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Biomarkers that discriminate multiple
myeloma patients with or without skeletal
involvement detected using SELDI-TOF mass
spectrometry and statistical and machine
learning tools
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Abstract. Multiple Myeloma (MM) is a severely debilitating neoplastic disease of B cell origin, with the primary source of
morbidity and mortality associated with unrestrained bone destruction. Surface enhanced laser desorption/ionization time-of-
flight mass spectrometry (SELDI-TOF MS) was used to screen for potential biomarkers indicative of skeletal involvement in
patients with MM. Serum samples from 48 MM patients, 24 with more than three bone lesions and 24 with no evidence of bone
lesions were fractionated and analyzed in duplicate using copper ion loaded immobilized metal affinity SELDI chip arrays. The
spectra obtained were compiled, normalized, and mass peaks with mass-to-charge ratios (m/z) between 2000 and 20,000 Da
identified. Peak information from all fractions was combined together and analyzed using univariate statistics, as well as a linear,
partial least squares discriminant analysis (PLS-DA), and a non-linear, random forest (RF), classification algorithm. The PLS-DA
model resulted in prediction accuracy between 96–100%, while the RF model was able to achieve a specificity and sensitivity
of 87.5% each. Both models as well as multiple comparison adjusted univariate analysis identified a set of four peaks that were
the most discriminating between the two groups of patients and hold promise as potential biomarkers for future diagnostic and/or
therapeutic purposes.
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1. Introduction

Multiple myeloma (MM) a B-cell neoplasia char-
acterized by the clonal expansion of plasma cells in
the bone marrow encompasses approximately 1% of all
hematologic malignancies within the United States [1].
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MM is the most malignant of the plasma cell dyscrasias,
which include the precursor stages of monoclonal gam-
mopathy of unknown significance (MGUS) and indo-
lent or smoldering myeloma [2,3]. Recent clinical
and experimental observations suggest that the devel-
opment of lytic bone disease may drive the progression
of MM [4]. Lytic bone disease is usually absent in
MGUS, is very limited and asymptomatic when present
in indolent myeloma, but is frequently associated with
the advanced stages of the disease [5]. The osteolysis
associated with late stage MM is perhaps one of the
most debilitating manifestations of the disease. The
symptoms often include hypercalcemia, pathological
fractures with acute and chronic pain, reduced mobility
and the inability to fully participate in normal day-to-
day activities [2,3,6,7]. In radiographic skeletal scans,
myeloma bone disease appears as circular “punched-
out” areas in involved hematopoietic bone marrow sites,
as diffused osteopenia, or their combination [5].

The bone destruction that is associated with MM
progression results from the activation of osteoclasts
(bone resorbing cells) and the suppression of osteoblast
(bone forming cells) activity in the myelomatous bone
marrow [4,8,9]. Clinically, changes in bone turnover
rates (measured by increased osteoblastic and osteo-
clastic activity) precede the progression of MGUS to
overt myeloma by as long as 3 years [10]. Although
several bone-resorbing cytokines including IL-1α, IL-
1β, TNF-α and IL-6 have been found to be associated
with increases in myeloma proliferation and osteoclast
activity [11,12], definitive diagnostic tests and early
detection strategies remain elusive. Thus, the identi-
fication of changes in protein biomarkers in myeloma
patient serum may be the first indication of disease pro-
gression, and enable the early detection of MM at its
presymptomatic stage.

The advent of SELDI-TOF-MS has provided the
means for analyzing a broad array of proteins of differ-
ent physical properties directly in patient samples [13,
14]. SELDI-TOF MS was selected as the diagnostic
tool of choice, based on the impressive accuracy of the
technology when applied to the diagnosis of a vari-
ety of cancers, including ovarian [15,16], prostate [17],
breast [18,19] and pancreas [20,21]. This technolo-
gy, combined with bioinformatics and/or statistical da-
ta analysis, has proven especially useful in diagnosing
diseases where available tests are either too invasive or
perhaps limited by poor diagnostic accuracy, such as in
the progression of MM.

