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Abstract

Cholangiocarcinomas (CCAs) are hepatobiliary cancers with features of cholangiocyte 

differentiation; they can be classified anatomically as intrahepatic (iCCA), perihilar (pCCA), or 

distal CCA (dCCA). These subtypes differ not only in their anatomic location but in epidemiology, 

origin, etiology, pathogenesis, and treatment. The incidence and mortality of iCCA has been 

increasing over the past 3 decades, and only a low percentage of patients survive until 5 y after 

diagnosis. Geographic variations in the incidence of CCA are related to variations in risk factors. 

Changes in oncogene and inflammatory signaling pathways, as well as genetic and epigenetic 

alterations and chromosome aberrations, have been shown to contribute to development of CCA. 

Furthermore, CCAs are surrounded by a dense stroma that contains many cancer-associated 

fibroblasts, which promotes their progression. We have gained a better understanding of the 

imaging characteristics of iCCAs and have developed advanced cytologic techniques to detect 

pCCAs. Patients with iCCAs are usually treated surgically, whereas liver transplantation following 

neoadjuvant chemoradiation is an option for a subset of patients with pCCAs. We review recent 

developments in our understanding of the epidemiology, pathogenesis, of CCA, along with 

advances in classification, diagnosis and treatment.
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Introduction

Cholangiocarcinoma is the most common biliary malignancy and the second most 

common hepatic malignancy after hepatocellular carcinoma (HCC).1 Cholangiocarcinomas 

(CCAs) are epithelial tumors with features of cholangiocyte differentiation. Intrahepatic 

cholangiocarcinomas (iCCAs) are located within the hepatic parenchyma. The second-order 

bile ducts serve as the point of separation between iCCAs and perihilar CCAs (pCCAs) or 

distal CCAs (dCCAs)—the cystic duct is the anatomical boundary between these latter two 

subtypes (Figure 1A).2 The Bismuth -Corlette classification stratifies perihilar tumors on the 

basis of biliary involvement. This classification has recently been extended to also take into 

account arterial and venous encasement.3 pCCA is the most common type of CCA. In a 

large series of patients with bile duct cancer, 8% had iCCA, 50% had pCCA, and 42% had 

distal CCA.4 CCA has a poor prognosis; patients have a median survival of 24 months after 

diagnosis. The only curative treatment option is surgery, for early-stage disease.5

Epidemiology

Cholangiocarcinoma accounts for 3% of all gastrointestinal tumors. Over the past 3 decades, 

the overall incidence of CCA appears to have increased.6 The percentage of patients who 

survive 5 y after diagnosis has not increased during this time period, remaining at 10%.7, 8

In the United States, Hispanics and Asians have the highest incidence of CCA 

(2.8/100,000 and 3.3/100,000 respectively), whereas African Americans have the lowest 

(2.1/100,000). African Americans also have lower age-adjusted mortality compared with 

whites (1.4/100,000 vs. 1.7/100,000). Men have a slightly higher incidence of CCA and 

mortality from the cancer than women.7 With the exception of patients with primary 

sclerosing cholangitis (PSC), a diagnosis of CCA is uncommon before age 40 y.

Globally, hepatobiliary malignancies account for 13% of cancer-related deaths; 10%–20% 

of these are attributable to CCA. The mean age of diagnosis of CCA is 50 y. The global 

incidence of iCCA varies widely, from rates of 113/100,000 in Thailand to 0.1/100,000 in 

Australia.9, 10 Differences in the prevalence of genetic and other risk factors presumably 

account for this extensive variation.

Epidemiologic studies indicate that age-adjusted mortality for iCCA is increasing whereas 

mortality from pCCA and dCCA could be decreasing.9–14 A study of a WHO database 

reported a substantial global increase in iCCA mortality, with a decreasing trend in mortality 

from pCCA plus dCCA.15 Although this observed increase in the incidence of CCA over the 

past 30 y has been recorded as an increase in iCCA, it could result from misclassification 

of perihilar tumors as iCCAs.16 According to the US Surveillance, Epidemiology, and End 

Results database, the age-adjusted incidence rate for iCCA increased from 0.59/100,000 

in 1990 to 0.91 in 2001. It subsequently decreased to 0.6/100,000 by 2007. Conversely, 

the incidence rate for pCCA plus dCCA remained around 0.8/100,000 until 2001 then 

gradually increased to 0.97 by 2007. Perihilar tumors were coded as iCCAs before 2001 

and subsequently were coded as pCCAs after implementation of the third edition of 

the International Classification of Disease for Oncology (ICD-O-3). This update likely 
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influenced the aforementioned changes in incidence rates of both CCA subtypes. Similar 

trends in the incidence of CCA subtypes were noted in the United Kingdom after the change 

to ICD -O-3 in 2008.6, 16

Risk Factors

There are several established risk factors for CCA, and most cases are sporadic.6, 8, 17 

Geographic variations in incidence rates of CCA are related in part to variations in risk 

factors. For example, in Southeast Asia, which has one of the highest incidence rates of 

CCA, infection with the hepatobiliary flukes Opisthorchis viverrini and Clonorchis sinensis 
has been associated with development of CCA. Both parasites cause chronic inflammation 

and are considered carcinogens.8, 18 Hepatolithiasis is another risk factor for CCA (mainly 

iCCA) in Asian countries.8 Chronic biliary inflammation secondary to calculi has been 

proposed to increase the risk of malignancy. Moreover, infestation with hepatobiliary flukes 

has been shown to be more common in patients with hepatolithiasis.8, 19 The incidence and 

prevalence of CCA in patients with bile duct (choledochal) cysts are also higher in Asian 

than western countries.20, 21 Choledochal cystic diseases, including Caroli’s disease, are 

rare congenital abnormalities of the pancreatic and biliary ducts. Choledochal cysts can be 

intrahepatic or extrahepatic, and are diagnosed in patients at an average age of 32 y old.8, 17 

