maxSyAmp 0.0275 0.035 0.01
EE decay constant (ms) 3
EI decay constant (ms) 3
IE decay constant (ms) 5
II decay constant (ms) 5

MINIs Glutamate to E neurons scaling 0.0625
Glutamate to I neurons scaling 0.09 0.00719 0.0035
GABA to E neurons scaling 0.04
GABA to I neurons scaling 0.04 0.0049 0.00224
Glutamate to E neurons decay constant (ms) 3
Glutamate to I neurons decay constant (ms) 3
GABA to E neurons decay constant (ms) 5
GABA to I neurons decay constant (ms) 5
Glutamate MINIs release probability 0.09
GABA MINIs release probability 0.02

Input current Sine frequency (Hz) 0.5
Sine amplitude to E neurons (nA) 1
Sine amplitude to I neurons (nA) 0.465 0.07 0.034
Sine offset to E neurons (nA) 1
Sine offset to I neurons (nA) 0.465 0.07 0.034
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(Fig. 1B). The standard deviation (SD) of oscillation frequency
fluctuations along the stimulus (frequency drift) was on
average <1.6 Hz and was significantly lower for the first
animal than for the second (P < 0.001; Fig. 1C). In addition,
the activity of neurons recorded in the first animal displayed a
significantly stronger gamma oscillation than in the second
animal (P < 0.001), as revealed by OSs estimated from spiking
activity (Fig. 1D).

In an analysis of LFPs similar to that performed on individ-
ual neurons’ spikes, we quantified the drift of the oscillation
frequency along the stimulus by first computing the time-
resolved power spectrum (Fig. 1E). Again, oscillation fre-
quency appeared very stable in the first animal, with in-
creased power at moments where the firing rate was highest
(compare to Fig. 1A), and was somewhat more fluctuating for
the second animal. For each time bin, the frequency with

Figure 1. Gamma oscillations in individual cells of the cat visual cortex. (A) The firing of a “simple” cell: Top, ACHs computed at different epochs; middle, spike raster across 20
trials; bottom, peri-stimulus time histogram (PSTH). Above each ACH, the oscillation frequency (fosc) and OS are indicated. Oscillation frequency was computed with a precision
of ±1 Hz due to a spectral bin size of 2 Hz. (B) Coefficient of variation of oscillation frequency versus coefficient of variation of firing rate. (C) Drift of oscillation frequency (SD)
along the stimulus, measured from spike trains. (D) OS in the 20–80 Hz band, averaged across sliding windows, cells, and stimulation conditions. (E) Time resolved power
spectra of LFP along stimulus presentation. (F) Drift of oscillation frequency (SD) along the stimulus, measured from LFP. (G) Power spectral density of LFP averaged across
electrodes and stimuli. Error bars indicate SD. ***P< 0.001.
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maximum power was subsequently considered to be the
central oscillation frequency. The frequency drift along the
stimulus was then estimated as the SD of the central fre-
quency across time bins. The frequency drift across all stimuli
and electrodes was significantly smaller in the first animal
than in the second (P < 0.001; Fig. 1F). Gamma power was
much larger in the first animal when compared with the
second (Fig. 1G), supporting the idea that more stable oscil-
lations are associated with a larger power in the gamma band.

To investigate the mechanism underlying the observed
gamma oscillations, we attempted to identify the firing se-
quence of putative excitatory pyramidal neurons and inhibi-
tory interneurons based on the observation that FS
interneurons emit narrower action potentials than non-FS
neurons (González-Burgos et al. 2005). We developed a
“smooth” analysis method to estimate the relation between
firing sequence (delay) and action potential width in pairs of
cells exhibiting synchronized oscillations (see Materials and
Methods). The delay between the firing of cells correlated
positively with the difference between the widths of their
spikes (Supplementary Fig. S1C), for both animals (average
correlations across stimuli for Cat 1 and Cat 2 were 0.65 and
0.64, respectively). The positive correlation indicates that cells
with wider spikes tend to fire earlier in the gamma cycle than
cells with narrower spikes, i.e. firing of putative pyramidal
neurons precedes that of putative interneurons. In addition,
measured delays were small (<5 ms), suggesting that inhi-
bition followed excitation at an early phase within the gamma
cycle (the oscillation period was >25 ms in our data).

Taken together, these findings indicate that gamma oscil-
lations can be highly stable in frequency even when cortical
inputs and firing rates of cells fluctuate strongly. Such stab-
ility is manifested both at the level of oscillatory activity of
single cells and at the level of LFPs. In our data, larger OSs
in spiking activity and larger gamma power measured in
the LFP were associated with significantly more stable oscil-
lations across two different animals. Results also suggest a
PING-like emergence mechanism for the observed in vivo
gamma oscillations (Whittington et al. 2000), where excit-
atory volleys rapidly entrain interneurons whose firing gen-
erates inhibition that quenches activity until the next
oscillation cycle (Fisahn et al. 1998). In addition, gamma
oscillations were strongly dependent on cortical state. The
session recorded in the first animal was preceded by
several sessions, recorded hours before, where the same
stimuli did not evoke oscillatory responses, suggesting that
gamma generators may dramatically change their properties
as a function of cortical state.

Among many possibilities, here we investigate membrane
resonance of FS interneurons (Pike et al. 2000; Fellous et al.
2001; Bracci et al. 2003) as a candidate mechanism that could
flexibly change the oscillatory properties of gamma genera-
tors. FS membrane resonance is a good candidate because
FS interneurons are crucially involved in the generation of
gamma rhythms (Buzsáki et al. 1983; Bragin et al. 1995;
Hasenstaub et al. 2005; Cardin et al. 2009; Sohal et al. 2009).
Furthermore, membrane resonance can be regulated by
voltage (Hutcheon et al. 1996) and neuromodulators (Steriade
et al. 1991; Hutcheon et al. 1996), both of which are modulated
during cortical-state changes. We next performed computer
modeling of neuronal circuits, to investigate whether and how

interneuronal membrane resonance could be related to the
observed properties of the recorded data.

Integration and Resonance in Interneurons of Gamma
Generator Circuits
Gamma generator circuits were modeled as networks with
80% excitatory and 20% inhibitory neurons, disposed on a
two-dimensional lattice (Supplementary Fig. S2A). Neurons
were connected via realistic conductance-based synapses in a
small-world topology (Supplementary Fig. S2B). Unless other-
wise specified, a distance-dependent synaptic delay was intro-
duced (3 ms between most distant neurons), endowing the
network with a realistic connectivity regime for a local circuit
(Hirsch and Gilbert 1991; Lin and Faber 2002).

Excitatory neurons were always of the IF type, with mem-
brane time constants of 20 ms, having low-pass membrane
properties similar to those of pyramidal neurons (Fellous
et al. 2001; Erchova et al. 2004). Inhibitory interneurons were
modeled either as IF neurons, with time constants of 10 ms
(González-Burgos et al. 2005), or as Izhikevich-type resona-
tors (RES) (Izhikevich 2003). IF neurons behave as pure “inte-
grators” (i.e. low-pass filters) and thus, do not exhibit
frequency preferences in the beta/gamma range (Supplemen-
tary Fig. S3A). By contrast, RES neurons exhibit voltage-
dependent membrane resonance (Hutcheon and Yarom 2000;
Izhikevich 2003) having a maximal input impedance at their
preferred frequency, around 22–24 Hz (Mureşan and Savin
2007) (Supplementary Fig. S3B). Depending on the type of
inhibitory interneurons, we obtained two types of networks:
IF–IF (excitatory IF–inhibitory IF) and IF–RES (excitatory IF–
inhibitory RES). These networks were always identical in
terms of excitatory neurons and the statistics of connectivity
patterns but had different types of inhibitory interneurons (IF
and RES, respectively). In the following simulations, we deter-
mined the way in which membrane properties of inhibitory
interneurons affect emergent gamma oscillations.

Networks were driven with a sinusoidal input (Fig. 2A), as
elicited by a sinusoidal grating in layer 4 of cat visual cortex
(Fig. 1A). IF–IF and IF–RES networks were first calibrated
(see Materials and Methods) to exhibit firing rates matching
the properties of recorded data (average firing rate over the
stimulation period ∼4.5–4.7 spk/s), and both were able to
produce gamma oscillations with a mean frequency of ∼27 Hz
(Fig. 2A–C). During the stimulation period (1000–5000 ms;
Fig. 2A), average firing rates of inhibitory neurons (∼11–12
spk/s) were >3-fold larger than those of excitatory neurons
(∼3.5–4 spk/s), matching experimental evidence (Whittington
et al. 2000; Bartos et al. 2007). As a consequence, excitatory
neurons skipped the majority of oscillation cycles (Nikolić
2009), whereas inhibitory neurons fired on almost every cycle
(Bartos et al. 2007; Hájos and Paulsen 2009) (Supplementary
Fig. S4).