In the study described here, serum from MM patients
with and without skeletal complications was profiled

to identify protein patterns indicative of bone disease
status. Using univariate statistical analysis as well as
linear (PLS-DA) and non-linear (RF) classification al-
gorithms we were able to generate a diagnostic fin-
gerprint that holds great promise as a potential serum
biomarker profile for the diagnosis and treatment of
MM progression.

2. Materials and method

2.1. Sample collection and preparation

In all cases, blood was collected using a University
of Arkansas for Medical Sciences (UAMS) IRB ap-
proved protocol from patients in the Myeloma Institute
for Research and Therapy (MIRT) at UAMS. Serum
samples were obtained from 24 MM patients with no
radiographic evidence of bone metastasis and 24 mul-
tiple myeloma patients with greater than three radio-
graphically identified bone lesions, based on a review
of patient records. Serum was obtained and stored in
small aliquots, at or below−80◦C until processing. No
samples underwent more than two freeze-thaw cycles
before SELDI-TOF MS analysis [22].

2.2. Patient demographics

Serum specimens were analyzed from forty-eight
age- and sex-matched archived MM patient samples (24
were with�3 bone lesions (bone disease) (average age
55.2± 9.7 years) and 24 without apparent bone lesions
(no bone disease) (average age 55.4± 8.9 years), diag-
nosed with MM between February 1998 and December
2001. Blood samples were obtained from all patients
during their regular clinic attendance. The bone disease
group comprised 9 females and 15 males, and the no
bone disease group comprised 6 females and 18 males.

All patients were treated with a number of agents,
according to the status of their MM. In addition, all
MM patients with evidence of bone disease were treated
with the standard anti-catabolic bisphosphonate thera-
py (pamidronate) used at our Institution. Treatments in
the no bone disease group varied due to disease status
and included Coumadin, or dexamethasone or procrit.
No patients in this group required or were treated with
bisphosphonate.
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Table 1
Highest ranking 1.5 fold peaks with significant multiple comparison adjusted p values (<0.1)a

1.5 fold peaks Fraction Median Fold change Raw pvalues Adjusted Significant in
(mass in KDa) (up bone lesion) (WRS)b p-valuesc PLS-DAd RFe

5.802 F6 −1.6 0.00014 0.00308
√ √

6.639 F3 +4 −2.7 0.00020 0.00308
√ √

6.443 F3 +4 −2.4 0.00153 0.01555
√ √

2.019 F2 +2.0 0.00201 0.01555
√ √

10.472 F1 −2.1 0.00593 0.03677
√

14.898 F1 +1.5 0.01334 0.06894
√ √

11.705 F6 −1.6 0.01753 0.07763
√ √

6.512 F1 −1.8 0.02586 0.09078
√

5.094 F1 −2.2 0.02753 0.09078
√ √

11.744 F3+ 4 +1.6 0.02928 0.09078
a. The peaks in bold were significant at the level ofp < 0.05 after multiple comparison adjustments.
b. Wilcoxon rank sum test with t-approx.
c. Multiple comparison adjustments via false discovery rate.
d&e. Among the top ten peaks in partial least squares-discriminant analysis and random forest classifi-
cation model respectively.

2.3. Serum processing and fractionation

To increase the sensitivity of peak detection and al-
leviate signal suppression effects on low-abundance
proteins from preponderant species such as albumin,
serum samples were fractionated into six fractions on
the basis of their isoelectric point [21]. Serum samples
were loaded into each well of a 96-well filter plate pre-
filled with an anion exchange sorbent (Serum Fraction-
ation kit, Ciphergen Biosystems, CA) and eluted in a
stepwise pH gradient using a BIOMEK 2000 (Beck-
man Coulter, Fullerton, CA) liquid-handling robot ac-
cording to the manufacturer’s protocol. The six frac-
tions obtained in this stepwise fashion, designated F1
through F6, contained flow-through plus proteins elut-
ed with buffers of pH 9, pH 7, pH 5, pH 4, pH 3 and
organic solvent, respectively. Each serum sample was
diluted approximately 10 fold during fractionation in
50 mM Tris-HCl with the pH adjusted for the different
fractions and containing 0.1% nonionic detergent.