Thorotrast, a previously used contrast agent that is now banned, was found to increase risk 

for CCA by 300-fold in a Japanese study.22

In the West, PSC is the most common predisposing condition for CCA. Among patients with 

PSC, the annual risk of development of CCA is 0.5%–1.5% with a lifetime prevalence of 

5%–10%;17 CCA is diagnosed within 2 y of PSC in most of these patients. A number of 

potential risk factors for CCA in patients with PSC have been studied, including smoking 

and alcohol, though definitive data are lacking.8

Hepatitis B virus (HBV) or hepatitis C virus (HCV) infection and cirrhosis have been 

proposed as potential etiologies of iCCA.23–25 A recent meta-analysis of 11 studies found 

that cirrhosis, HBV, and HCV were major risk factors for iCCA, with odds ratios (ORs) 

of 22.92, 5.1, and 4.8, respectively.26 A case–control study from Korea found a significant 

association between HBV (OR 2.3), but not HCV, and CCA. Cirrhosis was also found to be 

a significant risk factor for CCA, with an OR of 13.6. HCV and cirrhosis were associated 

with iCCA in a US case–control study. Compared to controls, patients with iCCA had a 

higher prevalence of anti-HCV antibodies, with an OR of 7.9.24

CCA development has been associated with other risk factors, including inflammatory bowel 

disease independent of PSC, alcohol, smoking, fatty liver disease, diabetes, cholelithiasis, 

and choledocholithiasis.8, 27–29 Additional studies have associated variants of genes that 

regulate DNA repair, inflammation, and carcinogen metabolism with CCA development.8 

Further studies are necessary to verify these potential associations.

Cells of Origin

iCCA is a histologically diverse hepatobiliary malignancy considered to develop from 

biliary epithelial cells or hepatic progenitor cells (Figure 1B). A recently proposed 
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classification of iCCAs subdivided these tumors into the conventional, bile ductular, or 

intraductal neoplasm type, or rare variants (combined hepatocellular CCA, undifferentiated 

ICC, squamous/adenosquamous type). The conventional type include small duct or 

peripheral type and large duct or perihilar type.30 Neural cell adhesion molecule, a marker 

of hepatic progenitor cells (HPCs), has been detected in the bile ductular and combined 

hepatocellular-CCA types, so these might have originated from HPCs.30–32

Distal and pCCA have been proposed to arise from the biliary epithelium and peribiliary 

glands.33 Extrahepatic bile ducts and large intrahepatic bile ducts are lined by mucin-

producing cuboidal cholangiocytes. A recent study demonstrated that mucin-producing 

iCCAs and hilar CCAs had gene expression and immunohistochemical profiles similar to 

those of the cylindrical, mucin-producing cholangiocytes that linehilar and intrahepatic large 

bile ducts.34

A model in which iCCAs arise from trans-differentiation and subsequent neoplastic 

conversion of normal hepatocytes into malignant cholangiocytes has been proposed. Fan et 

al. demonstrated in mice that overexpression of Notch1 and AKT resulted in development of 

invasive cystadenocarcinomas, via conversion of hepatocytes into cholangiocyte precursors 

of iCCA.35 Sekiya and Suzuki also showed that in mice, Notch-mediated conversion of 

hepatocytes into biliary cells leads to macronodular cirrhosis and iCCAs.36 Therefore, 

iCCAs may not have a single lineage, but instead derive from different cells of origin. 

In support of this theory, a recent study demonstrated that transformed hepatocytes, 

hepatoblasts, and HPCs can give rise to a broad spectrum of liver tumors, ranging from CCA 

to HCC.37 These studies indicate that multiple cell types, rather than only cholangiocytes, 

transform and develop into CCAs. Additional animal models of CCA and lineage tracing 

studies are necessary to help identify the cells of origin for CCA.

Inflammation

CCA frequently arises under conditions of inflammation, which is believed to contribute 

to pathogenesis. A variety of cytokines, growth factors, tyrosine kinases, and bile acids 

can contribute to the alterations in proliferation, apoptosis, senescence, and cell cycle 

regulation required for cholangiocarcinogenesis.5 Inflammatory cytokines activate inducible 

nitric oxide synthase, leading to excess nitric oxide with resultant single-stranded, double-

stranded, and oxidative DNA lesions, as well as inhibition of DNA repair enzymes.38 

IL6, an inflammatory mediator secreted by CCA and stromal inflammatory cells, can 

function in an autocrine or paracrine manner to promote cell survival and provide mitogenic 

signals.39, 40 Myeloid cell leukemia sequence 1 (MCL1) is an anti-apoptotic BCL2 

family member that mediates tumor necrosis factor-related resistance to apoptosis-inducing 

ligand in CCAs.41 IL6 increases expression of MCL1 via constitutive activation of signal 

transducer and activator of transcription (STAT) signaling and protein kinase B (Akt).40, 

42 MCL1 transcription is activated by IL6 via a p38 mitogen activated protein kinase 

(MAPK)-dependent pathway.43 IL6 binds to the gp130 receptor, leading to its subsequent 

dimerization and activation of the gp130-associated janus kinases (JAKs), including JAK1 

and JAK2, which leads to STAT3 activation.44, 45 Epigenetic silencing of suppressor of 

cytokine signaling 3 (SOCS3) results in sustained IL6 signaling via STAT3.46 Inflammatory 
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signaling pathways therefore appear to promote development of CCA by causing DNA 

damage and blocking the apoptosis normally induced by the DNA damage response. These 

cytokines also promote cell proliferation. The combination of DNA damage, evasion of 

apoptosis, and cell proliferation are all components of cell transformation.

Epidermal growth factor receptor (EGFR) signaling also contributes to 

cholangiocarcinogenesis and CCA progression. Activation of EGFR leads to activation 

of extracellular-signal regulated kinases (ERKs) 1 and 2 (also known as p44/42 MAPK). 