Both IF–IF and IF–RES networks showed evidence of a
PING-like oscillation mechanism, with inhibitory interneurons
firing within the oscillation cycle at short latencies after the
excitatory volley (Fig. 2B and C, top). We computed the LFP
corresponding to each network by averaging the deviation of
membrane potential from rest across all cells. Already from
spike rasters (Fig. 2B and C, top) and LFP traces (Fig. 2B and C,
middle), it was apparent that synchronization was less robust in
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IF–IF than in IF–RES networks, and that the oscillation was
more regular and stronger in the latter (Supplementary Fig. S5).
The time-resolved power spectrum of the LFP, averaged across
20 trials (Fig. 2B and C, bottom), revealed further that oscil-
lation frequency drifted more strongly in IF–IF (SD = 4.7 Hz)
than in IF–RES networks (SD = 0.8 Hz; about 6-fold difference).

The same conclusions were reached when analyzing the
firing events of individual cells. ACHs of excitatory neurons’
activity indicated that oscillatory modulation was less precise
in the case of IF–IF (Fig. 2D, left) than in IF–RES networks
(Fig. 2D, right). The distribution of OS (Mureşan et al. 2008)
in the beta/gamma band (20–80 Hz), computed across the

Figure 2. Gamma oscillations in simulated neuronal circuits. (A) Input (top) and spike rasters of a single trial activity in integrator–integrator (IF–IF) and integrator–resonator
(IF–RES) networks composed of 625 neurons. Rectangles indicate a section of IF–IF and IF–RES activity that is expanded in (B) and (C), respectively. Spikes are coded in blue for
excitatory neurons and in red for inhibitory neurons. (B) Top, zoomed in IF–IF raster from (A); middle, local field potential corresponding to spike raster above; bottom,
time-resolved power spectrum of the local field potential averaged across 20 trials. (C) Same as in (B), but corresponding to the IF–RES network from (A). (D) ACHs
corresponding to the activity of a neuron from the IF–IF (left) and the IF–RES networks (right) shown above. (E) OS distribution (in the 20–80 Hz band) for excitatory (blue) and
inhibitory (red) neurons in the IF–IF (left) and the IF–RES (right) networks.
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entire population of IF–IF network neurons, revealed low
values (most OS values < 10) (Fig. 2E, left), indicating a lack
of stable oscillatory modulation in the activity of individual
cells. By contrast, in IF–RES networks firing patterns of the
majority of neurons exhibited strong and stable oscillatory
modulation (most OS values > 10) (Fig. 2E, right).

Thus, induced gamma oscillations were stronger and more
stable when inhibitory interneurons exhibited membrane res-
onance. In the following analyses, networks presented in
Figure 2 were considered to be the reference. Several par-
ameters were subsequently manipulated to understand the
parameter and regime dependence of gamma oscillations in
the two types of networks.

Parameter Dependence of Emergent Oscillations
Inhibition is critical for the emergence of fast oscillations
(Buzsáki et al. 1983; Whittington et al. 2000; Cardin et al.
2009; Sohal et al. 2009) and the timescale of inhibitory cur-
rents is known to play a major role in controlling the fre-
quency of the oscillations. Application of barbiturates alters
the gating of the GABAA receptor and prolongs the decay of
the inhibitory post-synaptic current (IPSC), leading to a de-
crease in oscillation frequency (Whittington et al. 1995, 2000;
Bartos et al. 2007). We next manipulated the decay time con-
stant of inhibitory synapses (τinh) and computed, from
network LFP, the mean and drift (SD) of oscillation frequency
along the stimulus responses. Both types of networks exhib-
ited high oscillation frequency and large frequency drift for
very small τinh (1 ms), indicating that too short IPSCs are not
able to counterbalance excitation (Fig. 3A). In IF–IF networks,
oscillation frequency (Fig. 3A, left) and its drift along the
stimulus (Fig. 3A, right) decreased with increasing τinh, while
in IF–RES networks this decrease ceased for τinh ≥5 ms.

Another important factor that influences oscillation fre-
quency is the synaptic conductance delay (Maex and De
Schutter 2003). Maximum conductance delays, corresponding
to connections among most distant neurons, were next ma-
nipulated in a range between 1 and 9 ms (Fig. 3B). With in-
creasing delay, there was a monotonic decrease in oscillation
frequency for both types of networks (Fig. 3B, left). However,
while the frequency drift decreased in IF–IF networks as a
function of increasing delay, it remained relatively constant, at
low levels, in IF–RES networks (Fig. 3B, right).

Manipulation of τinh and conductance delays revealed two
important properties of gamma oscillations in the two types
of networks. First, in IF–RES networks, the oscillation fre-
quency remained bound within a more narrow band when
compared with IF–IF networks (Fig. 3A, left, and B, left). As
will be shown later, this property is due to the frequency pre-
ference of inhibitory interneurons in IF–RES networks that
keep the oscillation frequency bound within the peak of their
resonant input impedance (Supplementary Fig. S3B). Second,
in both parameter manipulations, the frequency drift in IF–
RES networks was considerably smaller than in IF–IF net-
works, indicating that the oscillations were always more
stable in the former than in the latter.

Networks generating gamma oscillations are relatively
complex, with nonlinear dynamics that may be strongly
regime-dependent (Brunel and Hakim 1999; Bartos et al.
2007). In addition to synaptic decay and conduction delays,
we also manipulated synaptic connectivity strengths that may

dramatically influence the operating regime of such networks.
Each of the four types of synapses (excitatory–excitatory,
excitatory–inhibitory, inhibitory–excitatory, inhibitory–inhibi-
tory) was changed in a range of −20%, 0%, and +20% around
the value used in our reference networks, yielding three
values for each connectivity strength. We then tested multiple
IF–IF and IF–RES networks with all possible combinations of
parameter values (81 combinations). The oscillation fre-
quency was broadly influenced by connectivity strength in IF–
IF networks around a central frequency of ∼28 Hz (Fig. 3C,
left), while IF–RES networks exhibited oscillation frequencies
in a more narrow range of around ∼27.5 Hz (Fig. 3C, right).
For all parameter combinations, the frequency drift was larger
in IF–IF networks (drift > 3 Hz; Fig. 3D, left) than in IF–RES
networks (drift < 3 Hz; Fig. 3D, right), indicating that for all
connectivity regimes networks with resonator interneurons
exhibit more stable gamma oscillations.

Cross-Model Validation and Influence of Resonant
Frequency
To check for consistency and model independence of results,
we next used a modified RF model (Izhikevich 2001) instead
of RES to model interneurons. RFfres neurons exhibit
frequency-dependent impedance (Supplementary Fig. S3C) at
a frequency of fres Hz that can be set explicitly by model par-
ameters (see Materials and Methods). As described for the
other networks, reference IF–RF20 networks (resonance fre-
quency set to 20 Hz) were first calibrated to obtain firing rates
similar to experimental data. Sinusoidal input engaged IF–
RF20 networks into network oscillations with a frequency of
∼31 Hz that was stable along the stimulus (SD = 0.78 Hz)
(Supplementary Fig. S6A), reproducing the frequency stability
of IF–RES networks.

Unlike in RES neurons, resonant frequency of the RF model
can be explicitly set as a parameter and we used this property
to test if resonance can “tune” the oscillation frequency of the
network. Resonant frequency was systematically varied from
20 to 40 Hz and oscillation frequency and frequency drift
were measured in IF–RF networks. Oscillation frequency in-
creased monotonically with the increase in resonant fre-
quency of interneurons, while frequency drift remained at
relatively low levels (<1.5 Hz; see Supplementary Fig. S6B).
Importantly, similarly to IF–RES, the network oscillation fre-
quency in IF–RF was higher than the central value of the sub-
threshold resonant impedance peak, e.g., IF–RF20 networks
oscillated at∼ 31 Hz, and this was a general feature of integra-
tor–resonator networks.