2.4. Protein chip SELDI TOF-MS analysis

Three different chip chemistries{metal binding
IMAC3 (present name: IMAC30), strong anion ex-
change SAX2 (present name: Q10) and weak cation
exchange WCX2 (present name: CM10), Ciphergen
Biosystems} were initially evaluated in a pilot study to
determine which type provided the best spectral pro-
files in terms of peak number and resolution (data not
shown). The IMAC3 metal binding chip consistently
captured the most peaks in the majority of the fractions
and was selected for analysis. Each fraction was indi-
vidually loaded on to the IMAC3 chip arrays, except for

fractions 3 and 4 which were combined before loading,
as fewer peaks were observed in these fractions during
the preliminary study. The serum samples from each
fraction were diluted 1:5 fold in phosphate-buffered
saline (PBS) and applied to the wells of a 96-well bio
processor containing 8-spot IMAC3 chips (Ciphergen)
previouslyactivated with 100 mM CuSO4, as described
by the manufacturer. The bio processor was then sealed
and incubated with the samples for an hour with vigor-
ous agitation on a Micromix 5 platform shaker. Excess
sera was discarded, and the chips washed three times
with PBS and twice with deionized water before being
removed from the bio processor, and air dried for 20
minutes. A saturated solution of sinapinic acid in 50%
acetonitrile, 0.5% trifluoroacetic acid (0.5µl) was then
applied to each spot of the protein chip arrays. Each
spot surface was allowed to dry for 10 minutes before
another application of 0.5µl of the sinapinic acid solu-
tion. All sample handling procedures were carried out
using the BIOMEK 2000 robotic system, minimizing
errors due to technician intervention.

ProteinChips were placed in the Protein Biological
System II C mass spectrometer reader (Ciphergen) and
the time-of- flight spectra generated by averaging 156
laser shots collected in the positive mode at a laser in-
tensity of 180; detector sensitivity of 8, and focus lag
time of 782 ns. All data acquisition parameters were
optimized to detect peaks in the range of 2–20 kDa,
as this range contains the majority of the resolved pro-
tein/peptide peaks. Mass accuracy was calibrated using
the All-in-one peptide and All-in-one protein molecu-
lar weight standards (Ciphergen). Each chip generated
included a randomly assigned control sample (pooled
serum from normal healthy individuals) in order to as-
sess inter assay and inter spot variability.
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2.5. Data processing

Acquisition and preprocessing of all spectral data
was performed using Ciphergen ProteinChip software
version 3.1. All peaks were baseline correctedand peak
intensities normalized to the total ion current of m/z
between 2000–20,000 Da as described previously [21].
All spectra were normalized on a fraction by fraction
basis and individually examined to exclude spectra that
showed ion-current saturation or a lack of peaks. Spec-
tra with normalization factors below 0.5 or above 2.5
were recollected at slightly lower (170) or higher (190)
laser intensities so that all normalization factors were
between 0.5 and 2.0. Biomarker Wizard software (Ci-
phergen) was used to compile spectra and detect peaks
that were consistently present across a minimum of
10% of the spectra with a signal-to-noise ratio of�2.0.
Selected peaks were clustered using a second-pass peak
selection within a 0.3% mass window. Sample statistics
were performed on spectra from each of the fractions
separately, by groups of profiles (MM without bone le-
sions vs. MM with�3 bone lesions). Peak intensities
were considered statistically significantly different at
p-value�0.05.

2.6. Normalization across fractions and Intra-sample
correlation assessment

All peak intensities from all fractions were compiled,
transformed to their base-2 logarithms, and then cen-
tered and scaled on a peak-by-peak basis to means of
zero and standard deviations of one (Fig. 1).