EGFR inhibitors decrease expression of cyclooxygenase-2 (COX2) by CCA cells.47 ERBB2 

is another member of the EGFR family that contributes to CCA development. In mice, 

overexpression of ERBB2 led to formation of tumors along the biliary epithelium.48 

Hepatocyte growth factor (hepapoietin A; scatter factor) (HGF) is a stromal paracrine 

mediator that regulates tumor invasiveness and metastasis.49–51 Activation of MET, the 

receptor for HGF, upregulates several signaling pathways, including those involving PI3K–

AKT, STAT3, and MAPK.52 CCAs express higher levels of MET and HGF than non-tumor 

tissues.53, 54 MET overexpression was associated with activation of members of the EGFR 

family, particularly of HER2.54, 55

Cholestasis also contributes to development of CCA, and bile acids have important roles in 

this process, activating growth factors that mediate proliferation. Bile acids activate EGFR 

and increase expression of COX2 via a MAPK cascade.56 In addition to bile acids, COX2 

overexpression is induced by oxysterols and iNOS.57 Oxysterols are overlooked in the 

pathogenesis of CCA.58 These oxidative degradation products of cholesterol are abundant in 

bile. They are endogenous ligands for the hedgehog signaling pathway59—a developmental 

pathway implicated in CCA progression.60

Genetics

A few studies have assessed the roles of genetic factors, such as chromosome aberrations or 

genetic and epigenetic alterations in tumor suppressor genes and oncogenes, in pathogenesis 

of human CCA. However, these studies have produced no definitive results, because they 

analyzed a limited number of genes in combined CCA specimens, without separate analyses 

of different subtypes.61 A comparative genomics hybridization analysis of 32 CCA samples 

from patients (7 iCCA, 13 pCCA, and 12 dCCA) showed that they all contained gains at 

16q, 17p, 17q, 19p, and 19q, which included regions encoding ERBB2, MEK2, and platelet-

derived growth factor β (PDGFβ).62 A meta-analysis of 5 studies that used comparative 

genomics hybridization to analyze 98 iCCAs found copy number losses at 1p, 4q, 8p, 9p, 

17p, and 18q and gains at 1q, 5p, 7p, 8q, 17q, and 20q.61 In this meta-analysis, there was 

considerable variation among the 4 studies that were performed in Asia63–66 and the 1 

study from Europe.67 This variation could have resulted from differences in ethnicity and 

etiological associations among the studies.

Whole-exome sequencing analyses of 8 liver fluke-related CCAs identified 206 somatic 

mutations in 187 genes.68 The frequency of these mutations was validated in an additional 

46 liver fluke-related CCAs. Mutations were frequently detected in oncogenes and tumor 

suppressor genes such as those encoding TP53 (mutations in 44.4% of CCAs), KRAS 
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(16.7%), and SMAD family member 4 (16.7%). Mutations were also found in MLL3 
(14.8% of cases), RNF43 (9.3%), PEG3 (5.6%), and ROBO2 (9.3%). These genes are 

involved in deactivation of histone modifiers, activation of G-proteins, and loss of genomic 

stability.68 This study, performed in Asia, has been the only whole-exome sequence analysis 

of CCAs. Further whole-genome sequencing studies are needed to evaluate CCAs from 

Western patients.

A recent study comprising single nucleotide polymorphism array, gene expression profile, 

and mutation analyses of 149 iCCAs identified inflammation and proliferation classes of this 

tumor.45 Several copy number alterations were identified, including losses at 3p, 4q, 6q, 9pq, 

13q, 14q, 8p, 17p, and 21q and gains at 1q and 7p.45 Features of the inflammation class 

included activation of inflammatory pathways, overexpression of cytokines, and activation 

of STAT3. The proliferation class was characterized by activation of oncogene signaling 

pathways involving RAS, MAPK, and MET. Activating mutations in KRAS have been 

frequently detected in CCAs.69–71 At least 2 studies have reported a higher incidence of 

activating mutations in KRAS in pCCAs compared to iCCAs.71, 72 In one cohort, the 

incidence of these mutations was 53% in pCCAs compared to 17% in iCCAs.71 In a 

transcriptome profile analysis of 104 CCAs and 59 matched non-tumor samples (controls), 

patients could be categorized based on overall survival time, early recurrence, and presence 

or absence of KRAS mutations; a detailed class comparison identified 4 subclasses of 

patients. Those with CCAs with altered expression of genes that regulate proteasome 

activity; with dysregulation of HER2; and with overexpression of EGFR, MET, and Ki67 
had the worst outcomes.71

Inactivation of TP53, which regulates the cell cycle, is one of the most common genetic 

abnormalities in cancer cells and has also been detected during cholangiocarcinogenesis. A 

review of 10 studies, comprising 229 patients with CCA from Europe, Asia, and the US, 

reported TP53 mutations in 21% of CCAs.73 Mutations in other genes, including EGFR, 

NRAS, PI3K, and APC, have been less frequently described.44

There has been growing interest in the effects of somatic mutations in genes encoding 

isocitrate dehydrogenases (IDH) 1 and 2. IDH1 and IDH2 mutations have been frequently 

detected in gliomas but rarely observed in other solid tumors. IDH mutations were detected 

in 22% of CCA specimens—more frequently in iCCAs (28%) than pCCA and dCCAs 

(7%).74 Recurrent mutations in IDH1 were observed in a subset of biliary tract tumors 

samples in a recent broad-based mutation profile analysis of gastrointestinal tumors.75 

A subsequent analysis of 62 CCAs detected IDH1 mutations in only iCCAs.75 IDH1 
and IDH2 mutations were significantly associated with increased levels of p53 and DNA 

hypermethylation.76 Epigenetic changes associated with IDH mutations likely mediate their 

oncogenic effects. The product of the enzymatic activity of mutant IDH1 and IDH2 is 

2-hydroxyglutarate (Figure 2A). This metabolite might therefore serve as a biomarker for 

IDH1 and IDH2 mutations, and for a subset of patients that might be treated with IDH 

inhibitors77–79(Figure 2B).