It is unlikely that in vivo interneurons in a local population
exhibit exactly the same resonant frequency. We therefore
studied the behavior of IF–RF networks with heterogeneous
resonant frequency. IF–RF20–40 networks were set up with
individual interneurons having resonant frequencies drawn
from a uniform distribution in the range of 20–40 Hz. IF–
RF20–40 networks exhibited oscillations that were more hetero-
geneous in frequency, especially when the input was weak
(rising and decaying slope of the sinusoidal bump). The fre-
quency became more constrained and less variable at the
peak of the input. Importantly, the expected value of the fre-
quency along the stimulus was close to the frequency corre-
sponding to IF–RF30 networks (see Supplementary Fig. S6B
and S6C). Thus, oscillations in networks with heterogeneous
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resonant frequency exhibit frequencies that are more broad-
band. These are spread around the frequency generated by a
network having interneurons that express the mean of the res-
onant frequencies. Importantly, the central (mean) oscillation
frequency remains stable in time and its variance around the
mean decreases with increased input. Strong input reduces
the variability of the oscillation frequency and constrains the
network more towards its mean oscillation frequency.

Mechanism of Frequency Stability
We next investigated the mechanism that rendered oscillations
in IF–RES networks more stable than in IF–IF networks. A
first observation is that along a sinusoidal input cycle, neur-
onal populations were entrained differently in the two types
of networks. In IF–IF, the inhibitory population responded
only after a corresponding excitatory volley, resulting in ba-
lanced population rates whose peaks did not smoothly covary
with the sinusoidal input (Fig. 4A, left). By contrast, in IF–
RES networks and for small values of the input, the inhibitory
population exhibited a higher population rate peak per oscil-
lation cycle than the excitatory population, while for strong
input this relation reversed. Both population rates were
smoothly modulated by the input (Fig. 4A, right). The differ-
ence stems from the different membrane properties of the
inhibitory neurons, as revealed by membrane potential traces
(Fig. 4B). In IF–IF networks, inhibitory IF neurons responded
passively, being purely reactive to the preceding excitatory
volley (Fig. 4B, top), whereas in IF–RES, inhibitory RES
neurons exhibited membrane fluctuations in tandem with the
excitatory membrane fluctuations (Fig. 4B, bottom, arrows).

Cross-correlation functions (CCFs) between average mem-
brane potentials across excitatory and inhibitory populations
confirm that in IF–IF networks inhibitory neurons’ mem-
branes responded passively to the excitatory entrainment with
a delay on the order of ∼8–12 ms (Fig. 4C, left), while in IF–
RES networks the membranes of the two populations fluctu-
ated almost in synchrony (Fig. 4C, right). When estimated
with a 200-ms long sliding window along the stimulus, the
delay between membrane fluctuations changed as a function
of the magnitude of network input. In IF–IF, the delay de-
creased for stronger input, showing that the inhibitory popu-
lation advanced towards the excitatory population in terms of
membrane fluctuations (Fig. 4D, left). This relation was oppo-
site for IF–RES networks, the delay being negative for small
input and increasing towards positive values for stronger
input (Fig. 4D, right). These results are at the core to under-
standing oscillation frequency modulation by input in the
studied networks. In IF–IF networks, inhibitory neurons
respond passively to excitatory entrainment, a pure PING
mechanism, and as a result the oscillation frequency is deter-
mined by the recovery period of excitatory neurons from inhi-
bition under the influence of the input—hence the frequency
drift, stronger input causing a faster recovery. In IF–RES,
inhibitory resonator neurons pace the oscillation cycles by
membrane fluctuations that are in synch with those of excit-
atory neurons. Resonators actively oppose the drift of oscil-
lation frequency: For weak input, excitatory neurons tend to
recover from inhibition later than the subthreshold membrane
fluctuation of resonators and thus a robust excitatory volley is
prevented by the already present, prevailing inhibition

Figure 3. Influence of parameters on gamma oscillations in local circuits. (A) Dependence of oscillation frequency (left) and of frequency drift along the stimulus (right) on the
decay time constant of inhibitory synapses. (B) Dependence of oscillation frequency (left) and of frequency drift along the stimulus (right) on the synaptic conductance delay.
(C and D) Distribution of oscillation frequencies and distributions of frequency drifts along the stimulus, respectively. Distributions were computed for IF–IF (light grey) and IF–RES
(dark grey) networks with various synaptic strength combinations. Error bars indicate SD.
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(Fig. 4E; see also right inset with “weak” input where it can
be seen that inhibitory neuron spikes are mixed with excit-
atory neuron spikes). Oscillation cycles longer than the effec-
tive resonant period of the interneuron population (in the
network, inhibitory–inhibitory coupling of resonators in-
creases the frequency of resonant fluctuations by a few Hz—
data shown later) are prevented, the oscillation frequency
having thus a lower bound (see also Fig. 3A, left, and C,
right). For strong input, excitatory neurons tend to fire earlier
than inhibitory resonators (Fig. 4E), which will lag behind
and give the excitatory population a larger window of oppor-
tunity yielding larger excitatory population rates (Fig. 4A,
right). The stronger the input the closer and the more syn-
chronously the two populations fire (Fig. 4E, right; membrane
fluctuations become narrower but their timing relation is as
shown in Fig. 4D, right). However, inhibitory resonator
neurons cannot be advanced too much relative to the effective
resonant period such that the resulting IPSCs limit the ad-
vancement of excitatory neurons in the next cycle, creating a
higher bound on the oscillation frequency. We will call this
mechanism RING (Resonance INduced Gamma), and, as we
will show later, RING is neither purely PING nor purely ING,
but can reproduce both.

To demonstrate that resonance is causally associated with
frequency stability, we next manipulated the expression of
resonance in interneurons of IF–RES networks. Input impe-
dance at the resonant peak was decreased by increasing the a
parameter in the Izhikevich model (Izhikevich 2003). As the
resonant impedance (Z) became smaller, the oscillation fre-
quency decreased (Supplementary Fig. S7A) and the fre-
quency drift increased (Supplementary Fig. S7B). In addition,
to check whether the identified RING mechanism is not an
artifact due to the different models of interneuron but is
indeed relying on membrane resonance, we kept the inter-
neuron model unchanged (i.e. Izhikevich type) but manipu-
lated the parameters of the Izhikevich model from resonator
to regular-spiking (RS). We found that the frequency drift was
larger in IF–RS than in IF–RES and comparable to that of IF–
IF networks, although more stable on the rising front of the
input drive (Supplementary Fig. S7C). RS neurons display fre-
quency adaptation (Izhikevich 2003) and fire with higher fre-
quency at the onset of stimulation. Adaptation allowed RS
interneurons to entrain to higher initial frequency and to com-
pensate for the smaller initial input, thus stabilizing frequency
on the rising slope of the input drive. This further demon-
strates the importance of membrane properties of

Figure 4. Membrane properties and oscillation mechanisms. (A) Population rates of excitatory (blue) and inhibitory (red) neurons. (B) Membrane potential trace examples of
excitatory (blue) and inhibitory (red) neurons. Arrows indicate the resonant fluctuation of the inhibitory neuron’s membrane. (C) CCF of average membrane potentials of excitatory
and inhibitory populations. (D) Offsets of the central peak of CCFs computed with sliding windows of 200 ms along the stimulus (one period of the sinusoid) as a function of the
corresponding input to the network. (E) Schematic representation of the RING mechanism (left), with example firing sequences in an IF–RES network for different values of the
input (right). The blue traces show a schematic firing of the excitatory IF neuron in relation to the subthreshold membrane fluctuation of the inhibitory resonator (red trace) and
as a function of input strength.
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interneurons in shaping the oscillatory behavior of networks.
Finally, membrane potential traces (Supplementary Fig. S7D)
and CCFs of average membrane potentials (Supplementary
Fig. S7E) revealed that RS interneurons did not display mem-
brane fluctuations in synch with excitatory neurons but were
delayed similarly as in IF–IF networks, as predicted by their
more integrator-like properties (Mureşan and Savin 2007).

Synchronization, Population Dynamics, and Frequency
Stability
Since the dynamics of IPSCs is known to be crucial in deter-
mining oscillation frequency (Whittington et al. 2000), we
computed the IPSC at the level of the network by averaging
across IPSCs recorded in every neuron of IF–IF (Fig. 5A, left)
and IF–RES (Fig. 5B, left) networks. Trough values of
network IPSC in each gamma cycle (dots in Fig. 5A, left, and
B, left) were then correlated with the input current (Fig. 5A,
right, and B, right) to estimate how well the inhibition was
able to compensate for the change in external drive. To main-
tain oscillation frequency stable, IPSC troughs should be
negatively correlated to the input, i.e. larger negative currents
for stronger external excitation. Correlation corresponding to
IF–IF networks (mean =− 0.46, SD = 0.1) was significantly
poorer (P < 0.001, heteroscedastic t-test) than correlation in
IF–RES networks (mean =− 0.97; SD = 0.0025), indicating that
the amplitude of IPSCs faithfully followed the input drive
only in the latter (Fig. 5C).