Samples giving rise to paired spectra were used to as-
sess intra-sample correlations by determining the Pear-
son correlation among pairs for each peak. The Pearson
correlation coefficients had a median value of 0.89 with
the interquartile range lying between 0.80 and 0.94.
Even though samples were applied robotically and in a
randomized fashion on the protein chip surfaces, high
median intra-sample correlations were observed due to
high spot-to-spot reproducibility of the SELDI system.
Hence, the paired spectra from each patient were aver-
aged together on a peak-by-peak basis for subsequent
data analysis.

2.7. Feature selection and Univariate analysis

For each peak, the median patient-averaged intensity
was calculated for the bone lesion (bone) and no bone
lesion (no bone) groups. The difference in group medi-
ans was reported as a ratio, the fold change. Peaks were

first pre-selected for all subsequent analysis using the
biological criterion of having a>1.5 fold change in the
median peak intensity level between the groups. These
peaks, referred to as 1.5 fold peaks henceforth, were
assessed for statistical significance via Wilcoxon rank-
sum test with t-approximation. Multiple-comparison
adjustment of p-values was via false discovery rate
and the Step-down Permutation procedure of Westfall
and Young [23] using 100,000 random permutations
of class labels. A peak with a multiple-comparison-
adjusted p-value<0.05 was considered statistically sig-
nificantly different.

All statistical analyses were performed using SAS
version 9.0 (SAS institute) and S-plus version 6.2 (In-
sightful Corporation) statistical software.

2.8. Partial least squares discriminant analysis

PLS-DA attempts to find variance in the set of pre-
dictor variables (X-data) that correlates with variance
in the response variables (Y-data). PLS was developed
as an econometric technique [24] but has been used
as a useful tool in classifying microarray [25,26] and
SELDI data [27].

In the MM sample set, the centered and scaled 1.5-
fold peaks were used as the predictor variables while
the Y-data set was created by indicating the classes
(bone lesion vs. no bone lesion). The significant PLS-
components were determined by leave-one-out cross-
validation. The model was also validated by external
validation on an independent data set that was created
by setting aside 10 randomly selected specimens from
the sample set, 5 from each group. The remaining 38
samples were used as a training set to build the model
which was then applied to the independent test set and
the classification accuracy was recorded. The variable
influence on projection (VIP) [28] and PLS regression
coefficients were used to determine the peaks that were
most important in driving the separation between the
classes.

2.9. Random forest classifier

The random forest algorithm [29] (available freely
from http://www.stat.berkeley.edu/users/breiman/ Ran-
domForests/) was conducted by bagging a classifica-
tion tree coupled with random feature selection. Bag-
ging was performed by re-sampling with replacement
2500 bootstrap subsets from the MM data set contain-
ing 70% of the data from each group. No transforma-
tion, centering or scaling was performed on the peak
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Fig. 1. Peak intensities from different fractions were log transformed, centered to means of zero and scaled to standard deviation of one. A) Raw
peak intensities (prior to transformation and standardization) of a fraction of the peaks with m/z between 2–6.2 KDa. B) The same peaks after
log2 transformation. C) After centering and scaling, the same peaks showed increased uniformity in their distribution.

intensities prior to input into the RF algorithm. A Tree-
classifier was constructed on each of these subsets and
predictions were recorded on the remaining 30% of the
data (called out-of-bag samples). When constructing
the decision trees, 5 random inputs from the 1.5 fold
eligible predictors were attempted at each split. Final
prediction from the RF classifier is the out-of-bag es-
timator averaged over all the 2500 bootstrap samples.
The amount of increase in the prediction error when
the value of a splitter for the out-of-bag samples was
randomly perturbed was used to score the importance
of the splitters in constructing the tree-classifiers.