A number of epigenetic alterations, such as promoter hypermethylation and microRNA 

dysregulation, have been associated with development of CCA. However, whole epigenome 
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analysis has not been conducted and microRNA profiling is possible with only small 

numbers of tumor samples.80, 81 Promoter hypermethylation has been reported to silence 

tumor suppressor genes including CDKN2 (observed in 17%–83% of CCAs), SOCS3 (in 

62%46), RASSF1A (in 31%–69%), and APC (in 27%–47%). 45, 61

Gene fusions, such as the BCR-ABL gene in chronic myeloid leukemia, are driver mutations 

in cancer which play a role in certain cancers.82 Fibroblast growth factor receptor (FGFR) 

fusions are active kinases. A recent study identified novel FGFR2 gene fusions in CCA.82 

Cells with these FGFR fusions were susceptible to FGFR inhibitors, signifying that FGFR 

kinase inhibition may be a valid therapeutic strategy in CCA patients harboring these gene 

fusions.82

MicroRNAs (miRs) are non-coding RNAs that function in post-transcriptional regulation of 

gene expression. A cluster of 38 miRs was differentially expressed in 27 iCCA samples, 

compared with non-tumor tissues. miR21 is overexpressed in CCAs and could have 

oncogenic effects, partly by inhibiting programmed cell death 4 and tissue inhibitor of 

matrix metalloproteinase (MMP)3.83 miR21 was also found to regulate phosphatase and 

tensin homolog deleted on chromosome ten (PTEN)-dependent activation of PI3K signaling 

in CCAs, to affect chemosensitivity.84 miR200C prevents the epithelial–mesenchymal 

transition (EMT); changes in its level might be used as a prognostic factor.80 Further studies 

are needed to determine how alterations in miRs contribute to development of CCA, and 

how these changes might be used to determine patients’ prognoses.

Developmental Pathways

The Notch signaling pathway regulates embryonic development and proliferation of the 

biliary tree.85 Not surprisingly, therefore, Notch dysregulation has also been implicated 

in cholangiocarcinogenesis. Two recent studies in mice have demonstrated that Notch 

activation is required for conversion of normal adult hepatocytes to biliary cells that are 

precursors of iCCA.35, 36 Overexpression of intracellular domain of the Notch 1 receptor 

in liver cells of mice resulted in formation of iCCAs.86 In this model, an inhibitor of 

γ-secretase, an enzyme necessary for Notch signaling, suppressed tumor formation.

Another evolutionary conserved, developmental pathway is the Hedgehog signaling 

pathway. Hedgehog signaling is deregulated in many types of tumors, including CCAs. 

Inhibition of hedgehog signaling with cyclopamine impedes CCA cell migration, 

proliferation, and invasion.87, 88 Hedgehog signaling has also been implicated in survival 

signaling by myofibroblast-derived CCAs. PDGFβ protects CCA cells and promotes tumor 

survival in mice with CCAs, but cyclopamine reverses these effects.60

Wnt signaling is also required for intrahepatic bile duct development and proliferation.89 

Wnt-inducible signaling pathway protein 1v (WISP1v) is overexpressed in stroma nests 

around CCAs, and levels of WISP1v are associated with reduced survival times of 

patients. WISP1v stimulated the invasive activity of CCA cell lines by activating MAPK1 

andMAPK3.90
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Tumor Microenvironment

Carcinogenesis in CCA includes alterations in the stroma, recruitment of fibroblasts, 

remodeling of the extracellular matrix(ECM), changing patterns of immune cell migration, 

and promotion of angiogenesis (Figure 3A).91 iCCAs and pCCAs are characterized by a 

dense and reactive desmoplastic stroma (Figure 3B) that contains many α-smooth muscle 

actin (αSMA)–positive myofibroblasts, also known as cancer associated fibroblasts (CAFs). 

The tumor stroma surrounds the malignant ducts and glands and comprises most of the 

tumor mass.92, 93 The stroma promotes tumor progression, via reciprocal communication 

between the stromal cells and cancer cells.92

The precise origin of CAFs is unclear, although several cell types, including hepatic stellate 

cells, portal fibroblasts, and bone-marrow derived precursor cells, have been proposed 

as candidates.92, 94–96 The EMT has also been proposed to produce CAFs.93 During 

tumorigenesis, the EMT is characterized by the presence of tumor cells that express 

mesenchymal markers such as vimentin, tenascin, fibronectin, and the zinc finger protein 

Snail.92 Immunohistochemical studies have demonstrated the expression of these markers 

by human CCA cell lines.97–99 In mice, xenograft tumors grown from EGFP-expressing 

human CCA cells were found to be surrounded and infiltrated by αSMA-expressing CAFs. 

Interestingly, EGFP was not co-expressed with αSMA, indicating that the EMT does not 

produce CAFs in CCAs.100 Based on combined evidence, αSMA-expressing CAFs appear 

to be a heterogeneous population of cells that originate from several cell lineages, but not 

from epithelial cancer cells.

CAFs produce factors that stimulate ECM production, leading to a fibrogenic response 

(Figure 3C).92 Factors produced by CAFs include transforming growth factor-β, PDGF 

isomers, connective tissue growth factor, and insulin-like growth factor binding proteins.92 

PDGF-mediated interactions between CAFs and tumor cells have been observed, such as 

recruitment of CAFs by PDGFD secreted by CCA cells.60, 100, 101 PDGFD stimulates CAF 

migration via its receptor PDGFR, which is highly expressed on CAFs, and activation of 

small Rho GTPases and the JNK signaling pathway.100

Activated CAFs also secrete paracrine factors that promote initiation and progression 

of cancer. These include matricellular proteins, growth factors, chemokines, and ECM 

proteases. Periostin is a matricellular protein which is overexpressed by CAFs, compared 

to normal fibroblasts; its presence correlates with shorter survival times of patients. 