At a closer look, we noticed that in IF–IF networks, individ-
ual oscillation cycles were frequently “jittered”, becoming
broader and less precisely synchronized, especially for larger
values of the input drive (e.g. Fig. 2B top, at around 1750
ms). These desynchronization events appeared stochastically

with higher probability when input drive was larger. To quan-
tify such effects, we computed a measure of synchronization
across the population of inhibitory neurons, SI (see Materials
and Methods). This measure quantifies synchronization across
an entire population of neurons, it is independent of firing
rate, and takes higher values for stronger synchronization.
The average SI across the entire stimulus duration in IF–IF
networks (mean = 10.33; SD = 1.11) was significantly lower
(P < 0.001, heteroscedastic t-test) than that corresponding to
IF–RES networks (mean = 19.11; SD = 0.33), indicating that,
on average, resonator interneurons in IF–RES networks were
better synchronized in each gamma cycle than integrator
interneurons in IF–IF networks (Fig. 5D). The SI was then
computed for each individual oscillation cycle and we corre-
lated it to the corresponding input drive (similarly as in
Fig. 5A and B). For IF–IF networks, increased input resulted
in less synchronization of interneurons, the two measures
being poorly but negatively correlated (Fig. 5E;
mean =− 0.30; SD = 0.12), confirming the presence of more
desynchronized cycles for larger inputs. On the contrary, in
IF–RES networks input strength was positively correlated
with interneuron synchronization (Fig. 5E; mean = 0.85;
SD = 0.02). In IF–IF networks, SI of interneurons on each indi-
vidual gamma cycle was correlated with the duration of the
cycle (Fig. 5F; mean = 0.57; SD = 0.05), showing that poorer
synchronization was associated with a shorter gamma cycle,
whereas stronger synchronization was associated with an in-
creased duration of the cycle. The correlation between SI and
cycle duration was poor in IF–RES networks (Fig. 5F;
mean =− 0.32; SD = 0.10) where the duration of the oscillation
cycle was comparatively stable along the stimulus.

Occasionally, in certain trials, IF–IF networks had oscil-
lation cycles without desynchronization and in such cases the

Figure 5. Excitatory/inhibitory population dynamics and frequency stability. (A) Analysis of input and inhibitory currents in IF–IF networks. Left, input current and average IPSC
across the entire network. Dots indicate troughs of IPSC for each oscillation cycle. Right, IPSC troughs versus normalized input, and their correlation. (B) Same as in (A), but for
IF–RES networks. (C) Correlation between input and IPSC troughs. (D) Average SI of inhibitory interneurons over the stimulation period. (E) Correlation between instantaneous
input and the corresponding SI of inhibitory interneurons at the same moment in time (within the corresponding oscillation cycle). (F) Correlation between SI of inhibitory
interneurons at the beginning of the oscillation cycle and the duration of the cycle. Error bars indicate SD.
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frequency drifts along the stimulus for those trials were
smaller than in trials where desynchronization events were
observed. For the same activity regime, the lowest drift in IF–
IF was nevertheless at least twice as large compared to the
largest drift observed in IF–RES networks (data not shown).
Thus, RING was always more stable than PING. In addition,
desynchronization in PING pushed the frequency drift to
even larger values. To investigate why desynchronization
events increased frequency drift, we created a simpler setup
where inputs were delivered as constant currents to an IF–IF
network (input current to: excitatory neurons = 2 nA, inhibi-
tory neurons = 0.3 nA; Fig. 6). Individual inhibitory inter-
neurons received a supplementary strong Gaussian noise with
zero mean and SD = 9 nA, for a duration of 4000 ms (Fig. 6A),
whose effect was to desynchronize them (Fig. 6B). Desyn-
chronization was accompanied by a dramatic decrease in the
magnitude of IPSCs (Fig. 6C, top) and also by a reduction in
the firing rates, especially in interneurons (Fig. 6C, bottom).
During the period with desynchronized cycles, the average
oscillation frequency was increased and the power was
reduced (Fig. 6D). Thus, desynchronization events lead to a
dramatic reduction in the amplitude of IPSCs and a concomi-
tant increase in oscillation frequency. Indeed, reduced GABA
conductance was shown to advance spiking of principal cells
within the cycle in slices of the rat somatosensory cortex
(Morita et al. 2008).

The reduction in the IPSC can result from two distinct
phenomena. First, poor synchronization leads to poor sum-
mation of afferent IPSCs and therefore the resulting IPSC is
smaller in amplitude but more spread out in time. We deter-
mined that suboptimal summation had only a small effect on
the oscillation frequency (Supplementary Fig. S8A). The
second possibility is that IPSCs are strongly reduced by the
lack of robust firing of afferent interneurons, as suggested by
Figure 6C, bottom. This effect was evident when we com-
puted population firing rates and compared them to the dur-
ation of the corresponding cycle: cycles corresponding to less
synchronized epochs, with lower population rates, were
shorter than cycles corresponding to more synchronized
epochs, with higher population rates (Supplementary
Fig. S8B). The spike raster for the IF–IF network in Sup-
plementary Figure S8B also reveals that in well synchronized
cycles, a robust synchronous volley of the excitatory popu-
lation is followed by a strong and synchronous activation of
inhibitory neurons, the firing of the latter being clearly
delayed. By contrast, in cycles with poor synchronization,
interneurons fire also earlier in the cycle and interfere with
the development of a robust excitatory volley, this leading in
turn to a reduced inhibitory volley. This effect is more likely
as the input becomes stronger because membrane fluctuations
of IF interneurons advance towards those of excitatory
neurons (Fig. 4D, left) and the probability of interference is
increased. Indeed, we found that in IF–IF networks, increas-
ing the amplitude of external drive to interneurons was
accompanied by more frequent desynchronizations and by
larger frequency drifts (data shown later). In contrast to IF–IF,
in IF–RES networks the resonant property of interneurons
keeps them delayed from the excitatory neurons as the input
drive increases (Fig. 4D, right) and prevents interference that
could lead to desynchronization. RING is therefore more
robust than purely integrator PING.

Mechanism of synchronization and network oscillation
frequency in RING
We further sought to understand why cycle synchronization
was more robust in integrator–resonator than in pure integra-
tor networks. Because it is more linear and easier to under-
stand, we first used the RF model of interneuron and applied
a slight subthreshold depolarization such as to obtain mul-
tiple neurons oscillating at different phases. This mimics a de-
synchronized interneuron population. When stimulated with
a common IPSC corresponding to inhibitory volleys within
the cycle, phase delays between different interneurons were
dramatically reduced (Fig. 7A, top) and this reduction was
stronger for larger amplitude IPSC (Fig. 7A, bottom). A sys-
tematic investigation on RF (Fig. 7B, top) and RES (Fig. 7B,
bottom) models confirmed that phase differences between
pairs of neurons were reduced by common IPSCs and that
this reduction was stronger for larger amplitude IPSCs. Phase
portrait analysis of pairs of delayed RF (Fig. 7C) and RES
(Fig. 7D) interneurons demonstrates that the application of a
common IPSC (at the same moment in time) reduces the
phase delay between these pairs because the neuron that lags
behind is advanced more than the neuron that leads in phase.
It is also evident that the larger the amplitude of the IPSC, the
smaller the end phase difference (in the limit, if the IPSC
tends to −∞, the end phase difference would be 0). Thus,
common IPSCs increase synchronization of delayed resona-
tors in a manner proportional to the amplitude of IPSCs.