3. Results

3.1. The compiled dataset and univariate analysis

Forty-eight age- and sex-matched archived MM pa-
tient serum samples (24 were with�3 bone lesions
(bone disease) (average age 55.2± 9.7 years) and 24
without apparent bone lesions (no bone disease) (aver-
age age 55.4± 8.9 years) diagnosed with MM between
February 1998 and December 2001 were assayed by
SELDI-TOF MS were selected from the UAMS Myelo-

ma Institute for Research and Therapy (MIRT) tissue
bank. The bone disease group comprised 9 women and
15 men, whereas the no bone lesion group contained 6
women and 18 men.

After ion-current normalizationon a fraction by frac-
tion basis, 94, 95, 97, 96 and 93 spectra were compiled
from fractions 1, 2, 3+ 4, 5 and 6, respectively. A total
of 168 peaks were resolved from all the fractions in the
2–20 KDa mass range.

A total of 31 peaks showed median fold change>1.5
between the two groups of which 5 peaks were found
to be significant with multiple comparison adjusted
p-values<0.05 (Table 1). Four of these peaks (m/z
5.802 kDa from F6, 6.639 kDa and 6.443 kDa from F3
and 10.472 kDa from F1) were found to be higher in
sera from patients without bone lesions (1.56 to 2.68
fold) while one peak (2.019 from F2) was higher in
patients with bone lesions (1.92 fold). Representative
protein spectra from different bone disease versus no
bone disease samples, showing the univariately signif-
icant peaks are shown in Fig. 2).

3.2. Partial least squares discriminant analysis

The objective with PLS-DA is to find models that
allow the maximum separation among classes of ob-
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Fig. 2. Differences in peak intensities in the normalized spectra of
bone lesion (BL) versus no bone lesion (NBL) groups. The top eight
spectra depict the differences in expression levels in TraceView mode
while the lower eight depict the difference in GelView mode for the
univariately significant peaks of m/z 5.802 (F6), 6.443 & 6.639 (F3
+ 4), 2.019 (F2) and 10.472 (F1), indicated by the arrows.

jects in high dimensional datasets [30]. Unlike prin-
cipal component analysis where only the X-scores are
chosen to explain as much of the predictor variation as
possible, in PLS the X- and Y-scores are selected such
that the relationship between successive pairs of scores
is as strong as possible. Thus, PLS attempts to extract
the latent factors that account for as much of the mani-
fest predictor variation as possible while modeling the
responses well [30].

The PLS-DA model generated here has three sig-
nificant PLS components determined by leave one out
cross-validation. The number of factors chosen usu-
ally minimizes the predicted residual sum of squares
(PRESS), which is a measure of the predictability of
the model [31]. Usually PRESS is re-expressed as Q2,

the cross-validated R2 and is calculated as 1-PRESS/SS
where SS is the sum of squares of the response cor-
rected for the mean. In PLS-DA analysis both R2 and
Q2 are important parameters to evaluate the predictive
power of the model being investigated [28,31]. The
final 3-componenet model had R2 (Y) = 0.79 and Q2

(Y) = 0.59. Thus, three of the PLS-DA components
alone were able to explain 79% of the response vari-
ance. These data suggest that there is information in
the spectra that correlates extremely well with the two
group differences. The separation of the training ob-
servations in the three PLS components are shown in
Fig. 3. As well, the predictive ability of the model
expressed as Q2 is also very good. Generally, an ac-
cumulated predicted variation share larger than 0.5 is
regarded as good [28].