Knockdown of the periostin receptor, the alpha 5 subunit of integrin, with small interfering 

RNA reduced stimulation of tumor proliferation and invasion by periostin.102 The ECM that 

surrounds pancreatic tumors has also been shown to overexpress periostin, which promotes 

tumor invasiveness.103 Tenascin-C, another ECM protein produced by CAFs, also promotes 

tumor migration and invasiveness.92 In CCA cell lines, HGF promoted invasiveness and 

motility by inducing phosphorylation of Akt and ERK 1/2.104 Similarly, stromal cell derived 

factor-1, through activation of its receptor CXCR4, induced CCA cell invasion via ERK 1/2 

and Akt.105, 106 This process was disrupted by the CXR4 inhibitor AMD3100.106
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ECM degradation and remodeling is required for tumor progression. MMPs degrade and 

remodel the ECM during fibrogenesis and carcinogenesis. MMP1, MMP2, MMP3, and 

MMP9 are strongly expressed in CCAs and are associated with invasive tumors.107, 108 

Fibroblast activation protein is a stromal protein; its high expression by CAFs has been 

associated with tumors with an aggressive phenotype.109

The exact mechanisms by which tumor and stroma communicate are not clear. However, the 

importance of the desmoplastic stroma in CCA progression indicates that it could be a new 

therapeutic target, perhaps via selective targeting of CAFs.110

Animal Models

Animal models are essential for development of new therapeutic strategies and diagnostic 

tools.111 Animal models of CCA (Table 1) include mice with xenograft tumors, 43, 112–119 

mice with genetic changes that lead to CCA formation,86, 120–124 rats with orthotopic 

tumors125,126, and animals that develop CCAs following exposure to carcinogens.55, 127–129 

Although these models offer an opportunity to bridge the chasm between in vitro findings 

and clinical applicability, they have limitations. The tumor microenvironment is an important 

feature in CCA development. It can sometimes be a challenge to study interactions between 

cancer cells and the stroma in mice with xenograft tumors, because the tumor is not 

growing in the same microenvironment as it does in humans. A model described by Sirica 

et al., in which rat CCA cells were injected into rat biliary trees, is unique in that the 

stroma and epithelial cells are derived from the same species.125 These animals allow for 

investigations of tumor–stroma interactions that more closely resemble those of patients. 

Although orthotopic tumor models do allow for study of the tumor microenvironment, they 

tend to be technically challenging and expensive. Animals with genetic alterations that lead 

to production of CCAs that resemble human tumors are needed.

Diagnosis and Management

It can be a challenge to diagnose CCA because of its paucicellular nature, anatomic 

location, and silent clinical character. Diagnosis requires a high index of suspicion and a 

multidisciplinary approach that involves clinical, laboratory, endoscopic, and radiographic 

analyses.

iCCA

iCCA is divided into mass-forming, periductal infiltrating, and intraductal growth types.130 

The clinical manifestations of iCCA include nonspecific symptoms such as abdominal pain, 

cachexia, malaise, fatigue, and night sweats.2 iCCA frequently presents as an intrahepatic 

mass lesion; imaging modalities including computed tomography (CT) and magnetic 

resonance imaging (MRI) aid in the diagnosis. The use of contrast enhancement improves 

the sensitivity of MRI for detection of iCCA, as these tumors typically have progressive 

uptake of contrast during the venous phase. HCCs, on the other hand, are characterized 

by rapid contrast uptake during the arterial phase, followed by a delayed venous washout 

phase.131 CT and MRI have similar utility in evaluation of tumor size and detection 
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of satellite lesions. However, CT may be better for assessment of vascular encasement, 

identification of extrahepatic metastasis, and determination of resectability.17, 132

Serum levels of CA 19-9, a tumor biomarker, can aid in diagnosis, but this assay detects 

iCCA with only 62% sensitivity and 63% specificity.133 Moreover, increased levels of CA 

19-9 are also observed in patients with benign diseases such as bacterial cholangitis or 

choledocholithiasis.5 Nonetheless, very high levels of CA 19-9 (≥ 1000 U/mL) have been 

associated with metastatic iCCA, so this assay might be used in disease staging rather than 

diagnosis.134 Mixed tumors are characterized by histologic and imaging features of HCC 

and iCCA. In these cases, immunohistochemical analysis for cytokeratins 7 and 19 can 

be useful—tumors positive for cytokeratins can be considered to be mixed hepatocellular-

CCA.17, 135 A definitive diagnosis of iCCA requires liver biopsy analysis. According to the 

WHO classification criteria, iCCAs can be adenocarcinomas or mucinous carcinomas.2

The treatment of choice for iCCA is surgical resection. Patients should only undergo surgery 

if they have potentially resectable tumors and are appropriate surgical candidates. Following 

surgical resection, the median time of disease-free survival is 26 months; reported rates 

of recurrence are 60%–65%.136, 137 Approximately 60% of patients survive for 5 y after 

resection. Factors associated with recurrence and reduced survival time following resection 

include vascular invasion, lymph node metastasis, multiple tumors, and cirrhosis.4, 138 

Nuclear expression of S100A4, a member of the S100 family of calcium-binding proteins, in 

neoplastic ducts were associated with metastasis and reduced time of survival after surgical 

resection in a subset of patients with CCA.139

Liver transplantation as a curative option for iCCA is highly controversial. iCCA was 

reported to recur in 70% of patients within 5 y of liver transplantation, and the median 

disease-free survival time was 8 months in a series of 14 patients with iCCA or mixed HCC-

iCCA.135 Patients with very small iCCAs (< 2 cm) in the context of cirrhosis, however, do as 

well as patients undergoing liver transplantation for HCC. Locoregional therapy, including 

transarterial chemoembolization and radiofrequency ablation, has garnered interest as a 

therapeutic option for patients with unresectable iCCA. 140 The standard practice of care for 

advanced-stage iCCA is systemic chemotherapy with gemcitabine and cisplatin.141

pCCA

pCCAs can have exophytic or intraductal macroscopic growth patterns. The exophytic 

or mass-forming type can be of the nodular subtype or the periductal subtype (the 