Unintuitively, network oscillation frequency in integrator–
resonator networks was always higher than the subthreshold
resonant frequency. This can be explained by noting that em-
bedded in networks resonator neurons change their oscil-
latory phase dynamics as a function of the input and its
timing. Figure 8A and B depicts the change in oscillatory
phase dynamics of RF and RES neurons, respectively, as a
function of the type of input (EPSC or IPSC) and phase at
which input is received. Effects are qualitatively identical for
the two models and are general for any resonator neuron. The
phase of a resonator is advanced, i.e. frequency increases,
either when the neuron receives an IPSC in the upper semi-
plane (0,π) or an EPSC in the lower semiplane (−π,0). By con-
trast, the phase is delayed, i.e. frequency decreases, when a
resonator receives and EPSC in the upper semiplane or an
IPSC in the lower semiplane (Fig. 8A and B). Phase portraits
of example RF and RES interneurons (Fig. 8C and D, respect-
ively) that were embedded in their corresponding IF–RF and
IF–RES networks reveal why network oscillation frequency
was always higher than the subthreshold resonant frequency.
In IF–RF networks, RF neurons received excitation mainly in
the lower semiplane and inhibition mainly in the upper semi-
plane (Fig. 8C, top), thus accelerating the phase of the resona-
tor. Delays generated by the amount of excitation preceding
or following spikes from the upper semiplane were compen-
sated by positive phase jumps induced by spike resets
(Fig. 8C, top, arrow). These effects were easily identifiable
when the median phase was computed around RF spikes
(Fig. 8C, bottom). Clearly, the phase dynamics of the network
RF neuron was accelerated compared with its isolated sub-
threshold dynamics. For the case of the RES neuron, the
angular phase varies nonlinearly because the phase-portrait
deviates significantly from a circle (Fig. 8D, top). Neverthe-
less, similar conclusions can be drawn: starting on the
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right-hand side of the phase-portrait (Fig. 8D, top), RES
neurons received first excitation in the upper semiplane (delay)
and then inhibition (advance), followed by spike reset that
further advanced the phase (Fig. 8D, top and bottom). Inhi-
bition following the spike then contributed to a net

advancement of the phase, because it hits the neuron mainly in
the upper semiplane, accelerating its dynamics (Fig. 8D, top).

That inhibition played a crucial role in advancing the phase
and the increased frequency of resonators became evident
when inhibitory–inhibitory connections were 2×

Figure 6. Relationship between interneuron synchronization and oscillation frequency studied in a simplified IF–IF setup. (A) Inputs were delivered as constant currents. Between
t= 1000 and t= 5000 ms, a Gaussian noise with zero mean and SD= 9 nA was in addition delivered to interneurons in order to desynchronize them. (B) A single trial of an
IF–IF network with insets showing a portion of stronger (left) and poorer (right) synchronization. (C) Average IPSC across the network and time-resolved firing rates (100 ms
window) corresponding to the trial in (B). (D) Average time-resolved power spectrum computed over 20 trials.
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strengthened. Figure 8E, top, shows, for the same neurons de-
picted in Figure 8C and D, that stronger inhibition pushed the
excitatory inputs towards the lower semiplane. Furthermore,
inhibition was mainly expressed after the spike, because it
originated from the network inhibitory volley. The postspike
inhibition clearly increased the slope of the phase function
(Fig. 8E, bottom) thus increasing the frequency of the resona-
tor. In conclusion, the interplay of network excitation and
inhibition timed at different phases advances resonator inter-
neurons rendering network oscillation frequency higher than
subthreshold resonance frequency of isolated neurons.

Inhibitory Coupling, PING, ING, and RING
Reciprocal inhibitory coupling between interneurons was
suggested to have an important role in the development of
gamma oscillations (Bartos et al. 2007). To investigate this
issue, we considered again networks receiving sinusoidal
input and manipulated inhibitory–inhibitory coupling
strength by scaling it in a range of 0–2 with respect to the
reference (Fig. 9A–C). When inhibitory neurons were not
coupled directly (scaling = 0), networks exhibited oscillations
with lower frequency (Fig. 9A) and interneurons fired in a
more synchronous window for IF–IF networks (Fig. 9C). In
this case, inhibitory interneurons did not inhibit each other,
thus allowing for sharper, more aligned, inhibitory firing.
When the strength of reciprocal inhibitory connections was
increased, the frequency in both types of networks increased

(Fig. 9A), while frequency drift increased in IF–IF networks
but decreased in IF–RES networks (Fig. 9B). Increased reci-
procal inhibitory connection strength also led to progressively
less synchronized interneurons in IF–IF networks (Fig. 9C),
indicating that reciprocal inhibition had a desynchronizing
effect over IF interneurons. By contrast, in IF–RES networks,
interneuron synchronization was always much higher than in
IF–IF networks. By increasing inhibitory connectivity
strength, the synchrony of resonators first increased and then
decreased (Fig. 9C) showing that, at least up to a certain
value, stronger reciprocal IPSCs synchronize the interneuronal
population better, as shown in Figure 7.

While in IF–IF networks, oscillation frequency increases
with I–I connectivity strength because of cycle desynchroniza-
tion, in IF–RES networks frequency increases because of
phase advancement due to inhibition (Fig. 8E). This con-
clusion is further supported by the fact that frequency drift
increased in IF–IF, while it decreased in IF–RES networks
when inhibitory interaction was strengthened (Fig. 9B).

To reveal the type of mechanism at work in generating
gamma oscillations, we next silenced the excitatory neurons
(by removing all their synapses and inputs) and kept only the
inhibitory subnetwork active. LFP analysis revealed that IF–IF
networks became non-oscillatory, producing only a broad-
band fluctuation at the network level (Fig. 9D, left), while IF–
RES networks were able to generate fast oscillations with a fre-
quency of ∼26 Hz (Fig. 9D, right). These results indicate that
gamma oscillations in IF–IF networks relied on a pure PING

Figure 7. Interneuronal synchronization in integrator–resonator networks. (A) Multiple RF interneurons having different phases receive a common IPSC of 5 nA (top) or 15 nA
(bottom) that reduce the phase delays. (B) Phase difference after IPSC as a function of phase difference before IPSC for pairs of RF (top) or Izhikevich-type resonator
(RES; bottom) neurons. Different curves correspond to different amplitudes of the IPSC. (C) Phase portrait analysis of two RF neurons with different phases receiving a common
IPSC at the same moment in time reveals the mechanism of reduction in phase differences (note that angular velocity is constant for RF neurons). (D) Same as in (C) but for the
case of RES neurons.
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mechanism, while isolated subnetworks of resonator inter-
neurons were also able to produce oscillations via an ING-like
mechanism. Importantly, synchronization of inhibitory inter-
neurons in IF–RES networks was considerably more robust
when excitatory neurons were also active (Fig. 9E). Together
with evidence of a short time lag between excitatory and
inhibitory volleys in IF–RES networks (Fig. 2C), our results
indicate that RING may reproduce the characteristics of PING
when excitatory neurons are active and those of ING when
excitatory neurons are silent. Thus, RING is neither purely
PING, nor purely ING, but transcends these classifications.

Effect of Input on Oscillatory Activity
We next scaled the amplitude of the sinusoidal inputs and
measured the oscillation frequency and its drift in the LFP.
Thalamocortical inputs to cortical layer 4 contact both excit-
atory and inhibitory cells (Thomson and Bannister 2003), and
our model respected this anatomy. The scaling was provided
to the input of both the excitatory (IE) and inhibitory (II)
populations (Fig. 10A–D). Oscillation frequency was strongly
affected by inputs in IF–IF networks, and increased when

inputs were scaled up (Fig. 10A). Frequency was modulated
to a much lesser extent in IF–RES networks (Fig. 10B), indi-
cating that in RING the oscillation frequency was kept more
bound than in PING. The drift in oscillation frequency was
the largest in IF–IF networks, being increased especially
when II was scaled up (Fig. 10C), a scaling that was
accompanied by progressively more frequent desynchroniza-
tion events. By comparison, in IF–RES networks the oscil-
lation frequency was stable across the entire input space,
exhibiting only small drifts (Fig. 10D).