External validation performed on the model by ap-
plying it on a separate holdout test set of 10 randomly
selected samples showed a prediction accuracy of 100%
i.e., all 10 out of 10 samples were correctly classified
by the model (Table 2). External validation by leave-
one-out cross validation on the entire data set produced
a prediction accuracy of 96%. The predicted classifi-
cation was determined using the simple-rule that if the
predicted class membership of the bone lesion group
was greater than 0.5 then classify the sample as bone-
lesion class. In order to determine which peak variables
contributed most in driving the separation between the
two classes, the variable influence on projection (VIP)
and PLS regression coefficients were analyzed. While
VIP parameters point to the variables that contribute
most in explaining both X- and Y-data [28,32], the
coefficients indicate which X-variables contribute in
modeling the Y-variables structure. The VIP ranking
of the top ten peaks with high PLS coefficients (>0.1)
and VIP parameters (>0.8) that contributed most in the
PLS-DA model are shown (Fig. 4). The highest con-
tributors are m/z 11.705 and 5.802 from F6, 6.639 and
6.443 from F3, 14.898 from F1 and 2.019 from F2.

3.3. Random forest classification

The random forest algorithm [29] uses an ensemble
of classification trees that can achieve both low-bias
and low-variance by averaging over a large number of
low-bias, high-variance but low-correlation trees [33,
34]. The algorithm operates as follows. First from a
training set of n molecules, bootstrap samples of the
same size are drawn randomly, with replacement. In
the process, some molecules are left out while others
are repeated in the sample. The left out molecules
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Fig. 3. PLS score plots based on the peak intensities identified in the bone lesion and the no bone lesion groups of MM patients. Triangles
represent no-bone lesion group; solid circles the bone lesion group. A clear separation between the two classes is observed.

Fig. 4. The VIP ranking of the ten peaks with the highest PLS coefficients (>0.1) and VIP parameters (>0.8) that contributed most in the PLS-DA
model.

constitute the ‘out-of-bag’ sample. For each bootstrap
sample a classification tree is grown. At each node the
best split is chosen from among a randomly selected
subset of predictor variables (rather than all). The trees
are grown to the maximum size till no further splits are
possible and not pruned back. Since the ‘out-of-bag’
samples have not been used in the tree construction,
they are used to estimate the ensemble prediction per-
formance. RF prediction for a molecule is computed
by averaging the tree predictions over trees for which
the given molecule was ‘out-of-bag’. The RF method
correctly classified 21 out of 24 MM samples with bone
lesion (87.5% sensitivity) and also correctly classified

21 out of 24 MM samples with no bone lesions 87.5%
specificity) (Table 3) The area under the receiver op-
erating characteristic (ROC) curve for the ‘out-of-bag’
cases was 0.91. It is generally accepted that the area
under the ROC curve>90% is satisfactory in diagno-
sis. The RF analysis used 25 out of the 31 predictors to
construct the predictive models. The predictors were
ranked based on an importance measure between 0 and
1. A major importance measure indicates that random
permutation of that peak variable causes the samples to
be misclassified more often and hence that peak vari-
able is important. Six peaks had an importance score
>0.35 (Fig. 5). Interestingly, five of these six peaks
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Table 2
PLS-DA prediction results on the separate test set

Patient-ID Pred. Classification Pred. Actual
(Class: Bone Lesion) Class Class

Pt06 0.690773 BLa BL
Pt25 0.596842 BL BL
Pt34 0.642156 BL BL
Pt45 0.788041 BL BL
Pt53 0.722192 BL BL
Pt17 0.093782 NBLb NBL
Pt28 0.228806 NBL NBL
Pt44 0.100527 NBL NBL
Pt54 0.200266 NBL NBL
Pt66 0.258923 NBL NBL

a. myeloma patients with bone lesions.
b. myeloma patients with no bone lesions.

Table 3
‘Out of bag’ prediction results by RF classification

Total cases Correct Percent

sensitivity 24 (BL) 21 87.5
specificity 24 (NBL) 21 87.5

were also identified as top contributors in the PLS-DA
model. The specific peaks are m/z 5.802 from F6,6.639
and 6.443 from F3, 2.019 from F2 and 14.898 from F1.