most common subtype).142 There are also subtypes of intraductal patterns, including the 

intraductal growing type, mucin-producing type, papilloma type, and cystic type.17 Patients 

with pCCA can present with nonspecific symptoms including abdominal discomfort, 

cachexia, weight loss, and malaise. However, their presentation is typically consistent with 

biliary obstruction presenting with jaundice and less commonly cholangitis.17 Hypertrophy–

atrophy complex, a phenomenon characterized by hypertrophy of the unaffected liver 

lobe and atrophy of affected lobe, presents as unilobar palpable prominence on physical 

examination.2 Laboratory analyses, including measurements of alkaline phosphatase and 

bilirubin levels, do not provide specific information, because they typically reflect 

concomitant cholestasis and cholangitis. For the same reason, serum levels of CA 19-9 are 
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less specific in detecting pCCA than iCCA. IgG4 disease can present in a similar manner, so 

its presence should be excluded by evaluation for serum levels of IgG4.2

In addition to MRI and CT, magnetic resonance cholangiopancreatography (MRCP), 

endoscopic retrograde cholangiography (ERC), and endoscopic ultrasound (EUS) are used 

in the diagnosis of pCCA (Figure 4). Of these, MRI plus MRCP is the preferred imaging 

modality as it can assess resectability and tumor extent with an accuracy of up to 95%.2 EUS 

aids in evaluation for the presence of regional lymphadenopathy and omental metastasis, 

via fine-needle aspiration. However, fine-needle aspiration should not be performed on 

the primary tumor, because it can disseminate the tumor.143 ERC serves a diagnostic and 

therapeutic purpose—it is used to assess and sample the biliary tree via brush cytology and 

endoscopic biopsy, as well as dilatation and stent placement in cases of biliary obstruction.

Fluorescence in situ hybridization (FISH) analysis increases the sensitivity of cytology in 

diagnosing pCCA.144 FISH can detect polysomy or amplification of at least 2 chromosomes, 

tetrasomy, and trisomy 7. Of these, polysomy in the presence of a dominant stricture is 

considered sufficient for diagnosis of pCCA, especially if the polysomy can be confirmed 

over time.145 Tetrasomy can be seen during the M phase of mitosis and should be interpreted 

with caution.5 Trisomy 7 is often observed with inflammation of the biliary tree. Detection 

of polysomy by FISH also been shown to predict the development of malignancies in 

patients with PSC with no mass and equivocal cytology. In a recent study, patients with PSC 

who had polysomy and levels of CA 19-9 greater than 129 U/ml all went on to develop 

cancer, mainly within 2 y (Figure 5).146

The only curative options for pCCA are surgical resection and neoadjuvant chemoradiation 

followed by liver transplantation. The Bismuth-Corlette staging classification is based on 

the anatomic location of the CCA within the biliary tree and is meant to help guide 

decision making. Recently, this classification was expanded to take into account vascular 

encasement and parenchymal value of the potential remnant lobe.3 Surgical resection 

entails lobar hepatic and bile duct resection, regional lymphadenectomy, and Roux-en-

Y hepaticojejunostomy. Potential contraindications to curative surgical resection include 

contralateral or bilateral vascular encasement and pCCA extension bilaterally to the level 

of the secondary biliary branches. The presence of regional lymphadenopathy does not 

necessarily preclude surgery.147 Occasionally, a tumor may be resectable but the remnant 

lobe has limited volume. In such cases, resectability can be achieved by preoperative 

relief of biliary obstruction and portal vein embolization of the affected lobe with resultant 

compensatory hyperplasia of the contralateral unaffected liver lobe.147 Rates of 5 y survival 

following surgical resection with negative margins range from 11% to 41%.147

With the advent of new liver transplantation protocols, neoadjuvant chemoradiation followed 

by transplantation has become an appealing option for patients selected carefully using 

stringent criteria (Table 2). Sixty-five percent of patients who were treated with neoadjuvant 

therapy followed by liver transplantation at 12 large-volume transplant centers survived 

for 5 y 148 Rigorous selection is imperative for successful outcomes. Eligibility criteria 

includes radial diameter of tumor less than 3 cm, absence of intrahepatic or extrahepatic 

metastasis, and in the case of patients without PSC, unresectability.149 Due to the presence 
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of parenchymal liver disease, patients with PSC typically require liver transplantation rather 

than surgical resection.

For patients who are not candidates for surgical resection or liver transplantation, systemic 

chemotherapy with gemcitabine and cisplatin is recommended. For patients with biliary 

obstruction, adequate drainage is essential to relieve cholestasis and increase tolerance to 

chemotherapy.17

dCCA

Intraductal papillary neoplasm and biliary intraepithelial neoplasia are the precursor lesions 

of dCCA.30 dCCA arises from the point of insertion of the cystic duct to the ampulla of vater 

and can therefore be difficult to distinguish from early pancreatic cancer.17 Analogous to 

pCCA, patients typically present with painless jaundice, and laboratory analysis is consistent 

with biliary obstruction. Although pCCA and dCCA are distinct with respect to their 

pathogenesis and treatment, most studies evaluating diagnostic modalities have grouped 

these as extrahepatic CCAs. Cross-sectional imaging, EUS, and ERC are therefore used in 

the same manner in diagnosis of dCCA as with pCCA. Diagnosis is made on the basis 

of presence of a dominant stricture and positive cytology and/or detection of polysomy 

by FISH.2 Surgical treatment of dCCA typically entails a Whipple procedure. Only 27% 

of patients survive for 5 y after surgical resection that attains negative margins.4 The role 

of neoadjuvant chemoradiation is limited. For patients who are not candidates for surgical 

resection, chemotherapy may be considered.17

Future Directions

Treatment options for CCA are limited and overall rates of survival are low. Earlier detection 

of CCA increases chances of having curative treatment options. However, despite recent 

advances in diagnosis, such as improved imaging and cytology techniques, including FISH, 

further work is necessary to overcome the challenge of diagnosing CCA at an earlier stage. 