The timescale of the external input may strongly affect the
response properties of brain circuits (Butts et al. 2007). Thus,
we manipulated also the temporal properties of the sinusoidal
input by changing its frequency over a range of 0.25–64 Hz,
yet keeping the amplitude constant. The average LFP power
over the gamma band (20–80 Hz) for both IF–IF and IF–RES
networks exhibited peaks for input frequencies in the range
of 20–30 Hz (Fig. 10E), indicating a “resonant circuit prop-
erty” (Cardin et al. 2009). The two networks are, however,
distinguishable by several features (Fig. 10E): (i) Peak LFP
power was higher in IF–RES networks; (ii) The power peak is

Figure 8. Mechanisms of frequency regulation in RING. (A) Phase advancement and delay by IPSC and EPSC as a function of the position of the RF neuron in phase space.
(B) Same as (A) but for the RES neuron. (C) Top, phase portrait and the corresponding PSC (color coded) for each position in phase space for an example RF neuron that is part
of an IF–RF network. Bottom, median of phases around spikes of the RF neuron (spike-aligned median of phases) computed during the period of oscillatory firing in the network.
The segment above depicts the subthreshold resonant period, while the dotted ascending line represents the linear advancement of the phase in the absence of stimulation.
(D) Same as in (C) but for the case of a RES neuron embedded in an IF–RES network. (E) Top, phase portraits of the same neurons from (C) and (D) but with inhibitory–
inhibitory connections scaled 2× in the corresponding networks. Bottom, phase dynamics around spikes corresponding to phase portraits above. Phase plots have been overlaid
on those from (C) and (D) for comparison.
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Figure 9. Influence of inhibitory–inhibitory connectivity and oscillation generating mechanisms. (A–C) Oscillation frequency, frequency drift, and SI of inhibitory interneurons,
respectively, as a function of reciprocal connectivity strength between inhibitory interneurons. (D) Local field potential (top) and time-resolved power spectrum (bottom) for IF–IF
(left) and IF–RES networks (right) with silenced excitatory neurons (corresponding to ING-like mechanism). (E) SI of inhibitory interneurons for ING-like RES-only networks
(excitatory neurons silent: E-silent) and PING-like IF–RES networks (excitatory neurons active: E-active). Error bars indicate SD.

Figure 10. Influence of network inputs on gamma oscillations. (A and B) Oscillation frequency in IF–IF and IF–RES networks, respectively, as a function of inputs to excitatory
(IE) and inhibitory (II) populations. (C and D) Drift of oscillation frequency along the stimulus in IF–IF and IF–RES networks, respectively, as a function of inputs to excitatory (IE)
and inhibitory (II) populations. (E) Local field potential power corresponding to the highest peak in the gamma band (20–80 Hz) as a function of frequency of the sinusoidal input.
Error bars indicate SD.

Cerebral Cortex January 2014, V 24 N 1 135



more clearly defined for IF–RES networks; (iii) At low input
frequencies, IF–RES networks exhibit gamma oscillations
with larger power than IF–IF networks; (iv) IF–IF networks
are entrained by high frequency input (>30–40 Hz) and
exhibit a higher power than IF–RES networks for such inputs.

The input provided to the networks was modeled as a
smooth sinusoidal current. In vivo, thalamic inputs arrive in
the form of afferent spike trains in layer 4. We next tested
how networks behaved when input was delivered as spike
trains modeled as inhomogeneous Poisson processes whose
rates were modulated sinusoidally to a maximum amplitude
of 30 spk/s. We found that IF–IF networks were highly sensi-
tive to the decay time constant of excitatory synapses that de-
livered the input to network neurons (Supplementary
Fig. S9A). For small time constants (e.g. 3 ms), IF–IF net-
works’ ability to engage in oscillatory dynamics was strongly
impaired, while for large time constants (e.g. 50 ms), these
networks behaved more similarly to those receiving a smooth
sinusoidal input. IF–RES networks, however, exhibited robust
oscillations for all types of inputs, with a somewhat larger fre-
quency drift for small time constants (Supplementary
Fig. S9B). These results demonstrate that the oscillatory
regime is considerably more robust in IF–RES than in IF–IF
networks especially when the external input is noisy (Poisson
process). Exactly how noisy the input in vivo is difficult to
tell, because the smoothness of the input depends not only
on the afferent synaptic time constants but also on the total
input rate and V1 cells receive their input from multiple LGN
afferents (Bruno and Sakmann 2006).

Voltage Dependence of Resonance Frequency
In all investigations, so far resonance frequency was a fixed
property for a given interneuron. However, several reports
indicate a direct dependency of gamma band resonance fre-
quency on voltage (Fellous et al. 2001; Bracci et al. 2003). In-
tuitively, an increase in resonance frequency for more
depolarized regimes should lead to drift in oscillation fre-
quency of the network due to drift in resonance frequency.
Therefore, we next studied the effect of voltage dependence
of resonant frequency on network oscillations. The RF model
was modified to include a linear, positive dependency of the
resonant frequency on the membrane potential and we sys-
tematically manipulated the slope of this dependency
(Fig. 11A, top) in IF–RF networks. As the slope was increased,
network oscillations became more robust and network spikes
more aligned to the oscillation cycles (Fig. 11A, middle rows).
Time–frequency plots revealed a decrease of average oscil-
lation frequency and a change from a slightly positive to a
slightly negative covariation of network frequency with input
(Fig. 11A, bottom). Quantitative analyses confirmed that
network oscillation frequency decreased as the dependence
of resonant frequency on voltage became stronger (larger
slope) and that frequency drift remained at relatively low
values, <1.5 Hz (Fig. 11B).

Thus, a positive dependence of resonance frequency on
voltage did not lead to a positive covariation of network oscil-
lation frequency with the strength of the input. This hap-
pened because interneurons received strong IPSCs at the end
the oscillation cycle which strongly hyperpolarized them
between consecutive cycles (Fig. 11A, third row)—a period
critical for regulation of oscillation frequency. As a result, the

tendency of the network was to decrease and not to increase
oscillation frequency for strong input because resonators
slowed down as their membrane potentials were hyperpol-
arized in between oscillation cycles. This was also confirmed
by analysis of timing relation between membrane fluctuations
of excitatory and inhibitory populations: When the slope of
the frequency–voltage dependency was larger, the inhibitory
resonator neurons tended to lag more behind excitatory
neurons (Fig. 11C), a phenomenon typical of integrator–reso-
nator networks (see also Fig. 4D). This increasing lag gave
excitatory neurons a larger window of opportunity, leading to
more vigorous excitatory firing followed by more sustained
inhibitory firing that produced a decrease in oscillation fre-
quency. Indeed, firing rates increased with the increase in the
slope of the frequency–voltage dependency (Fig. 11D). Thus,
a positive correlation between resonance frequency and mem-
brane potential did not lead to increased network oscillation
frequency for stronger input. In contrast, it compensated for
such a tendency and even overcompensated for it, leading to
decrease in network oscillation frequency for stronger input
when the dependence of resonance frequency on membrane
voltage was strong.

Discussion

In the cat visual cortex, under anesthesia, induced gamma
oscillations can sometimes have remarkably stable oscillation
frequency even when the input fluctuates strongly over time.
Such stability of frequency is manifested both at the level of
individual cells’ firing and in LFPs. In the examined data, we
have found that frequency was more stable in cases with
stronger oscillatory modulation of spiking activity and larger
gamma power of the LFP. These findings are complementary
to recent results by Ray and Maunsell (2010) showing that in
area V1 of awake macaques, gamma oscillation frequency
(measured from the LFP) can be strongly modulated by stimu-
lus contrast and co-fluctuates with the latter. The two results
may actually be compatible. The large frequency drift as a
function of contrast in monkey V1 was accompanied by low
gamma power, and in the data analyzed here lower gamma
power was also associated to larger frequency drift.

We have also established that the underlying emergence
mechanism of observed in vivo gamma oscillations in an-
esthetized cat area 17 resembles PING because narrower
action potentials (from putative inhibitory interneurons)
follow wider action potentials (of putative pyramidal neurons)
across pairs of cells engaged in synchronous oscillations.
Time delays between these discharges are small (<5 ms), a
finding supported by previous studies in the ferret prefrontal
cortex (Hasenstaub et al. 2005) where regular-spiking cells
were shown to lead FS interneurons by 4.1 ms, on average.
These observations are consistent with a PING-like scenario
where inhibitory interneurons are entrained by the excitatory
volleys of pyramidal cells (Whittington et al. 2000; Börgers
and Kopell 2003).

We have sought to investigate the observed properties of
in vivo gamma oscillations (frequency stability, power, excit-
atory–inhibitory firing sequence) by exploring computer
models of gamma generator circuits with an emphasis on
membrane properties of inhibitory interneurons. The main
result of the present study is that membrane resonance ex-
pressed in interneurons, as opposed to integration, keeps the
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oscillation frequency stable and bound within a relatively
narrow range, even when time constants of inhibitory sy-
napses (Whittington et al. 1995; Jefferys et al. 1996; Wang and
Buzsáki 1996), synaptic conduction delays (Maex and De
Schutter 2003), synaptic connection strengths, or magnitudes
of the inputs are manipulated. This behavior is enabled by
the RING mechanism, whereby the resonant properties of
interneurons introduce lower and upper bounds on the
period of the oscillation cycle.