4. Discussion

A major challenge confronting the management of
MM is a way to positively impact patient survival
through the diagnosis of disease progression. Proteom-
ic signature analysis accurately distinguished serum
samples from patients with MM bone disease and no
bone involvement. The development of our technique
depended not only on proteomic technology (SELDI),
but has also involved critical post-acquisition analysis
of obtained spectra. Currently, the choice of spectral
analysis algorithms by various investigators relies on
personal preference, although these choices have pro-
found effects on the diagnostic accuracy [34,35,33,37].

Due to the multifactorial nature of MM bone dis-
ease [5], it is highly likely that a combination of mul-
tiple markers will be necessary to diagnose the disease
with high specificity and sensitivity. To search for these
diagnostic biomarkers serum samples from 48 MM pa-
tients with and without bone disease were examined
in this study. Each serum sample was fractionated to
increase the peak resolution in SELDI spectra and nor-
malized peak information from each of the fractions
merged into an input data matrix that included 48 sam-
ples and 168 feature (predictor) vectors. Such small
datasets are often a reality in biomedical research, since

obtaining large number of serum samples for many dis-
eases can be difficult and expensive [38].

Our approach to the analysis of this small, but im-
portant MM patient sample set was novel in two ways.
First, we adopted a non-statistical criterion of predictor
variable selection based on a>1.5 fold change in the
median peak intensity level between the groups. This
was because our objective was not only prediction, but
also to identify a small set of proteins with good predic-
tive performance that could subsequently be used for
diagnostic and/or therapeutic purposes in the progres-
sion of MM. We hypothesized that this pre-selection
criterion is biologically relevant for both research and
diagnostic purposes. In addition, we determined that
this criterion did not adversely affect the prediction out-
come of the study. In fact, when all 168 predictors were
used as input variables against 48 samples, the sen-
sitivity and specificity predicted by the RF algorithm
decreased to 83.3% and 75% respectively, presumably,
due to noise in the data.

Variable selection derived in an iterative fashion from
the importance measures based on RF itself was per-
formed and the error cost determined from the models
built at each iterative step. The misclassification error
rate did not show improvement using any of these mod-
els. In PLS-DA there was a small (2%) increase in the
cumulative fit to the Y-data, when all 168 predictors
were used. However, 8 out of the first 11 important
peaks based on the VIP scores were preserved in both
models. Thus, although rule-based peak selection may
miss peaks of very low amplitude this does not appear
to be a significant problem, presumably because of the
large number of discriminating peaks.

Second, to increase the robustness of our analytical
approach a linear (PLS-DA) as well as a nonlinear (RF)
classification algorithm was selected. Linear classifi-
cation techniques like PLS-DA make the assumption of
the existence of a linear relation between the predictor
variables which may not be the case always in spectral
data. Both these unrelated algorithms, that have been
shown to perform extremely well on high dimensional
data, were able to obtain high prediction accuracy on
the MM patient data set, as well as point to the same
4 peak variables as the top predictors of the respective
classification models. It is worth noting that this set of
4 variables were also found to be statistically signifi-
cant based on multiple comparison adjusted WRS test
with t-approximation.

Multivariate data-analysis tools such as PLS-DA are
sensitive to pre-processing steps like scaling, center-
ing and where appropriate, transformation [30]. In or-
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Fig. 5. Variable importance score of the highest ranking 10 peaks from RF. The first six peaks had an importance score>0.35.

der to ensure that efficient biological comparisons can
be made between the samples based on the peak in-
tensity information compiled from six different serum
fractions that were collected on separate days, log2-
transformation, centering and scaling were applied to
the input data set for the PLS-DA algorithm. This sig-
nificantly increased the class separation along the first
three PLS components. This preprocessing step, how-
ever, was not performed for the RF algorithm which is
not sensitive to any kind of rescaling, transformation or
modification.