CCA is still often diagnosed based on clinical criteria, such as a malignant-appearing bile 

duct stricture, increased serum levels of CA 19-9, appearance of a mass during MRI, normal 

serum levels of IgG4 level, etc.

There are significant geographic and ethnic variations in the incidence of CCA, so genetic 

factors are likely to contribute to its pathogenesis. Inflammatory and oncogenic signaling 

pathways are also involved in cholangiocarcinogenesis, and are potential therapeutic targets. 

Further studies are necessary to elucidate the role of genetic aberrations, particularly in 

regions encoding key components of signaling pathways. Additionally, the role of miRs as 

biomarkers remains to be fully elucidated. CCAs are heterogeneous; treatments are likely 

to be designed based on features of each individual tumor.150 Potential therapeutic targets 

could include the MET tyrosine receptor kinase, the PI3K–Akt–mTOR pathway, and IDH 

mutations. Molecular profiling of tumors, to identify their specific mutations, could make it 

possible to offer targeted therapiesin personalized treatments (Figure 2B).

Although cancer cells contain many genetic and functional aberrations, the tumor stroma 

appears to be more uniform and has strong potential as a target for new combination 
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therapies. Further work is needed to highlight the dynamic reciprocal communication 

between tumor and stroma.
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Abbreviations

α-SMA alpha-smooth muscle actin

CA 19-9 carbohydrate antigen 19-9

CAF cancer associated fibroblast

CCA cholangiocarcinoma

CT computed tomography

dCCA distal cholangiocarcinoma

ECM extracellular matrix

ERC endoscopic retrograde cholangiography

ERK extracellular signal regulated kinase

EUS endoscopic ultrasound

FGFR fibroblast growth factor receptor

FISH fluorescence in situ hybridization

HGF hepatocyte growth factor

HBV hepatitis B virus

HCC hepatocellular carcinoma

HCV hepatitis C virus

HPC hepatic progenitor cell

IDH isocitrate dehydrogenase

IL6 interleukin-6

miR microRNA

MCL1 myeloid cell leukemia sequence 1

MMP matrix metalloproteinase
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MRCP magnetic resonance cholangiopancreatography

MRI magnetic resonance imaging

mIDH mutant IDH inhibitor

OR odds ratio

pCCA perihilar cholangiocarcinoma

PDGF platelet-derived growth factor

PSC primary sclerosing cholangitis

PTEN phosphatase and tensin homolog deleted on chromosome ten

TP53 tumor protein 53

WISP1v Wnt-inducible signaling pathway protein 1v
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Figure 1. Anatomic localization of CCA and cells of origin in CCA
(A)Anatomic localization of CCA. CCA is divided into 3 subtypes, based on anatomic 

location. Modified with permission from Razumilava et al.17 (B) Cells of origin in 

CCA. CCA, cholangiocarcinoma; dCCA, distal cholangiocarcinoma, iCCA, intrahepatic 

cholangiocarcinoma, pCCA, perihilar cholangiocarcinoma.
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Figure 2. IDH mutations
(A) Function of wild-type and mutant IDH. Wild-type enzymes catalyze a reaction that 

converts isocitrate to α-ketoglutarate and reduction of NADP to NADPH. The mutant 

enzymes acquire a neomorphic activity that converts the normal metabolite α-KG to 

2-HG and consumption rather than production of NADPH. 2-HG leads to inhibition of 

certain dioxygenases, which has been postulated to result in cancer promoting events. (B) 
Potential of personalized medicine for CCA, using mIDH inhibitors, as an example. α-KG, 

α-ketoglutarate; 2-HG, 2-hydroxyglutarate; IDH, isocitrate dehydrogenase; mIDH, mutant 

isocitrate dehydrogenase; NADPH, nicotinamide adenine dinucleotide phosphate.
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Figure 3. Microenvironment of cholangiocarcinoma
(A) Components of the tumor microenvironment in CCA. (B) Micrograph of a stromal 

CCA. (C) Factors secreted by cancer-associated fibroblasts. CCA, cholangiocarcinoma; 

CTGF, connective tissue growth factor; ECM, extracellular matrix; HGF, hepatocyte 

growth factor; MMP, matrix metalloproteinase; PDGF-β, platelet-derived growth factor beta; 

SDF-1, stromal cell-derived factor 1; TGF-β, transforming growth factor beta.
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Figure 4. Diagnostic modalities used for cholangiocarcinoma
(A) MRI image of a pCCA mass (outlined in circle). (B) CT image of a pCCA mass with 

right portal vein encasement (indicated by black arrow). (C) MRCP image of common 

hepatic duct involvement by tumor (indicated by white arrow). (D) ERC image depicting 

excluded segmental ducts (white arrows) in a patient with a hilar biliary stricture extending 

into the right main hepatic duct. CT, computed tomography; ERC, endoscopic retrograde 

cholangiography; MRCP, magnetic resonance cholangiopancreatography; MRI, magnetic 

resonance imaging; pCCA, perihilar cholangiocarcinoma.
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Figure 5. 
Time to diagnosis of cholangiocarcinoma based on FISH analysis and CA 19-9 levels. CA 

19-9, carbohydrate antigen 19-9; FISH, fluorescence in situ hybridization.

Reused with permission from Wiley InterScience and Barr et al.146
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Table 1

Animal models of cholangiocarcinoma.