Membrane resonance has been suspected to play a role in
the development of neuronal oscillations (Llinás et al. 1991;
Hutcheon and Yarom 2000; Whittington and Traub 2003;
Zemankovics et al. 2010), but it was less clear how and under
what conditions. This uncertainty is partly due to the fact that
resonance is not a fixed property of neurons but can vary dra-
matically as a function of several factors. Membrane resonance
is voltage-dependent (Gutfreund et al. 1995). In vitro studies
have shown resonant frequency to be narrow band in some

Figure 11. Voltage dependence of resonance frequency. (A) Top row: Impedance profiles of a modified RF model neuron whose resonance frequency depends on membrane
voltage, with different values of the resonance frequency–voltage slope. Second and third rows: IF–RF network activity during a single sinusoidal input bump and zoom in on
membrane potentials of two representative neurons. Each network has RF interneurons with impedance profiles depicted in the corresponding plots above. Bottom row:
Time–frequency plots for LFPs generated by the activity of the corresponding networks. (B) Mean network oscillation frequency and frequency drift as a function of the
frequency–voltage slope impedance characteristic of RF interneurons. (C) Offsets of the central peak of CCFs between excitatory and inhibitory membrane fluctuations as a
function of normalized amplitude of network input and the slope of the frequency–voltage impedance characteristic of RF interneurons. (D) Firing rate of excitatory and inhibitory
populations as a function of the slope of the frequency–voltage impedance characteristic of RF interneurons.
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cases (Llinás et al. 1991), but also tuned up and down by the
voltage (Hutcheon et al. 1996). Nevertheless, the shift of res-
onant frequency in a given cortical state is much smaller than
the fluctuation of the firing rate (Amitai 1994; Bracci et al.
2003). In addition, because of its reliance on several voltage-
gated ion channels (Hutcheon and Yarom 2000), membrane
resonance is expressed differently in vivo and in vitro (Pre-
scott et al. 2008) and is influenced by several neuromodu-
lators (Steriade et al. 1991; Hutcheon et al. 1996). For
example, norepinephrine modulates the hyperpolarization-ac-
tivated cation current (IH) and the outwardly rectifying K+

current (IK) (Bennett et al. 1986; Banks et al. 1993), while
dopamine modulates the persistent sodium current INaP (Gor-
elova and Yang 2000) and acetylcholine the M-current (Halli-
well and Adams 1982). All these currents are known to
contribute to establishment of membrane resonance (Hutch-
eon and Yarom 2000; Hu et al. 2002; Richardson et al. 2003;
Heys et al. 2010). As we have shown here, membrane reson-
ance can greatly enhance stability, robustness, and power of
gamma oscillations. Therefore, the regulation of resonance by
voltage and neuromodulation in the brain could be a good
candidate to explain the dependence of gamma oscillations
on cortical state or the variability of experimental results re-
garding the expression and properties of such oscillations.

Our results further indicate that in purely integrator PING
networks, frequency drift can be increased more than ex-
pected from the PING mechanism alone due to the interfer-
ence between the inhibitory and excitatory volleys, which is
associated with network desynchronization in individual
oscillation cycles. Interference of inhibition with the develop-
ment of the excitatory volley leads to a cascade effect. The
excitatory volley is first reduced, which in turn fails to ro-
bustly entrain interneurons such that the resulting IPSCs are
considerably smaller. Smaller IPSCs permit a faster recovery
from inhibition (Morita et al. 2008), especially as the input to
the network increases, leading to a runaway increase in oscil-
lation frequency. That such phenomena observed in our simu-
lated networks are grounded in reality is demonstrated by a
recent study of Atallah and Scanziani (2009). They report
instantaneous modulation of gamma frequency on a
cycle-by-cycle basis in rat hippocampus and show that pyra-
midal hyperpolarization is longer (longer cycle duration) fol-
lowing a cycle with a larger magnitude of the LFP (and larger
IPSCs). This implies, as also shown here, that stronger syn-
chronization (reflected in a larger LFP deflection) is associated
with longer cycles, and, conversely, that desynchronization is
accompanied by shorter cycles. Thus, a fluctuation of the
inhibitory current magnitude, due to population dynamics
within each cycle, results in a fluctuation of oscillation fre-
quency. The experimental findings by Atallah and Scanziani
(2009) are consistent with the purely integrator IF–IF net-
works and the mechanisms we have indentified here that lead
to frequency drift in such networks. In contrast to PING in
purely integrator networks, RING prevents interference of
inhibition with the excitatory volley because resonator inter-
neurons do not advance in the oscillation cycle to interfere
with the firing of the excitatory population. In addition, syn-
chronization of interneurons is promoted by resonance
because, unlike the case of pure integrators, common inhibi-
tory volleys reduce phase delays between resonators. Thus,
the synchronous firing of excitatory and inhibitory popu-
lations and the timing relation between the two volleys within

an oscillation cycle are also crucial in determining the robust-
ness of the oscillation and the stability of oscillation fre-
quency. By the same mechanism, RING also provides
robustness of the oscillation when the input is not smooth but
noisy.

It is plausible that in vivo gamma oscillations in brain cir-
cuits are rendered more or less robust by continuous
modulation of resonance in interneurons via voltage, neuro-
modulation, and cortical state changes. When gamma-band
resonance in interneurons is expressed stronger, local circuits
may exhibit stronger oscillations with a more stable frequency,
facilitating their synchronization across large cortical terri-
tories. Therefore, modulation of resonance in different brain
structures may be instrumental in enabling the development
of coherent oscillations and ensuring reciprocal communi-
cation channels among different processing modules (Fries
2005; Montgomery and Buzsáki 2007).

The main apparent assumption of the present manuscript
is that resonance frequency of interneurons should be fixed to
enable frequency stability of network oscillations. But data re-
garding the in vivo resonant properties of fast spiking inter-
neurons in the visual cortex of cats is sparse at best, if not at
all missing. Reports in other systems on the dependence of
resonant frequency on membrane potential do exist, but
results are dependent on the frequency band, the particular
neuronal system, the preparation, and so on. Some studies
report resonance frequency that increases with depolarization
in regular-spiking neurons of the rat somatosensory cortex
(Amitai 1994), in striatal FS neurons of rats (Bracci et al.
2003), in guinea-pig cortical neurons (Gutfreund et al. 1995),
in thalamic neurons (Puil et al. 1994), and in pyramidal
neurons of the olfactory amygdala (Sanhueza and Bacigalupo
2005). Others report that resonance frequency decreases with
depolarization in the sensorimotor cortex of juvenile rats
(Hutcheon et al. 1996) or in magnocellular neurons of rat
supraoptic nucleus (Boehmer et al. 2000). There are also
reports of stable resonant frequency that does not depend on
membrane voltage in olivary neurons of the guinea pigs
(Lampl and Yarom 1997) and stellate cells of the entorhinal
cortex (Erchova et al. 2004). Some others describe non-
monotonic dependency of theta-resonance frequency on
voltage in pyramidal neurons of CA1 hippocampal area (Hu
et al. 2002). Interestingly, Llinás et al. (1991) report in neocor-
tical layer 4 both a voltage dependent resonance in the range
of 10–45 Hz and a narrow band 1 around 35–50 Hz that is not
dependent on DC current input. In prefrontal cortical slices,
Fellous et al. (2001) show that interneurons exhibit two fre-
quency characteristics: a stable resonance frequency at rela-
tively hyperpolarized potentials followed by a positive
ramping of resonance frequency for more depolarized poten-
tials. In the absence of exact data for the in vivo visual cortex,
the most relevant pieces of evidence for our study are those
reported for interneurons. Their resonance frequency was
shown to be either narrowband and not dependent on
voltage (Llinás et al. 1991) or positively correlated to the level
of depolarization (Bracci et al. 2003), sometimes for a subre-
gion of the membrane potential domain (Fellous et al. 2001).
As we have shown here, in realistic dynamical regimes oscil-
lations are stable in integrator–resonator networks even when
resonators exhibit strong positive dependency of resonance
frequency on voltage. In fact, because interneurons are hyper-
polarized at the end of the oscillation cycle, the covariation of
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resonance frequency with voltage leads to a longer resonant
cycle (lower frequency) for hyperpolarized potentials. This in
turn contributes to a delayed inhibitory response which trig-
gers increased excitatory volleys followed by prolonged inhi-
bition. The stronger the input, the larger the excitatory
response which is then followed by more prolonged/in-
creased inhibition which compensates the tendency of the
network frequency to increase. If the resonance frequency
covaries very strongly with voltage, this can even lead to over-
compensation and decreased oscillation frequency for stron-
ger input. Thus, even if its frequency covaries with voltage,
resonance enables mechanisms that actively oppose increase
in network frequency with increasing input. Moreover, res-
onant frequency is not expected to vary too much in a realistic
regime where membrane potentials do not fluctuate slowly
and with large amplitude but rather abruptly and in relatively
restricted ranges under heavy network bombardment (Des-
texhe et al. 2003).