These high dimensional data sets require a combina-
tion of feature selection methods and robust classifiers
that can handle complex data and effectively recognize
hidden patterns. We used two such classifiers, PLS-DA
and RF that have been successfully applied in high di-
mensional microarray data [25,26,39] as well as SEL-
DI data [27,34,40]. Wu et al. has recently shown that
the RF algorithm outperformed other methods like lin-
ear discriminant analysis, quadratic discriminant anal-
ysis, k-nearest neighbor (k-NN), bagging and boost-
ing classification trees in classifying SELDI generated
ovarian cancer data [40]. RF uses bagging (bootstrap
aggregation) to combine unstable learners and random
variable selection for tree building. Each tree is left
unpruned to obtain low-bias trees, while bagging and
random variable selection results in low-correlation of
the individual trees. PLS-DA is an excellent classi-
fier that is resilient to noise in the data and performs
dimensional reduction and discrimination among the
groups in a simultaneous fashion [30]. Thus, PLS-DA
produces more optimal models compared to Principal
Component Analysis-Discriminant analysis.

The RF algorithm produced an ‘out-of-bag’ sensi-
tivity of 87.5% as well as a specificity of 87.5% on
the MM data set. ‘Out-of-bag’ or OOB testing [34,41,
42] is very similar to a cross validation that is repeated

many times with each replication starting with a ran-
dom reordering of the data. In small data sets which
lack a separate test set OOB results have been shown
to be fully reliable and produce prediction accuracies
nearly identical to that obtained from separate test sets.
The three-component PLS-DA model generated with
leave-one-out cross-validation was able to explain al-
most 80% of the response variance in the data. External
validation performed on a separate test set produced a
prediction accuracy of 100% while leave-one-out cross
validation on the training data produced a prediction
accuracy of 96%.

The four top-ranked peaks (of m/z 5.802 from F6,
6.639 and 6.443 from F3, and 2.019 from F2) derived
from t-tests, multiple comparison adjusted significance
testing, PLS-DA and the RF models were identified
to be of high value in the diagnosis of skeletal in-
volvement in MM. It is particularly important to se-
quence and identify these protein biomarkers. These
protein peaks had a>1.5 fold difference in expression
level between the two groups of MM patients. Once
the individual biomarkers are identified and sequenced,
a more conventional and cost-effective method detec-
tion should result in less patient-to-patient variabili-
ty and improve diagnosis. The identification of these
biomarkers would also help in the understanding of the
pathophysiology of MM. The identification of these
specific biomarkers and the subsequent development of
a diagnostic assay are ongoing.

This diagnostic method needs to be validated using
additional patient samples, especially since the accura-
cy of our test for identifying MM bone disease com-
pares favorably with that reported using the same tech-
nology to diagnose ovarian cancer (sensitivity 100%,
specificity 95%) [15], breast cancer (sensitivity 93%,
specificity 91%) [18,19], pancreatic cancer (100% sen-
sitivity and 93.5% specificity) [20,21] and prostate can-
cer (100% specificity and sensitivity) [17].
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We adopted a novel approach to data analysis by
using a number of different but complementary tech-
niques. The power of our diagnostic method is many-
fold: first, similar results were obtained using unrelat-
ed analytical techniques, indicating the robustness of
the selected proteomic approach; second, the majority
opinion (based on multiple analyses) improves predic-
tive accuracy, since algorithms tend to misassign dif-
ferent patients. For the few individual errors, collective
opinion should either improve the performance of the
worst algorithm or leave it the same [43].

A major advantage of the proteomic biomarker sig-
natures approach described here is that it does not as-
sume differences in the spectral peaks obtained from
different patient samples. From a bone disease diagno-
sis standpoint, there is no need to identify further the
nature of new peaks associated with bone disease (posi-
tive biomarkers), nor to explain why peaks only present
in MM patients with no bone involvement disappear
in patients with bone disease (negative biomarkers).
Nevertheless, biomarkers may be useful for improving
our understanding of the pathophysiology of MM bone
involvement.

In summary, this report describes the accurate diag-
nosis of bone involvement in MM using proteomic sig-
nature analysis. The same approach could equally be
used to improve the early diagnosis of the disease, such
as MGUS and eventually other bone diseases such as
osteoporosis.
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