Mice with xenograft tumors

Experimental Approach Key Features Study

Injection of 3 × 106 Mz-ChA-1 cells Tumor development in 3 weeks Fava et al. 112

Injection of 5 × 106 Sk-ChA-1 cells +/− intratumoral 
tamoxifen injections

Significantly decreased CCA development with 
intratumoral tamoxifen injections

Pawar et al. 113

Injection of 2 × 106 QBC939 cells +/− magnetic 
nanoparticle injections via tail vein

CCA tumor growth inhibition with magnetic 
nanoparticles

Tang et al. 114

Injection of IL6 overexpressed Mz- ChA-1 stable cell line 
(Mz-ChA-IL6) vs. control vector Mz-ChA-1 cell line

Overexpression of IL6 increased growth of 
xenograft tumors

Meng et al. 43

Injection of miR26a overexpressed CCLP1 cell line vs. 
scramble control CCLP1 cell line

Overexpression of miR26a increased growth of 
xenograft tumors

Zhang et al. 115

Injection of miR494 overexpressed stable HuCCT1 cell 
line vs. control vector HuCCT1 cell line

Overexpression of miR494 increased growth of 
xenograft tumors

Olaru et al. 116

Injection of stable QBC939 cell line transfected with Slug 
siRNA vs. control vector QBC939 cell line

Slug silencing suppressed growth of xenograft 
tumors

Zhang et al. 117

Injection of CypA silenced stable M139 cell line vs. 
control vector M139 cell line

CypA silencing decreased growth of xenograft 
tumors

Obchoei et al. 118

Injection of stable QBC939 cell line transfected with 
Beclin-1 siRNA vs. control vector QBC939 cell line

Beclin-1 silencing decreased growth of xenograft 
tumors

Hou et al. 119

Genetically Engineered Mouse Models

Experimental Approach Key Features Study

Liver specific inactivation of SMAD4 and PTEN. Tumor formation in all animals at 4–7 months of 
age

Xu et al. 120

Chronic carbon tetrachloride exposure in TP53-deficient 
mice.

Development of tumors with dense peritumoral 
fibrosis and other histologic and genetic features of 
human iCCA.

Farazi et al. 121

Liver-specific inactivation of macrophage stimulating 
factor 1 and 2

Tumor development (HCC or CCA) in all mice by 6 
months of age

Song et al. 122

Liver-specific ablation of WW45, a homolog of 
Drosophila Salvador and adaptor for the Hippo kinase

Development of tumors with mixed histological 
features of HCC and CCA

Lee et al. 123

Liver-specific activation of KRAS and deletion of TP53. Development of stroma-rich tumors. Shortened time 
to tumor development and increased metastasis with 
the combination of KRAS activation and TP53 
deletion

O’Dell et al. 124

Overexpression of intracellular domain of Notch1 in livers 
of transgenic mice

Formation of tumors with features characteristic of 
iCCA

Zender et al. 86

Orthotopic Rat Models

Experimental Approach Key Features Study

Inoculation of BDEneu cells into bile duct of isogenic rats Rapid (21–26 d) development of 
cholangiocarcinoma characterized by biliary 
obstruction and gross peritoneal metastasis; origin 
of tumor stroma and tumor tissue from same species 
(rat)

Sirica et al. 125

Three-dimensional organotypic culture model of CCA in 
rats

Stromal microenvironment, gene expression profile, 
and pathophysiological characteristics which mimic 
desmoplastic iCCA in vivo

Campell et al. 126

Carcinogen-induced Models

Experimental Approach Key Features Study
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Mice with xenograft tumors

Experimental Approach Key Features Study

Furan induced cholangiocarcinogenesis in rat liver. Formation of mucin-producing CCA tumors; 
overexpression of C-NEU and MET

Radaeva et al. 55

Chronic administration of thioacetamide in lean rats and 
rats with faulty leptin receptors

Increased development and growth of CCA tumors 
in lean rats treated with thioacetamide

Fava et al. 127

Administration of diethylnitrosamine (DEN) +/− left and 
median bile duct ligation (LMBDL) to induce chronic 
cholestasis and CCA development

Increased CCA progression in mice with LMBDL 
given DEN compared to mice without LMBDL 
given DEN

Yang et al. 128

Inoculation with Opisthorchis viverrini and administration 
of dimethynitrosaminein hamsters

Development of pus and tumor in liver starting 
at 20 weeks after O. viverrini infection/DEN 
administration; all hamsters in experimental group 
were dead by 28 weeks

Plengsuriyakarn et al. 129

BDEneu, highly malignant cholangiocarcinoma cell line; CCA, cholangiocarcinoma; CCLP1, cholangiocarcinoma cell line; C-NEU, rat 
homologue of human ERBB2; CypA, cyclophilin A; HCC, hepatocellular carcinoma; HuCCT1, cholangiocarcinoma cell line; IL6, interleukin-6; 
KRAS, Kirsten rat sarcoma viral oncogene homolog; MET, met proto-oncogene; M139, cholangiocarcinoma cell line; miR, microRNA; Mz-
ChA-1, cholangiocarcinoma cell line; O. viverrini, Opisthorchis viverrini; PTEN, phosphatase and tensin homolog deleted on chromosome ten; 
QBC939, human hilar bile duct carcinoma cell line; Sk-ChA-1, cholangiocarcinoma cell line; siRNA, SMAD4, SMAD family member 4; small 
interfering RNA; TP53, tumor protein 53.

Gastroenterology. Author manuscript; available in PMC 2014 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ilyas and Gores Page 30

Table 2

Criteria for liver transplantation in pCCA.

Diagnosis of Cholangiocarcinoma

• Positive transluminal biopsy

• Positive biliary brush cytology

• Malignant appearing stricture on ERC with a CA 19-9 9 > 100 U/ml and/or FISH polysomy

• Mass lesion on cross-sectional imaging and malignant appearing stricture on ERC/MRCP

Tumor Size

• Radial tumor diameter of ≤ 3 cm

Tumor confined to biliary tree

• Absence of intrahepatic or extrahepatic metastasis

Unresectability

• Unresectable hilar tumor (above the cystic duct)

• CCA in a PSC patient (due to skip lesions, the field defect, and parenchymal liver disease)

CA 19-9, carbohydrate antigen 19-9; CCA, cholangiocarcinoma; ERC, endoscopic retrograde cholangiography; FISH, fluorescence in situ 
hybridization; MRCP, magnetic resonance cholangiopancreatography; pCCA, perihilar cholangiocarcinoma; PSC, primary sclerosing cholangitis.
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