We have found that in networks of integrator neurons,
gamma oscillations can be obtained via a PING mechanism.
However, in our setup that matched the firing properties of
recorded data, we did not manage to obtain ING-like oscil-
lations in networks composed only of inhibitory IF neurons,
the presence of excitatory neurons being a prerequisite to
obtain network oscillations. This is in apparent contradiction
to several other modeling studies that have documented oscil-
latory activity in purely inhibitory networks with either low
(<5 spk/s) (Brunel and Hakim 1999; Brunel and Wang 2003)
or high firing rates (>40 Hz) (Wang and Buzsáki 1996; Bartos
et al. 2007). In our models, inhibitory interneurons fired in
intermediate regimes, rarely exhibiting firing rates of 30–40
Hz, at the peak of the sinusoidal drive. In addition, to mimic
realistic in vivo conditions, we added miniature synaptic
potentials that may have acted to desynchronize the fragile
oscillation that appears in isolated inhibitory IF subnetworks.
Indeed, it is established that in the absence of some other sy-
naptic mechanisms, such as shunting inhibition (Vida et al.
2006), ING networks composed of integrators are highly sen-
sitive to noise (Wang and Buzsáki 1996; Bartos et al. 2007),
the oscillation being quickly disrupted by random fluctu-
ations. Thus, in the firing regime that we have studied, with
background miniature release and with fluctuating inputs,
networks composed only of integrators generate reliable oscil-
lations only in a PING scenario. By contrast, when inter-
neurons exhibit membrane resonance in the gamma band,
oscillations are always robust, regardless of noise or input
fluctuations and this holds even when resonance frequency of
interneurons is not fixed but spans a relatively large domain.
Furthermore, networks of isolated inhibitory resonator
neurons are able to generate reliable oscillations similarly to
an ING mechanism, but adding excitatory neurons renders
oscillations more robust. Our results also indicate that RING is
a mechanism that transcends the distinction between ING and
PING and can reproduce both. Therefore, networks of
integrator-pyramids/resonator-interneurons need to be treated
as a special case where the distinction between ING and
PING (Whittington et al. 2000; Tiesinga and Sejnowski 2009)
may become less relevant.

In purely integrator networks, it was shown that addition
of the pyramidal-interneuron loop to an ING network drasti-
cally slows down network oscillation when compared
with the ING case (Brunel and Wang 2003). By contrast, in

RING networks frequency increases by addition of
pyramidal-interneuron loops to a subnetwork of resonators
and decreases when pyramids are removed or silenced. We
have shown that resonator interneurons are accelerated in
their phase dynamics (frequency is increased) both by inhi-
bition arriving close to or immediately after the spike and by
excitatory volley from pyramids received during the depolar-
izing phase (lower semiplane of the phase portrait). When
excitatory neurons are silenced, resonators are advanced in
phase only by inhibition and therefore the oscillation cycle
becomes longer, in between the duration of the cycle in the
full excitatory–inhibitory network and the natural cycle dur-
ation corresponding to the resonant frequency. Thus, the
RING mechanism can lead to network properties that are very
different from what has been shown for other systems and
this further underscores the importance of membrane proper-
ties in modulating oscillatory behavior of networks.

The temporal structure of the input is also an important
factor determining how gamma oscillations develop. Manipu-
lating the frequency of the sinusoidal input revealed that both
IF–IF and IF–RES networks have “resonant circuit property”
(Cardin et al. 2009), i.e. LFP power is maximal at stimulation
frequencies around a certain characteristic frequency of the
network. Thus, circuit resonance can occur also in networks
that contain no resonator elements, e.g. IF–IF networks, such
that resonance at the level of individual elements should not
be confused with resonance at the circuit level. The observed
behavior of networks in response to input with various fre-
quencies suggests that network oscillation frequency and
circuit resonance are partly hardwired (Bartos et al. 2007), as
they emerge from a complex interplay between all network
parameters such as membrane time constants, synaptic decay
constants, connectivity patterns, resonant frequency of inter-
neurons, and others. Indeed, in integrator–resonator net-
works, interneuron resonance can coherently determine
network oscillation frequency. The latter is always higher
than the resonant frequency of interneurons due to phase
jumps of resonators under the influence IPSCs or EPSCs re-
ceived at different phases of the resonant cycle. This mechan-
ism is not at all trivial and is fundamentally different from
frequency regulation mechanisms in purely integrator net-
works. In addition, in networks with heterogeneous resonant
frequency of interneurons, multiple individual oscillations
coexist and the LFP frequency is dominated by the mean of
the network frequencies corresponding to the expressed res-
onance frequencies.

Manipulation of stimulation frequency further revealed
several qualitative differences between the two types of net-
works we have studied. In purely integrator networks, LFP
gamma power was small for low input frequencies but re-
mained relatively large for high input frequencies. By con-
trast, networks with resonator interneurons exhibited high
gamma power for slow inputs and low power for fast inputs.
The behavior of these networks resembled that of in vitro
preparations where gamma oscillations supported by inhibi-
tory subnetworks could be induced with tonic but not with
phasic activation (Sohal and Huguenard 2005). It also agrees
with in vivo findings which suggest that spike-reliability de-
creases with increasing input frequency (Cardin et al. 2009).
Based on these observations, one could analyze extracellu-
larly recorded responses to periodic input (Cardin et al. 2009;
Tiesinga and Sejnowski 2009) in order to obtain evidence
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either for integrator or resonant behavior of the respective
interneuron populations. To further substantiate such investi-
gations, one could also rely on the known frequency-
dependent integration of inputs in resonant neurons (Schrei-
ber et al. 2004).

Not only inhibitory interneurons display membrane reson-
ance but several other classes of cells can also exhibit fre-
quency preference, such as the chattering cells (Gray and
McCormick 1996) or the fast-rhythmic bursting neurons (Ster-
iade et al. 1998; Cardin et al. 2005). Also, in thalamocortical
neurons, dendritic P/Q-type calcium channels support high-
frequency membrane potential oscillations in the 20–80 Hz
range (Pedroarena and Llinás 1997; Llinás et al. 2007). Here,
we have shown that in order to obtain frequency stability of
fast oscillations, it is sufficient if resonance is expressed in the
inhibitory population and we suggest that the observed fre-
quency preference of FS interneurons (Pike et al. 2000;
Fellous et al. 2001; Bracci et al. 2003) can promote robust and
stable gamma oscillations. However, it should be investigated
also how resonance expressed in excitatory neurons could
contribute to gamma oscillations at network level. For other
frequency bands, i.e. theta, models of the hippocampal CA3
region predict that theta-band resonance in pyramidal
neurons (Leung and Yim 1991; Leung and Yu 1998) contrib-
utes to the development of theta oscillations (Tiesinga et al.
2001). With excitatory neurons that resonate in the gamma
band, we have previously shown that in randomly connected
networks, network-level gamma oscillations appear only tran-
siently (Mureşan and Savin 2007). More recent models
suggest that small-world networks composed of resonator–in-
tegrator and resonator–resonator populations of excitatory–
inhibitory neurons can exhibit frequency stability (Moca and
Mureşan 2011), but more research is required to elucidate the
detailed mechanisms.

Finally, an important message of the present study is that
mechanisms causing the emergence of gamma oscillations are
not trivial. Details regarding the interaction between excit-
atory and inhibitory populations, synchronization within the
oscillation cycle, relative phase of firing of pyramids and
interneurons, or properties of individual cells can have dra-
matic effects on both the power and frequency of emergent
gamma oscillations. Moreover, the relationship between
circuit input and the ensuing gamma rhythms depends
strongly on the operation of the particular oscillation-
generating mechanism at work. This dependence is not
necessarily stationary but can flexibly change as the particular
properties of circuit elements and the dynamical states of the
circuit change in time. We therefore suggest that there is still
much to discover about the functional role and the operation
of gamma oscillations in the brain by identifying and under-
standing the specific oscillation generating mechanisms oper-
ating in different subsystems and under different conditions.
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